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SURELY COMPLETE MATRICES

BOHUSLAV SIVAK

ABSTRACT. The ”sure completness” of the 3x3 matrices over the set {0,1,2,*} is defined
and it is found an example of such matrix with only 4 numbers. (No such matrix with less
than 4 numbers can be surely complete.) Using surely complete matrices, a lot of functionally
complete algebras can be generated.

Studying the functional completness and other properties of the algebras of the type
(2) on the set {0,1,2,}, we will use the matrix denotation by [3]. Similarly, the unary
functions we will write in the vector form.

Definition. Let G be a 3x3 matrix over the set {0,1,2,x} and let H be a 3x3 matrix
over the set {0,1,2}. The matrix H will be called a specification of the matrix G iff the

following implication is satisfied:
G(i,5) €{0,1,2} = H(i,j) = G(i, j)

Example 1. The matrix

1 20
H=10 0 2
1 1 2
is a specification of the matrix
1 % 0
G=|x* 0 2
X ok %

Definition. Let G be a 3x3 matrix over the set {0,1,2,+}. The matrix G will be called
surely complete iff the following condition is satisfied: For every specification H of the
matrix G, the algebra ({0,1,2}, H) of the type (2) is funcionally complete.
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Example 2. Put
1 0 2 1
G et k 2 k s H - 0
* % 0
The matrix G is not surely complete. In fact, its specification H can be described by the
formula

H(z,y) =2z + 2y + 1 modulo 3.
and every polynomial of the algebra ({0,1, 2, }, H) is a polynomial of the algebra ({0, 1,2, }, +),
too. On the other hand, the last algebra is not functionally complete.
In [3], the following theorem is proved.
Theorem 1. Assume that A = {0,1,2} and that the algebra (A, F') has the following
properties:

1) among unary polynomial functions there exist at least one transposition, at least
one 3-cycle and at least one function with exactly 2 values,
2) among binary polynomial functions there exists a function G and there exist
a,b,c,d € A such that
{G(a,c), G(a,d), G(b,c), G(b,d)} = A.

Then (A, F) is functionally complete.
Example 3. Put

G —

* N O
— O N

* X =

This matrix G is surely complete. In fact, the polynomial fuction G(0,z) = (1,0,2) is a
transposition, G(x,2) = (2,0,1) is a 3-cycle, G(x,z) = (1,2,1) has exactly 2 values and

{G(0,0), G(0,1), G(1,0), G(1,1)} = {0,1,2}.

Lemma 1. The matrix

@
I
% % =
* O *
oo

is surely complete.
Proof. Following unary functions are polynomial:
p1(z) = G(z,xz) = (1,0,0) (it has 2 values),
pa2(z) = G(z,2) = (0,2,0),
p3(x) = pr(pr(z)) = (0,1,1),
pa(z) = G(ps(x),z) = (1,0,2) (a transposition),
ps(z) = pa2(ps(z)) = (0,2,2),
pe(x) = G(z,ps(x)) = (1,2,0) (a 3 — cycle).
Moreover, {G(0,0), G(0,2), G(1,0), G(1,2)} ={0,1,2}. Now apply Theorem 1.
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Lemma 2. The matrix

@Q

Il
* K =
* O %
_= N O

is surely complete.

Proof. Following unary functions are polynomial:
p1(x) = G(z,z) = (1,0,1) (it has 2 values),

p2(z) = G(x,2) = (0,2,1) (a transposition),
p3(z) = p1(p1(2)) = (0,1,0),
pa(z) = G(ps(z),x) = (1,0,0),
ps(@) = p1(pa(x)) = (0,1,1),
pe(z) = G(ps(z),x) = (1,0,2),
pr(x) = p2(ps(x)) = (2,0,1) (a3 — cycle).
Moreover, {G(0,0), G(0,2), G(1,0), G(1,2)} = {0,1,2}. Now apply Theorem 1.

Lemma 3. The matrix

1 0 0
G=|x 0 2
* x 2

is surely complete.

Proof. Following unary functions are polynomial:
p1(z) = G(x,2) = (0,2,2) (it has 2 values),

p2(z) = G(z,z) = (1,0,2) (a transposition),
p3(z) = p1(p2(2)) = (2,0,2),
pa(z) = G(0,p3(z)) = (0,1,0),
ps(z) = G(pa(z), pr(z)) = (1,2,0) (a3 —cycle).
Moreover, {G(0,0), G(0,2), G(1,0), G(1,2)} = {0,1,2}. Now apply Theorem 1.

Lemma 4. The matrix

@

Il
* % =
* O =
O N O

is surely complete.
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Proof. Following unary functions are polynomial:
pi(z) = G(0,z) = (1,1,0) (it has 2 values),

p2(x) = G(z,z) = (1,0,2) (a transposition),
p3(z) = G(z,2) = (0,2,2),
pa(z) = p3(p1(z)) = (2,2,0),
ps(z) = p1(ps(z)) = (1,0,0),
pe(z) = G(ps(x), pa(z)) = (2,0,1) (a3 — cycle).
Moreover, {G(0,0), G(0,2), G(1,0), G(1,2)} = {0,1,2}. Now apply Theorem 1.

Lemma 5. The matrix

@Q
I
* % =
* O %
oD O

is surely complete.

Proof. For the value G(0,1) we have only 3 possibilities. In the case G(0,1) = 0, it
suffices to apply Lemma 3. In the case G(0,1) = 1, it suffices to apply Lemma 4. In the
case G(0,1) = 2, the following unary functions are polynomial:

G(z,2) = (0,2,2) (it has 2 values),
G(z,x) = (1,0,2) (a transposition),
G(0,z) = (1,2,0) (a3 — cycle).

Moreover, {G(0,0), G(0,2), G(1,0), G(1,2)} = {0,1,2}. Now apply Theorem 1.

Theorem 2. The matrix

)

Il
* % =
* O %
* N o

is surely complete.
Proof. Apply Lemma 1, Lemma 2 and Lemma 5.

Theorem 3. The algebra ({0,1,2}, F') is functionally complete iff there exists a binary
polynomial function G such that
G(0,0) =1, G(0,2) =0, G(1,1) =0, G(1,2) = 2.

Lemma 6. Let G be a surely complete 3x3 matrix. Then at least one row of the matrix
G contains at least 2 different numbers.
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Proof. Assume that no row of the matrix G contains different numbers. Then the matrix
G has a specification H of the form

I
SIS
SIS
o o

Trivially, the algebra ({0, 1,2}, H) is not functionally complete.

Lemma 7. Let G be a surely complete 3x3 matrix. Then at least one column of the
matrix G contains at least 2 different numbers.

Lemma 8. Let G be a 3x3 matrix over the set {0,1,2,x}. Assume that at least one row
and at least one column of the matrix G are "number-free”. Then the matrix G is not
surely complete.

The idea of the proof. For example, the matrix

* a b
G=|x ¢ d
*
has a specification
b a b
H=|d ¢ d
b a b

The algebra ({0,1,2}, H) is not functionally complete. In fact, it has a non-trivial congru-
ence cg(0,2).

Theorem 4. Let G be a surely complete 3x3 matrix over the set {0,1,2}. Then G contains
at least 4 numbers.

Proof. Apply Lemma 6, Lemma 7 and Lemma 8.
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