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USING A COMPUTER IN MATROID THEORY RESEARCH

Petr Hliněný

Abstract. In this paper we introduce our computer program Macek for structural
computations with matroids representable over finite (partial) fields.
See http://www.mcs.vuw.ac.nz/research/macek. Using this program, we then find
all 56 ternary excluded minors for the class of matroids of branch-width three. That
research continues on the binary case [P. Hliněný, On the Excluded Minors for Ma-
troids of Branch-Width Three, Electronic Journal of Combinatorics 9 (2002), #R32].

1 Introduction

Matroids represented over a finite (partial) field play an important role in struc-
tural matroid theory, similar to the role that graphs embedded on a surface play
in structural graph theory. However, unlike for embedded graphs, it is difficult to
visualize a matroid in rank bigger than 3, even when it is given as a matrix or a
vector configuration. It is even more difficult to examine basic structural properties
of given matroids like isomorphism, minors, connectivity, branch-width, or matroid
extensions.

It is often the case that proving a theorem in structural matroid theory requires
one to check all the small cases (on about, say, 10 elements) by hand, or to verify
specific properties of selected small matroids, which are often represented by ma-
trices over finite fields. In graph theory, such tasks are easily solved with a pen
and a paper, but, unfortunately, it is not like that with matroids. As matroid re-
searchers know very well themselves, checking the “small cases” can be quite long
and painful, and prone to errors. Such is the situation with the problem of finding
the excluded minors for matroids of branch-width three we focus on here – it is
known that the excluded minors have at most 14 elements.

That is why we have developed a computer program Macek [6] for practical
structural computations with matroids represented over finite partial fields. This
program supports an easy manipulation and computations with matrices represent-
ing matroids over finite partial fields. For example, one can test for matroid mi-
nors, equivalence, representability, isomorphism, branch-width three, connectivity,
and other structural properties. An important function is an exhaustive generation
of all 3-connected extensions of matroids. The program is free, distributed under
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the terms of the GNU General Public License as published by the Free Software
Foundation. See [6] for information about how to obtain and install the Macek
program.

2 Basics of Matroids

We refer to Oxley [10] for matroid terminology. A matroid is a pair M = (E,B)
where E = E(M) is the ground set of M (elements of M), and B ⊆ 2E is a
nonempty collection of bases of M . Moreover, matroid bases satisfy the “exchange
axiom”; if B1, B2 ∈ B and x ∈ B1 − B2, then there is y ∈ B2 − B1 such that
(B1 − {x}) ∪ {y} ∈ B. We consider only finite matroids. Subsets of bases are
called independent sets, and the remaining sets are dependent. Minimal dependent
sets are called circuits. All bases have the same cardinality called the rank r(M)
of the matroid. The rank function rM (X) in M is the maximal cardinality of an
independent subset of a set X ⊆ E(M).

If G is a (multi)graph, then its cycle matroid on the ground set E(G) is denoted
by M(G). The independent sets of M(G) are acyclic subsets (forests) in G, and the
circuits of M(G) are the cycles in G. Another example of a matroid is a finite set
of vectors with usual linear dependency. If A is a matrix, then the matroid formed
by the column vectors of A is called the vector matroid of A.
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Fig. 1. An example of a vector representation of the cycle matroid
M(K4). The matroid elements are depicted by dots, and their (linear)
dependency is shown using lines.

The dual matroid M∗ of M is defined on the same ground set E, and the bases
of M∗ are the set-complements of the bases of M . A set X is coindependent in M
if it is independent in M∗. An element e of M is called a loop (a coloop), if {e} is
dependent in M (in M∗). The matroid M \ e obtained by deleting a non-coloop
element e is defined as (E − {e},B−) where B− = {B : B ∈ B, e 6∈ B}. The
matroid M/e obtained by contracting a non-loop element e is defined using duality
M/e = (M∗\e)∗. (This corresponds to contracting an edge in a graph.) Conversely,
a matroid M ′ is a one-element extension (coextension) of M if M = M ′ \ e (M =
M ′/e) for some element e. A minor of a matroid is obtained by a sequence of
deletions and contractions of elements. Since these operations naturally commute,
a minor M ′ of a matroid M can be uniquely expressed as M ′ = M \ D/C where
D are the coindependent deleted elements and C are the independent contracted
elements.

Matroid Connectivity

An important concept in structural matroid theory is connectivity, which is close,
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but somehow different, to traditional graph connectivity. The connectivity function
λM of a matroid M is defined for all subsets A ⊆ E by

λM (A) = rM (A) + rM (E −A)− r(M) + 1 .

Here r(M) = rM (E). A subset A ⊆ E is k-separating if λM (A) ≤ k. A partition
(A,E − A) is called a k-separation if A is k-separating and both |A|, |E − A| ≥ k.
Geometrically, the spans of the two sides of a k-separation intersect in a subspace
of rank less than k. See in Fig. 2. In a corresponding graph view, the connectivity
function λG(F ) of an edge subset F ⊆ E(G) equals the number of vertices of G
incident both with F and with E(G)−F . (Then λG(F ) = λM(G)(F ) provided both
sides of the separation are connected in G.) For n > 1, a matroid M is n-connected
if it has no k-separation for k = 1, 2, . . . , n− 1, and |E(M)| ≥ 2n− 2.

Fig. 2. An illustration to a 4-separation in a graph, and to a 3-separation
in a matroid.

Of particular interest to us are 3-connected matroids, which capture the core of
most structural properties and problems on matroids. 3-connected matroids can
be reasonably easily handled using so called Seymour’s Splitter Theorem [14]. Let
the k-wheel be the matroid M(Wk) where Wk is the graph obtained from a k-cycle
by adding one vertex adjacent to all other vertices. The k-whirl is obtained from
the k-wheel by relaxing (making independent) the rim circuit.

Theorem 1. (Seymour) Let M,N be 3-connected matroids such that N is a
minor of M . Suppose that if N is a wheel (a whirl), then M has no larger wheel
(no larger whirl) as a minor. Then there is a 3-connected matroid N1 such that
|E(N1)| = |E(N)|+ 1, and that M has an N1-minor.

This important theorem allows a step-by-step construction of large 3-connected
matroids from smaller ones; adding only one element at each step while maintaining
3-connectivity. (In other words, doing 3-connected one-element extensions and
coextensions.)

Matroid Representations

An F-representation of a matroid M is a matrix A over a field F whose columns
correspond to the elements of M , and linearly independent subsets of columns form
the independent sets of M . Alternatively, one may view the matrix A as a point
configuration in a projective space over F. A matrix A is in the standard form if
the number of rows in A equals the rank of M , and if some basis of M is displayed
in A as a unit submatrix. A matrix A′ is a reduced representation of the matroid
M = M(A′) if [I |A′] is the standard form matrix representing M .

Moreover, we consider matroids represented over partial fields. A partial field is
a generalization of a field, in which the addition is a partial operation. We refer
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to [13] for a formal definition and properties of partial fields. A typical and well-
known example is the regular partial field consisting of the integers −1, 0, 1 with
usual addition and multiplication. A matrix A over a partial field P is proper if all
subdeterminants of A are defined in P. For example, proper regular matrices are
traditionally known as totally-unimodular. A matroid N is representable over P iff
there is a proper matrix A over P such that N 'M(A).

A partial field is called finite if the equation x−1 = y has finitely many solutions
in P. All finite fields are clearly finite in this sense. However, a finite partial field
may have infinitely many elements. (The reason for our terminology is that a fixed-
rank simple matroid representable over a finite partial field may have only finite
number of elements.)

We say that two matrices are strongly equivalent if one can be obtained from
the other by a sequence of row or column permutations, non-zero scalings, and piv-
ots. Considering reduced P-representations of matroids, we call the P-represented
matroid an equivalence class of unlabeled matrices with respect to the strong equiv-
alence. Clearly, represented matroids refine the isomorphism classes of matroids.
On the other hand, one matroid may have several non-equivalent representations
over P. An obvious example of this phenomenon is presented in Fig. figdifrep.

Fig. 3. Two inequivalent representations of a 9-element rank-3 matroid.

A matroid M is regular if M is representable over the regular partial field. A
regular matroid is then representable over all fields. A matroidM is binary, ternary,
if M is representable over the fields GF (2), GF (3), respectively. We remark that
cycle matroids of graphs are regular.

Small matroid enumeration

To introduce and demonstrate capabilities of the Macek program in practice, we
first present a table summarizing enumeration of small 3-connected regular, binary,
ternary, and quaternary matroids. Let U2,k denote the rank-2 matroid formed by
k distinct points in one line.

representable \ elements 4 5 6 7 8 9 10 11 12 13 14 15

regular 0 0 1 0 1 4 7 10 33 84 260 908
GF (2), non-regular 0 0 0 2 2 4 17 70 337 2080 16739 181834
GF (3), non-regular 1 0 1 6 23 120 1045 14116 330470 ? ? ?
GF (4), non-GF (2, 3) 0 2 2 8 69 748 15305 ? ? ? ? ?

Tab. 1. The numbers of 3-connected matroids representable over small
fields.

The results in Table 1 have been obtained using Theorem 1 and the following
Macek computations:
– The numbers in the first row have been computed via regular 3-connected ex-

tensions of all small wheels (removing duplicities).
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– The numbers in the second row have been obtained using binary 3-connected ex-
tensions of the Fano matroid (the binary projective plane), which is the smallest
binary non-regular matroid.

– In the third row, we have computed all ternary 3-connected extensions of the 3-
whirl matroid, and added the larger whirls. (Although every non-binary matroid
contains the 4-point line U2,4 as a minor, that matroid has no ternary extensions,
and so we had to use a detour in our computation.)

– In the fourth row, we have computed all quaternary 3-connected extensions of
the 5-point line U2,5, which is the smallest non-ternary matroid. Moreover, we
have removed isomorphic pairs of matroids afterward, as quaternary matroids
already may have non-equivalent representations.

3 Overview of Macek Capabilities

We give a brief overview of our Macek program in this section. As we have al-
ready mentioned, the program has been developed to assist matroid theory research
with useful structural computations. It is designed in a command-line oriented
form, which is suitable especially for large-scale batch computations, but answer-
ing (single) structural questions is also supported well. We refer to [6] for a full
description and technical details (including an installation instructions).

Matrix representations

The Macek program deals with P-represented matroids (given by reduced ma-
trix representations) in the sense of the definition from Section 2. P may be an
arbitrary finite partial field. Definitions of common small fields and partial fields
are compiled in Macek, and it is not difficult to add other partial fields via de-
scription of generators of the multiplicative subgroup. Representations of many
well-known matroids are also distributed with the program.

Since the basic entity in Macek is a P-represented matroid – an equivalence class
of matrices over P, two non-equivalent matrices are considered distinct even if they
represent isomorphic matroids. So the issue of inequivalent matroid representations
has to be considered when it comes up, i.e. over fields larger than GF (3). In
this context, it is important to mention that matroid elements in Macek are not
explicitly labeled (though they get implicit labels for the purpose of display). So
an “equivalence” is meant to be the strong unlabeled equivalence of matrices.

Structural functions

It is possible to compute various matroid tasks and properties with Macek:
Those include looking for specific minors in given matroids, finding an equivalence
or an abstract isomorphism between matroids, computing matroid connectivity or
girth (shortest cycle length), etc. Other specific functions test for branch-width
three or for paving matroids, etc. All these functions can also be applied as filters
to (generated) matroid lists.

We remark that such structural properties are usually computationally very hard,
and hence we have to implement most of them using clever adaptations of brute-
force mathods. The bad side is that computational time grows exponentially, and
usually only matroids on less than 20 elements could be efficiently handled. Still,
the program functions seem to be enough powerful and fast to substantially help
with matroid theory research.
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Besides those, Macek can compute and print out various structural informa-
tion about a matroid itself, like bases, automorphism group orbits, small flats and
separations, connectivity, and representability over other fields. For example, the
following extensive information can be printed about the matroid R12. (R12 is an
interesting matroid playing a crucial role in Seymour’s decomposition theorem [14]
for regular matroids.)

MACEK 1.1.9999 (23/04/04) starting...

vv==================================================================================vv

~532~ Output of the command "!prmore ((t)) [1]":

~ --------------------------------------------------------------

~ matrix 0x8190168 [R12], r=6, c=6, tr=0, ref=(nil)

~ ’-1’) ’-2’) ’-3’) ’-4’) ’-5’) ’-6’)

~ ’1’) 1 1 1 o o o

~ ’2’) 1 1 o 1 o o

~ ’3’) 1 o o o 1 o

~ ’4’) o 1 o o o 1

~ ’5’) o o 1 o -1 -1

~ ’6’) o o o 1 -1 -1

~ --------------------------------------------------------------

~532~ Number of matroid [R12] bases: 441

~532~ - per elements [1: 210] [2: 210] [3: 231] [4: 231] [5: 210] [6:210]

[-1: 231] [-2: 231] [-3: 210] [-4: 210] [-5: 231] [-6: 231]

~532~ Automorphism group orbits of [R12] are (via first elem id):

(1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3)

~535~ There are -NO- (nontrivial) flats in [R12] of rank 0.

~535~ There are -NO- (nontrivial) flats in [R12] of rank 1.

~535~ Listing all (nontrivial) flats in [R12] of rank 2:

~ - rank-2 flat (1) { 1, 5, -3 }

~ - rank-2 flat (2) { 2, 6, -4 }

~535~ Listing all (nontrivial) flats in [R12] of rank 3:

......... <skipped> .........

~535~ There are -NO- exact separations in [R12] of lambda 1.

~535~ There are -NO- exact separations in [R12] of lambda 2.

~535~ Listing all exact separations in [R12] of lambda 3:

~ - 3-separation (1) ( 1, 2, 5, 6, -3, -4, )

~ - 3-separation (2) ( 1, 5, -3, )

~ - 3-separation (3) ( 2, 6, -4, )

~ - 3-separation (4) ( 3, -1, -5, )

~ - 3-separation (5) ( 3, 4, -1, -2, -5, -6, )

~ - 3-separation (6) ( 4, -2, -6, )

~535~ Matroid [R12] connectivity is 3.

~535~ Matroid [R12] girth (shortest cycle) is 3.

~535~ Matroid [R12] representability:

+GF(2)+ +GF(3)+ +GF(4)+ +GF(5)+ +GF(7)+ +GF(8)+ +GF(9)+

^^==================================================================================^^
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Matroid generation

In order to use a computer in proving general statements about matroids, we
need a suitable tool for exhaustive generation of matroids. Due to the existence
of enormous numbers of matroids already on a few elements, Macek supports
generating matroid extensions rather than generating from scratch. This approach
seems to be better suited for practical applications. A theoretical description of
the (quite involved) generation algorithm used in Macek is presented in [8]. Our
algorithm allows for a multi-step equivalence-free generation of extensions, which
can be, moreover, easily distributed in a parallel computing environment without
need for inter-process communication.

Likewise, one can ask Macek to generate all nonequivalent single-element 3-
connected extensions and coextensions of the matroid R10 which are representable
over GF (5). The answer is as follows,

sh$ macek -pgf5 ’!extend’ R10

MACEK 1.1.9999 (23/04/04) starting...

~979~ Generated 12 non-equiv 3-conn row co-extensions of the sequence [R10] (5x5|5x5).

~985~ Generated 12 non-equiv 3-conn column extensions of the sequence [R10] (5x5|5x5).

~985~ In total 24 (co-)extensions of 1 matrix-sequences generated for "b" over GF(5).

and the 24 generated extensions can be readily used in further computations. For
example, a subsequent test can find out that two of the 12 coextensions there
have girth 5, i.e. they have no circuits on less than 5 elements. Or, that all
generated extensions are pairwise non-isomorphic here. The multi-step feature of
our generation algorithm allows to start next steps independently from each of the
previous extensions, and yet to generate no duplicated extensions.

The above mentioned matroid R10 is well known for being a splitter for the class
of regular matroids. (A splitter has no 3-connected extension or coextension in its
class.) Using Macek, one can easily prove that R10 is a splitter also for the class
of all near-regular matroids (those representable over all fields larger than GF (2),
at least).

sh$ macek -pnreg ’!extend’ R10

MACEK 1.1.9999 (23/04/04) starting...

~126~ Generated 0 non-equiv 3-conn row co-extensions of the sequence [R10] (5x5|5x5).

~126~ Generated 0 non-equiv 3-conn column extensions of the sequence [R10] (5x5|5x5).

~126~ In total 0 (co-)extensions of 1 matrix-sequences generated for "b" over near-reg.

Besides matroid extensions, Macek supports generation of all representations of
a matroid over a given field. (That, of course, includes simply testing representabil-
ity over a field.) For example, one may find out that the uniform matroid U3,6 has
140 representations over the field GF (7) that are distinct up to scaling, but only
three of them are inequivalent (in the unlabeled sense). As another example, one
may compute that each of the 6 single-element extensions of U3,6 over GF (7) have
more than one pairwise non-equivalent representations there:

sh$ macek -pgf7 ’!verbose;!extend c;!represgen "" allq’ U36

MACEK 1.1.9999 (23/04/04) starting...

~333~ Generated 6 non-equiv 3-conn column extensions of the sequence [U36] (3x3|3x3).

~333~ In total 6 (co-)extensions of 1 matrix-sequences generated for "c" over GF(7).

~334~ There are 2 nonequiv GF(7)-representations of #1 matroid [U36_c1] (3x4, GF(7)).
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~334~ There are 10 nonequiv GF(7)-representations of #2 matroid [U36_c2] (3x4, GF(7)).

~335~ There are 4 nonequiv GF(7)-representations of #3 matroid [U36_c3] (3x4, GF(7)).

~335~ There are 10 nonequiv GF(7)-representations of #4 matroid [U36_c4] (3x4, GF(7)).

~336~ There are 10 nonequiv GF(7)-representations of #5 matroid [U36_c5] (3x4, GF(7)).

~337~ There are 2 nonequiv GF(7)-representations of #6 matroid [U36_c6] (3x4, GF(7)).

Other capabilities

Lastly, we briefly mention other supplementary functions in Macek. Those in-
clude mainly file reading and writing operations, and operations manipulating with
single matrices and with whole lists of them. (Actually, all data in Macek are
structured in a tree-like fashion.) Moreover, Macek offers basic scripting capabil-
ities like procedures, conditions, jumps, and others. We refer to the manual for a
full description, and for many examples of use.

4 Excluded Minors for Branch-Width Three

We now move to the main topic of research in this paper. The concept of graph
tree-width is rather well known nowadays. A similar, but less known, structural
parameter is called branch-width, and it is within a constant factor of tree-width
on graphs.

Let λ be a symmetric function on the subsets of a ground set E. (Here λ ≡
λG is the connectivity function of a graph, or λ ≡ λM of a matroid.) A branch
decomposition of λ is a pair (T, τ) where T is a sub-cubic tree (∆(T ) ≤ 3), and τ
is a bijection of E into the leaves of T . For e being an edge of T , the width of e
in (T, τ) equals λ(A) = λ(E − A), where A ⊆ E are the elements mapped by τ to
leaves of one of the two connected components of T − e. The width of the branch
decomposition (T, τ) is maximum of the widths of all edges of T , and branch-width
of λ is the minimal width over all branch decompositions of λ.
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Fig. 4. Two examples of width-3 branch decompositions of the Pappus
matroid (top left, in rank 3) and of the binary affine cube (bottom left,
in rank 4). The lines in matroid pictures show dependencies among
elements.

Recall the definitions of graph and matroid connectivity functions from Section 2.
Then branch-width of λ ≡ λG is called branch-width of a graph G, and that of
λ ≡ λM is called branch-width of a matroid M . (See examples in Fig. 4.) We remark
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that it is possible to define matroid tree-width [9] which is within a constant factor
of branch-width, but this is not a straightforward extension of traditional graph
tree-width.

The main focus of this research is on the class B3 of all matroids of branch-
width at most three. Clearly, this class is minor-closed. A matroid N is said to
be an excluded minor for a minor-closed family N if N 6∈ N but all proper minors
of N belong to N . The question is: What are the excluded minors for the class
B3? We base our (partial) answer to the question (further Theorems 4 and 5,
Proposition ??? on the following theorem [4,5]:

Theorem 2. (Hall, Oxley, Semple, Whittle) If N is an excluded minor for the
class B3, then N is a 3-connected matroid on at most 14 elements.

The Binary Case

The story of the research originally started with considering the class of all graphs
of branch-width at most three. All the excluded minors for this class were found
first by Dharmatilake and others [3], but that research has not been publicized
further. The same list was independently found later in [1].

Theorem 3. (Dharmatilake, Chopra, Johnson, Robertson) A graph has branch-
width at most 3 if and only if it has no minor isomorphic to any one of the graphs
{K5, Q3, O6, V8}. (See the graphs in Fig. 5.)

K5 Q3 O6 V8

Fig. 5. The four excluded minors for graphs of branch-width at most 3.

It is easy to see that the cycle matroids of the graphs from Theorem 3 are
also excluded minors for the matroid class B3. Moreover, the well-known regular
matroid R10 is an excluded minor for B3. Let us denote

R3 = {M(K5),M(K5)
∗,M(Q3),M(O6),M(V8),M(V8)

∗, R10} .

Dharmatilake then used a specialized computer program to search for all small
binary matroids (up to 12 elements) that are excluded minors for B3. He found
three more non-regular matroids, denoted by N11, N23, N

∗
11, and he conjectured [3]

that R3 ∪ {N11, N23, N
∗
11} is the complete set of binary excluded minors for B3.

R10











−1 1 0 0 1
1 −1 1 0 0
0 1 −1 1 0
0 0 1 −1 1
1 0 0 1 −1
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Fig. 6. The matroid R10, in a totally unimodular (regular) representa-
tion.

We have finished [7] a computerized search of binary matroids up to 14 elements
(cf. Theorem 2) using functions of our program Macek; which has turned out to be
a much faster computation than Dharmatilake’s one. (While Dharmatilake carried
out a long computation in a supercomputing center, our search of binary matroids
up to 12 elements took only a few seconds on a home PC computer. An extension
up to 14 elements took another several hours.)

Theorem 4. (PH) A binary matroid has branch-width at most 3 if and only if it
has no minor isomorphic to one of the members of R3 ∪ {N11, N23, N

∗
11}.

The Ternary Case

A natural next step is to consider the same question – what are the excluded
minors for the class B3, over ternary matroids, and so on. In theory, there is
no problem with it, as an analogous Macek computation can be run over the
field GF (3). However, the complexity of computation grows enormously. That is
illustrated in the next Table 2 showing the numbers of small regular, binary, and
ternary members of B3.

representable \ elements 4 5 6 7 8 9 10 11 12 13 14

regular 0 0 1 0 1 4 4 8 23 46 123
GF (2), non-regular 0 0 0 2 2 4 14 38 125 432 1551
GF (3), non-regular 1 0 1 6 23 102 538 3008 18597 119594 796208

Tab. 2. The numbers of 3-connected matroids of branch-width three
over small fields.

Yet we have been able to finish at least the search of ternary matroids up to
14 elements on a supercomputing cluster. Total computing time was equivalent to
almost 2 years on a single 2GHz PC computer. Hence we have proved:

Theorem 5. There is a family T3 of 49 ternary non-regular matroids; such that a
ternary matroid has branch-width at most 3 if and only if it has no minor isomorphic
to one of the 56 members of R3 ∪ T3.

Proof. By [15], all non-binary matroids contain a U2,4-minor. Unfortunately, U2,4

(isomorphic to the 2-whirl) is one of the exceptions in Theorem 1, but an enhance-
ment of this theorem [2] (also in [[]Section 11.3]10) implies that all 3-connected
ternary extensions of U2,4, that are not whirls, contain a single-element extension
or coextension of the 3-whirl W3 as a minor. All whirls clearly have branch-width
three.

Hence each excluded minor for our class B3 contains a single-element extension
or coextension of W3 as a minor, and so Theorem 1 can be applied here. We
proceed our computation along the following scheme:

(1) Start with the family L6 = {W3}, and T3 = ∅.
(2) For i = 6, 7, . . . , 13, compute a list Xi+1 of all single-element extensions and

coextensions of the matroids in Li.
(3) Set Li+1 to be the set of all matroids from Xi+1 that have branch-width at

most three.
(4) Remove all matroids from Xi+1 −Li+1 that have minors in the current set
T3 or in R3. Add the remaining matroids to the list T3.

(5) If i < 14, then go to 2 with i+ 1.
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After the first iteration of the scheme, L7 contains all 6 single-element extensions
and coextensions ofW3, all of them having branch-width three. Then every ternary
excluded minor X for the class B3 is eventually constructed in step 2 for i ∈
{8, . . . , 13}, as that follows from Theorems 1 and 2. Such excluded minors X are
then identified in step 4, and stored in the list T3. On the other hand, every
matroid X ∈ T3 has branch-width larger than three, and X has no proper minor
of branch-width more than three. So X is an excluded minor for B3.

Future work

We have run the same procedure as described in the proof of Theorem 5 over
other small fields GF (4), GF (5) and GF (7). The only difference is that we have
started the generating procedure from the list L5 = {U2,5, U3,5}, referring the result
of [12]:

Any 3-connected non-binary non-ternary matroid representable over some field
has a U2,5- or U3,5-minor.

Moreover, keeping in mind that matroids may have nonequivalent representa-
tions over fields larger than GF (3), we have removed isomorphic pairs of matroids
from the resulting lists. We present a summary of the results that we have obtained
in the next Table 3.

representable \ elements 7 8 9 10 11 12 13 14

regular 0 0 0 3 0 4 0 0
GF (2), non-regular 0 0 0 3 0 0 0 0
GF (3), non-regular 0 0 18 31 0 0 0 0
GF (4), non-GF (2, 3) 0 5 90 32 0 ? ? ?
GF (5), non-GF (2, 3, 4) 0 38 444 29 ? ? ? ?
GF (7), non-GF (2, 3, 4, 5) 2 119 344 ? ? ? ? ?
GF (8), non-GF (2, 3, 4, 5, 7) 0 5 ? ? ? ? ? ?
GF (9), non-GF (2, 3, 4, 5, 7, 8) 0 0 ? ? ? ? ? ?

Tab. 3. The numbers of excluded minors for matroids of branch-width
three.

Notice, in particular, how many (small) excluded minors for the class B3 are
there. This shows that the matroid class B3 has a quite rich structure, unlike its
graphic counterpart which has only 4 excluded minors (Theorem 3).

Proposition 6. There are at least 1167 pairwise non-isomorphic excluded minors
for the class B3 of all matroids of branch-width at most three.

As one can see in Table 3, we have not been able to finish the exhausted search
up to 14 elements. We would better say that we have hit really hard the “wall of
intractability” here. It appears that the number of the members of B3 up to 14
elements (regardless of representability) grows enormously, and hence it is simply
impossible to finish the search for the excluded minors for B3 in general, even if
one tried to design much faster algorithms than we have used here. However, the
numbers in Table 3 still give a hope of finishing up the whole problem – it looks
likely that there are no more “large” excluded minors for B3 than we already know.

Supported by our computing results, we propose the following strengthening of
Theorem 2:

Conjecture. If N is a non-regular excluded minor for the class B3 of all matroids
of branch-width at most three, then N has at most 10 elements.
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Having a theoretical result like that at hand, it could be possible to carry out an
exhaustive search of all abstract matroids on up to 10 elements, we think. (Unfor-
tunately, the current version of Macek does not yet support computations with
abstract, i.e. also non-representable, matroids.)

5 Reliability of Computations

A natural question a reader would probably ask here is: How reliable are the
results of Macek computations? Computer-assisted proofs do not fit into the tradi-
tional scheme of mathematical proofs which could be verified step-by-step by hand,
and so their wide acceptance could be sometimes controversial. (For example, look
at the story of the famous “Four colour theorem”.) However, everybody nowadays
uses a calculator to do arithmetical operations, and nobody would doubt the re-
sults. Hence it is likely that a similar wide acceptance of computer-checked proofs
will come soon.

In this section, we summarize the checks we have carried out to ensure that
our computation results are correct. We divide the summary into two parts, one
showing nontrivial internal relations between different parts of our computation,
and the other one relating our computation results to other known research.

Computing self-tests

• All computations in Macek are backed by numerous internal self-checks, usually
checking properties or relations, which follow from matroid theory but are not
directly used in Macek algorithms. More details can be found in Macek source
documentation.

• We have checked that the lists of excluded minors for B3 are closed under duality.
• The lists of all matroids of branch-width at most three over the (respective)

fields GF (2), GF (3) are obtained as side products in our computation. We have
compared these lists with the lists independently computed via an enumeration
of all small represented matroids (cf. Table 1), and selecting those members of
branch-width at most three afterward. We have also verified that the intersection
of the lists over GF (2) and GF (3) contains exactly the regular members.

• In the case of the fields GF (4), GF (5), GF (7), over which a matroid may have
inequivalent representations, we have checked that each isomorphism class of
excluded minors generated in our computation really contains all possible in-
equivalent representations of it.

• We have also performed various “cross-representability” tests. That means, for
p, q ∈ {4, 5, 7}, we have taken the lists Lp, Lq of all generated matroids of
branch-width three over GF (p) and over GF (q) (which are side products of our
computation), and we have verified that the GF (q)-representable members of Lp

match the GF (p)-representable members of Lq. (Notice that such a test does
not work with p = 3 since our procedure generates only non-ternary matroids
over GF (q) for q > 3.)
Of course, one may think about other self-tests that could be run with Macek,

and the reader is welcome to download Macek [6] and try the tests.

Comparing with other research

• The binary excluded minors for the class B3 have been found by Dharmatilake [3].
So, first of all, we have compared our results [7] obtained over GF (2) with that
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list. We remark that our computing approach to the problem has been quite
different from Dharmatilake’s approach.

• Moreover, a subsequent work of X. Zhou [16,17] has, among other interesting
results, provided a hand-written proof of Theorem 4 (Dharmatilake’s conjec-
ture). Actually, his research has also been based on computations performed by
Macek, but then he has found clever arguments (based on the concept of inter-
nal 4-connectivity) that allowed him to narrow the exhausted search significantly,
and so to write down all the steps and necessary arguments in a paper.

• Lastly we mention an exhaustive generation of matroids computed by R. Pen-
davingh [11], in a search for the excluded minors for matroids representable over
GF (5) and GF (7). (We have run recently a similar computation, and the com-
mon parts of the results matched each other.) Although it is not directly related
to our paper, we consider this recent feedback very important since it indepen-
dently confirms correctness of our exhaustive generation process in Macek over
other fields than GF (2).
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Appendix A

Here we present the list T3 of all 49 non-regular ternary excluded minors for the
class B3 of matroids of branch-width at most three. Each one is given as a reduced
matrix representation over GF (3).
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Appendix B

For interested readers we add a source listing of the Macek procedure we have
used to generate our results in Theorem 5 and in Table 3.

# Before starting the procedure, create files "bw3-gfX-" containing

# the starting list of matroids to generate from, and "bw3-gfX+exc"

# containing extra excluded minors for bwidth3 over other fields.

# Then run a sequence of commands like these:

# macek ’&bw3excg gfX bw3 ’

# macek ’&bw3excg gfX bw3 b’

# ...

# macek ’&bw3excg gfX bw3 bbb...’

# Those will generate the excluded minors step-by-step,

# storing them to "bw3-gfX-b..b-exc".

@subd-param1 "gf3"

@subd-param2 "bw3"

@subd-param3 ""

@subd-param4 "b"

!pfield $param1

@sub-usefilen ${param2}-${param1}

@sub-usefilenb ${usefilen}-${param3}

@sub-excextra ${usefilen}+exc

@sub-treeall ${usefilenb}-all

@sub-listin ${usefilenb}

@sub-list3out ${usefilenb}${param4}

@sub-list4out ${usefilenb}${param4}-4

@sub-list4outn ${list4out}n

@sub-exclist ${listin}-exc

@sub-exclistout ${list3out}-exc

@sub-excluded "((((S)(S)|"

@sub-excludedin "((((1)("

@sub-excludedout "((((2)("

{

@name "bw3excg-w"

@comment "bw3excg (over $param1) working subframe:"

{

@name "exc-known"

@comment "known bw3 excl minors - extra, smaller, and new (generated)"

{

@name $excextra

!quiet

!iffile "$excextra"

!skip 1

!skip 4

!read $excextra

!filx-isompair ((s))

!pfield $param1

!represgen "((s))" allq >((0t))

}{
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!quiet

!pfield $param1

!iffile "$exclist"

!mread $exclist >((0t))

}{ }

}{

@name extens1

@comment "all new ${param4}-extensions of input [${listin}]..."

}{

@name e-bwidth4

@comment "those generated with bwidth 4 get here:"

}{

@name e-bwidth4n

@comment "those new excl-minors with bwidth 4 get here:"

}{

@name e-bwidth3

@comment "those next with bwidth 3 get here:"

}}

@sub-input "(()(S))"

{

@inputpf $param1

<$listin

@comment "this is the starting set of matroids $listin:"

}

@sub-gener3 "(((4)("

@sub-generall "(((1)("

@sub-gener4bw "(((2)("

@sub-gener4n "(((3)("

@extinherit ext-forbid

!extend b $input >$generall(0t)|

!move ${generall}S| >${gener3}(0t)|

!rex-bwidth3 ${gener3}S|

!move ^1 >${gener4bw}(0t)|

!writetreeto ${list3out} ${gener3}T|

!iflist 0 "<" ${gener4bw}S|

!writetreeto ${list4out} ${gener4bw}T|

!move ${gener4bw}S| >$gener4n(0t)|

!filx-minor ${gener4n}s| $excluded

!iflist 0 "<" ${gener4n}S|

!writetreeto ${list4outn} ${gener4n}T|

!move ${excludedin}S| >$excludedout(0t)|

!move ${gener4n}S| >$excludedout(0t)|

!iflist 0 "<" ${excludedout}S|

!writetreeto ${exclistout} ${excludedout}T|

!writetreeto ${treeall} (T)
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