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UPPER BOUND FOR QUEUE NUMBER

OF SHUFFLE-EXCHANGE GRAPH

L’uboḿır Török

Abstract. Shuffle-Exchange network has some good properties in parallel data pro-
cessing. Its graph abstraction called Shuffle-Exchange graph is well known in the area
of VLSI design. The concept of queue number is the abstraction of some problems
from computer science, such as the design of fault-tolerant processor arrays, a prob-
lem of sorting with parallel queues, and a problem of scheduling parallel processors.
In this paper we prove that Shuffle-Exchange graph has a 3-queue layout, while it
is known that at least 2 queues are necessary. This value provides upper bound for
queue number of Shuffle-Exchange graph.

Introduction

Shuffle-Exchange Graph

Definition 1. The d-dimensional shuffle-exchange graph (SEd) has 2d nodes. Each
vertex is numbered by unique binary string of length d. The edges are defined
as follows. Vertex represented by binary string αa, where α ∈ {0, 1}(d−1) and
a ∈ {0, 1}, is connected with vertex α¬a and aα (where ¬a is negation of a). Edges
directions, multiple edges and loops are ignored.

The edges between vertices αa and α¬a are called exchange edges and the edges
between vertices αa and aα are called shuffle edges.

The Shuffle-Exchange network provides suitable interconnection patterns for im-
plementation of parallel algorithms like : polynomial evaluation, fast Fourier trans-
form, sorting and matrix transposition.

Linear Layout of a Graph

The linear layout of a graph is such a layout in which the vertices are drawn on
a horizontal line in some order (desginated by σ in this paper). Although the graph
is undirected, we consider the edges orientation given by the ordering of vertex set.
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K-Queue Layout and Queue Number

A k-queue layout of an undirected graph G = (V,E) has two aspects. The
first aspect is linear order of V(which we think of as being on a horizontal line).
The second aspect is an assignment of each edge in E into one of k queues in
such a way that the set of edges assigned to each queue obeys a first-in/first-out
discipline. Each queue qj operates as follows. The vertices of V are scanned in
left-to-right ascending order. When vertex i is encountered, any edges assigned to
qj that have vertex i as their right endpoint must be at the front of that queue;
they are removed(dequeued). Any edges assigned to qj that have vertex i as their
left endpoint are placed on the back of that queue (enqueued). Queue number (qn)
is smallest k such that G has k-queue layout. [heath]

This layout problem abstracts design problem of fault-tolerant processor arrays,
a problem of sorting with parallel queues, and a problem of scheduling parallel
processors.

The question of queue number of Shuffle-Exchange graph is still open, although
it is known for deBruijn graph (close relative of Shuffle-Exchange). Heath and
Rosenberg made the characterization of 1-queue graphs as arched leveled-planar
graphs[heath]. Queue numbers of some typical graphs are also in [heath].

Leighton showed that crossing number of Shuffle-Exchange graph is Θ(N 2/log2N)
[leighton]. SEd graph is therefore not planar in general (with exception for d ≤ 3)
and for its quenumber holds qn(SEd) ≥ 2.

K-Rainbow set of edges

Definition 2. Suppose we have a linear graph layout (all vertices are on the
horizontal line) with some vertices ordering σ. Then a k-rainbow is a set of
k edges ei = (ai, bi), 1 ≤ i ≤ k such that

a1 <σ a2 <σ · · · <σ ak <σ bk <σ bk−1 <σ · · · <σ b2 <σ b1.

In other words, a rainbow is a nested matching. A rainbow is an obstacle for a
queue layout because no two nested edges can be assigned to the same
queue.[heath]

Alternative definition of SEd

Definition 3. Let G(V,E) be the graph with 2d vertices. Label the vertices with
numbers 0,1,2,...,2d − 1. The edges are defined as follows. Vertex with number n
will be connected

• with vertex n+ 1 in case of even n or n = 0,

• with vertex n
2 in case of even n,

• with vertex n−1
2 + 2d−1 in case of odd n.

This definition is a modification of SEd definition from [akl].
60



Theorem 1. Definitions 1 and 3 are equivalent.

Proof. From both definitions the vertex sets contain the same members only with
different labelling. It is sufficient to prove that edge generating formulas will
generate the edges of Shuffle-Exchange graph. In following two points we simply
make the conversion from binary defintion of edges to decadic one.

(1) Exchange edges αa→ α¬a

(1a) α0 → α1 ⇐⇒ n → (n + 1)
Note that number α0 is even. So this will work for even n or n = 0.

(1b) α1 → α0 ⇐⇒ n → (n − 1)
α1 is odd number. n is also odd. The edges of the form (a) and (b)
are identical with different directions. Since we ignore edge
directions in SEd we use only first form (a) of edges in our definition.

(2) Shuffle edges αa→ aα

(2a) α0 → 0α ⇐⇒ n → n
2 α0 is even.

Result of shuffle operation in this case is α. This operation is
division by the base of binary system. Equivalent operation in
decadic system is n

2 .

(2b) α1 → 1α ⇐⇒ n−1
2 + 2d−1.

The operation α1→ 1α is equivalent to (α1 → α0→ 0α→ 1α).
According to this operation equivalent formula in decadic system is
n−1

2 + 2d−1. �

Upper bound

Lemma 2. The queue number qn(G) of a graph G is a minimum, taken over all
vertex orderings σ of G, of a maximum size of a rainbow in σ.[heath]

Lemma 3. Let p(n), n ∈ N be the non-descending sequence and let G be the
graph G = (V,E), where V = 0, 1, 2, ..., n and all edges from E are of type
(v, p(v)), v ∈ V . Then G has one-queue layout with natural (0, 1, ..., n) ordering of
vertices.

Proof. Let m1,m2, ...,mn;mi ∈ N be the vertex indexes. ¿From non-descending
sequence p(mi) we have

m1 < m2 < ... < mn ⇒ p(m1) ≤ p(m2) ≤ ... ≤ p(mn).

Comparing this property with definition of k-rainbow set we see that in this
type of graph the k-rainbow set can not exists with k > 1. According to Lemma 2
we have ordering with maximum rainbow size of 1, and therefore with queue
number 1. �

Theorem 4. The SEd graph has 3-queue layout with natural vertices ordering
0, 1, ..., 2d − 1. The edges will be assigned to queues as follows.

(1) queue : edges of type (m,m+ 1) for even m or m = 0.
(2) queue : edges of type (m, m

2 ) for even m.

(3) queue : edges of type (m, m−1
2 + 2d−1) for odd m.
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Proof. By assigning the edges into three queues we have three subgraphs of SEd.
It is sufficent to prove that these subgraphs have 1-queue layout with vertices
ordering 0, 1, 2, ..., 2d − 1.

(1) queue : edges of type (m,m+ 1) for even m or m = 0.
Edges of this subgraph are generated by the formula p(m) = m+ 1. It is
ascending sequence and according to Lemma 3 graph with such edges has
1-queue layout.

(2) queue : edges of type (m, m
2 ) for even m.

Edges generating formula is p(m) = m
2 . Again, it is ascending sequence

and according to Lemma 3 graph with such edges has 1-queue layout.
(3) queue : edges of type (m, m−1

2 + 2d−1) for odd m.

Edges genarating formula is p(m) = m−1
2 + 2d−1. Analogue to previous

points graph with such edges has 1-queue layout. �

Corollary 1. The SEd graph layed out on horizontal line with natural vertices
ordering has k-rainbow set of edges with k = 3.

Proof. From our alternative definition of SEd we have three types of edges. From
proof of Theorem 4 only edges of different types can nest. It means that maximal
nested matching can have degree 3 (with respect to natural ordering of vertices).
It is trivial to find such rainbow. For example one exists in SE4 and consists of
edges {(8, 9), (6, 12), (7, 11)}. In SEd where d > 4 can be found for example this
rainbow: {(8, 9), (6, 12), (1, 2d−1)}. �

Theorem 4 gives upper bound for queue number of Shuffle-Exchange graph.
The final value can be 3 (from Theorem 4) or 2 as a lower bound, since Shuffle
Exchange can not have queue number 1 due to its non-planarity.

3-queue layout from Theorem 4 is according to Corollary 1 minimal. In other
words, there exists no 2-queue layout of Shuffle-Exchange graph with natural
order of vertices because of existence of 3-rainbow set of edges.

Open problem. To prove that qn(SEd) = 2 or qn(SEd) > 2.
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