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ON THE CONVERGENCE OF AVERAGE

PRODUCTIVITY OF LABOUR

AMONG ECONOMIES

Andrej Balciar

Abstract. This article deals with the various approaches to the verification of ab-
solute convergence and conditional convergence of average productivity of labour
among economies. In our contribution hypothesis of absolute and conditional con-
vergence is originally formulated and original verification of the both convergences
within the augmented Solow-Swan model is conducted.

In the paper two concepts of the convergence of average productivity of labour
are distinguished: absolute and conditional. The hypothesis that poor economies
tend to grow faster per capita than rich ones - without conditioning on any other
characteristics of economies - is referred to as absolute convergence. If steady states
differ, then we consider a concept of conditional convergence ([1]).

The concept of productivity convergence was derived from the Solow-Swan neo-
classical growth model (Solow, 1956; Swan, 1956). This model examines stability
of GDP per capita around the steady state assuming exogenously given constant
growth rate of population. In the following years the model was augmented by the
assumption of the constant rate of depreciation of capital goods within economy
and exogenous technical progress.

We will consider the augmented Solow-Swan model of economic growth given by
the following conditions:

I = i.Y, i > 0, (1)

I = K ′ + δK, δ > 0, (2)

Y = F (K, A (t) .L) , (3)

L′

L
= n, n > 0, (4)

where Y - production, I - investments, K - capital, L - labour, A (t) = ex.t - rate
of technological progress, i - marginal rate to investment, δ - depreciation rate, α -
elasticity of change in capital with respect to change in production, n - the growth
rate of labour, ′ = d

dt , t - time.
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Production function F (.) is homogeneous of the first degree and satisfies the
following conditions:

∂F

∂L
> 0,

∂2F

∂L2
< 0,

∂F

∂K
> 0,

∂2F

∂K2
< 0 . (5)

It is also assumed that F (.) satisfies the Inada conditions:

lim
K→0

FK = lim
L→0

FL = ∞, lim
K→∞

FK = lim
L→∞

FL = 0. (6)

We will work with the variable average productivity of labour defined by y = Y
L

and capital-labour ratio defined by k = K
L . If we differentiate K = k.L with respect

to time and utilize (4), we obtain

K ′ = k′L + k.nL. (7)

Putting (1) and (3) into (2) the condition for change in capital stock can be
written in the formula:

K ′ = i.F (K, A (t) .L) − δK. (8)

If we utilize K = k.L and apply the fact that F (.) is a homogeneous function of
the first degree, we can rewrite (8):

K ′ = i.L.F (k, A (t)) − δ.k. (9)

Comparing right-hand sides of (7) and (8) we obtain an expression for the growth
rate of capital-labour ratio:

k′

k
=

i.F (k, A (t))

k
− (n + δ) . (10)

Because F (.) is a homogeneous function of the first degree, new formula for
average productivity of labour can be derived:

y =
Y

L
=

F (K, A (t) .L)

L
= F (k, A (t)) . (11)

Effective labour is defined by L̂ ≡ A (t) .L. R. J. Barro and X. X. Sala-i-Martin

([1]) work with the variable capital per effective labour defined by k̂ ≡ k/A (t) and
with the variable average productivity of effective labour defined by ŷ ≡ y/A (t).
Because F (.) is a homogeneous function of the first degree, (11) can be re-written
in the following formula:

ŷ = F
(
k̂, 1

)
≡ f

(
k̂
)

, (12)

where f (.) is the intensive production function. Putting k̂ = k/A (t), (11) and (12)
into (10) we have:

k̂′

k̂
=

i.f
(
k̂
)

k̂
− (x + n + δ) . (13)
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We will consider a Cobb-Douglas production function:

F (K, A (t) .L) = Kα. [A (t) .L]
1−α

.

Utilizing Cobb-Douglas production function in (11) and (12) we obtain f
(
k̂
)

=

k̂α, i.e. ŷ = k̂α. Differentiating of ŷ = k̂α with respect to time we can write:

ŷ′

ŷ
= α.

k̂′

k̂
. (14)

In [1] it is shown that i.
f(k̂)

k̂
is a decreasing function of time. As a conse-

quence, according to (13) and (14) ŷ′/ŷ and k̂′/k̂ are also decreasing functions of
time. Utilizing these information hypotheses of absolute convergence and condi-
tional convergence is verified on the basis of graphical analysis (see [1]).

G. Gandolfo ([2]) verified hypothesis of absolute convergence within the simple
Solow-Swan model of economic growth (technological progress A (t) is not consid-
ered). He proved that

∂ (y′/y)

∂y0
< 0, (15)

where y0 is the initial level of average productivity of labour. The growth rate
of average productivity of labour is inversely related to the initial level of average
productivity of labour.

We will formulate hypothesis of absolute convergence and hypothesis of con-
ditional convergence of average productivity of labour among economies precisely
and find conditions of their validity. We will consider a Cobb-Douglas production
function

F (K, A (t) .L) = eµ.tKαL1−α,

where µ ≡ x. (1 − α) is a measure of technological progress. Because F (.) is a
homogeneous function of the first degree, new formula for average productivity of
labour can be derived:

y =
Y

L
=

F (K, A (t) .L)

L
= F (k, A (t)) = eµ.t.kα. (16)

We will distingusih 2 types of economies. We say that economy is less developed
economy if it has lower initial level of capital-labour ratio. Developed economy
is an economy with higher initial level of capital-labour ratio. In the paper we
will denote less developed economies by subindex 1 and developed economies by
subindex 2.

Hypothesis of Absolute Convergence of

Average Productivity of Labour

among Economies

Consider two groups of economies with the same marginal rate to investment, i,
the same depreciation rate, δ, the same growth rate of labour force, n, but different
initial levels of capital-labour ratio, k0,1 < k0,2. Under the certain circumstances
the difference between average productivity of labour of less developed economies
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and average productivity of labour of developed economies is a decreasing function
of time and it converges to zero.

We have just stated hypothesis of absolute convergence of average productivity
of labour among economies. Putting (16) into (10) and multiplying the both sides
of this equation by k, we obtain a basic differential equation of the Sollow-Swan
model:

k′ + (n + δ) k = ieµtkα. (17)

Equation (17) is a Bernoulli differential equation. Utilizing q = r1−α we can
transfer it into a homogeneous linear differential equation:

q′ + (n + δ) (1 − α) q = ieµt (1 − α) . (18)

We can find its particular solution in the form qp = aeµt:

qp =
i (1 − α)

µ + (n + δ) (1 − α)
eµt. (19)

The solution of equation (17) given by the initial condition: q(0) = q0 is:

q (t) =

(
q0 −

i (1 − α)

µ + (n + δ) (1 − α)

)
e−(n+δ)(1−α)t +

i (1 − α)

µ + (n + δ) (1 − α)
eµt. (20)

Putting k = q1/(1−α), k (0) = k0 and q0 = k1−α
0 into (20) we can come back to

variable k (t) :

k (t) =

{(
k1−α
0 −

i (1 − α)

µ + (n + δ) (1 − α)

)
e−(n+δ)(1−α)t+

+
i (1 − α)

µ + (n + δ) (1 − α)
eµt

} 1

1−α

. (21)

We will utilize the following denotations: A = µ
1−α , B1 = k1−α

0,1 − i(1−α)
µ+(1−α)(n+δ) ,

B2 = k1−α
0,2 − i(1−α)

µ+(1−α)(n+δ) , C = (n + δ) (1 − α) + µ, D = i(1−α)
µ+(1−α)(n+δ) , E =

B1e
−Ct + D and F = B2e

−Ct + D, where A, B1, B2, C, D, E and F are positive
constants. Now, formula (22) can be written for less developed and for developed
economies:

y1 (t) = eAt
(
B1e

−Ct + D
) α

1−α , (23)

y2 (t) = eAt
(
B2e

−Ct + D
) α

1−α . (24)

Because k0,1 < k0,2, it holds: B1 < B2. Comparing (23) and (24) under as-
sumption B1 < B2 we find out that average productivity of labour of less deve-
loped economies is in every moment lower than average productivity of labour of
developed ones:

∀t > 0; y1 (t) < y2 (t) . (25)

Utilizing (23) and (24) we can count limits:

lim
t→∞

y1 (t)

y2 (t)
= lim

t→∞

(
B1e

−Ct + D
) α

1−α

(B2e−Ct + D)
α

1−α

=
D

α

1−α

D
α

1−α

= 1, (26)
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lim
t→∞

y1 (t) = ∞, (27)

lim
t→∞

y2 (t) = ∞. (28)

We are going to count a limit:

lim
t→∞

(y1 (t) − y2 (t)) ,

which is ∞−∞ type. We will transform it into the limit of 0
0 type:

lim
t→∞

(y1 (t) − y2 (t)) = lim
t→∞

y1

y2

− 1
1
y2

. (29)

Because (
y1

y2
− 1

)′

=
α

1 − α

E
2α−1

1−α Ce−Ct (B2E − B1F )

F
1

1−α

, (30)

(
1

y2

)′

= −e−AtF
1

α−1

(
AF −

α

1 − α
B2Ce−Ct

)
, (31)

lim
t→∞

(y1/y2−1)′

(1/y2)
′ exists. Utilizing l’Hospital rule, (30) and (31) we will continue coun-

ting the limit (29):

lim
t→∞

(y1 (t) − y2 (t)) = lim
t→∞

(
y1

y2

− 1
)′

(
1
y2

)′ =

= lim
t→∞

−α

1 − α

(
B1e

−Ct + D
) 2α−1

1−α D (B2 − B1) Ce(A−C)t

(
AF − α

1−αB2Ce−Ct
) . (32)

We can distinguish three cases:

1. If µα
1−α − (n + δ) (1 − α) > 0, then

lim
t→∞

(y1 (t) − y2 (t)) = −∞.

In this case average productivity of labour of developed economies straggles with
increasing time from average productivity of labour of less developed ones (Fig. 1).

Fig. 1
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2. If µα
1−α − (n + δ) (1 − α) = 0 then

lim
t→∞

(y1 (t) − y2 (t)) = −
α

µ

(
i (1 − α)

µ + (n + δ) (1 − α)

) 2α−1

1−α (
k1−α
0,2 − k1−α

0,1

)
< 0.

It implies that average productivity of labour of less developed economies will
not achieve average productivity of labour of developed ones over time (Fig. 2).

Fig. 2

3. If µα
1−α − (n + δ) (1 − α) < 0 then

lim
t→∞

(y1 (t) − y2 (t)) = 0.

In this case the difference between average productivity of labour of less deve-
loped economies and average productivity of labour of developed ones converges to
zero over time (Fig. 3).

Fig. 3

On the basis of the above analysis we can formulate the following theorem.
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Theorem 1. Consider two groups of economies with the same marginal rate to
investment, i, the same depreciation rate, δ, the same growth rate of labour force, n,
but different initial levels of capital-labour ratio, k0,1 < k0,2, within the augmented
Solow-Swan model given by the conditions (1) - (6), (16). Then:

1. If µα
1−α − (n + δ) (1 − α) = 0, then lim

t→∞
(y1 (t) − y2 (t)) = −∞.

2. If µα
1−α − (n + δ) (1 − α) = 0, then lim

t→∞
(y1 (t) − y2 (t)) < 0.

3. If µα
1−α − (n + δ) (1 − α) < 0, then lim

t→∞
(y1 (t) − y2 (t)) = 0.

Hypothesis of Conditional Convergence

of Average Productivity of Labour

among Economies

Consider two groups of economies with the same depreciation rate, δ, the same
growth rate of labour, n, but different marginal rate to investment, i1 6= i2, and
the initial levels of capital-labour ratio, k0,1 < k0,2. Then: if marginal rate to
investment, i1, in less developed economies exceeds marginal rate to investment, i2,
in developed ones, average productivity of labour of less developed economies will
reach average productivity of labour of developed ones.

We have just stated hypothesis of conditional convergence of average productivity
of labour among economies. We will utilize the following denotations: G1 = k1−α

0,1 −
i1(1−α)

µ+(1−α)(n+δ) , G2 = k1−α
0,2 − i2(1−α)

µ+(1−α)(n+δ) , H1 = i1(1−α)
µ+(1−α)(n+δ) , H2 = i2(1−α)

µ+(1−α)(n+δ) ,

where G1, G2, H1, H1 and H2 are positive constants. Applying these denotations
in (22) we obtain:

y1 (t) = eAt
(
G1e

−Ct + H1

) α

1−α , (33)

y2 (t) = eAt
(
G2e

−Ct + H2

) α

1−α . (34)

We are going to count a limit lim
t→∞

(y1 (t) − y2 (t)). We will distinguish two cases

related to marginal rate to investment.

1. If i1 > i2, then from (33) and (34) we have:

lim
t→∞

(y1 (t) − y2 (t)) = ∞. (35)

Under the assumption that less developed economies invest more in relation
to production than developed ones (i1 > i2) according to (33) and (34) it holds:
y0,1 < y0,2 and as a consequence of (35) average productivity of labour of less
developed economies must reach average productivity of labour of developed ones.
We will find a time t∗ when it happens. Equality y1 (t) = y2 (t) is equivalent to

equality y
1−α

α

1 (t) = y
1−α

α

2 (t). Utilizing (33) and (34) in this equality we obtain:

t∗ =
1

(n + δ) (1 − α) + µ
ln

k1−α
0,2 − k1−α

0,1 + (i1 − i2) z

(i1 − i2) z
, (36)

where z denotes 1−α
µ+(1−α)(n+δ) .
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Fig. 4

Formula (36) determines a time, when average productivity of labour of less
developed economies reaches average productivity of labour of developed ones (Fig.
4).

2. If i1 < i2, then from (33) and (34) we obtain:

lim
t→∞

(y1 (t) − y2 (t)) = −∞. (37)

If less developed economies invest less in relation to production than developed
ones (i1 < i2), average productivity of labour of less developed economies will
not reach average productivity of labour of developed ones. Under assumptions:
k0,1 < k0,2, i1 < i2, it holds: G1 < G2, H1 < H2. According to (33), (34) we
find out that average productivity of labour of less developed economies is in every
moment lower than average productivity of labour of developed ones:

∀t > 0; y1 (t) < y2 (t) . (38)

According to (37) and (38) the difference between average productivity of labour
of less developed economies and average productivity of labour of developed ones
is an increasing function of time (Fig. 5).

Fig. 5
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On the basis of the given analysis we can formulate the following theorem.

Theorem 2. Consider two groups of economies with the same depreciation rate,
δ, the same growth rate of labour, n, but different marginal rate to investment,
i1 6= i2, and different initial levels of capital-labour ratio, k0,1 < k0,2, within the
augmented Solow-Swan model given by the conditions (1) - (6), (16). Then:

1. If i1 > i2, then lim
t→∞

(y1 (t) − y2 (t)) = ∞ and there exists a time t∗, deter-

mined by (36), in which y1 (t∗) = y2 (t∗).
2. If i1 < i2, then lim

t→∞
(y1 (t) − y2 (t)) = −∞.

Conclusion

First, we found out the sufficient condition for absolute convergence of the dif-
ference between average productivity of labour of less developed economies and
average productivity of labour of developed ones to zero (see Theorem 1, part 3.).
width Second, we found out a time, in which average productivity of labour of less
developed economies reaches average productivity of labour of developed ones which
proves conditional convergence of average productivity of labour among economies.
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ON THE STRUCTURE OF POLYHEDRAL GRAPHS

WITH PRESCRIBED EDGE AND DUAL EDGE WEIGHT

Barbora Ferencová and Tomáš Madaras

Abstract. We consider families of polyhedral graphs with prescribed minimum
vertex degree δ, minimum face degree ρ, minimum edge weight w and dual edge
weight w∗. We determine all quadruples (δ, ρ, w,w∗) for which the asociated family
is nonempty.

Introduction

Throughout this paper we consider connected plane graphs without loops or
multiple edges. For a plane graph G, V = V (G), E = E(G) and F = F (G) denotes
the set of its vertices, edges and faces, respectively. A k-vertex (k-face) will stand
for a vertex (a face) of degree k, a ≥ k-vertex/≤ k-vertex (≥ k-face/≤ k-face) for
those of degree at least k/at most k. For an edge e being incident with an a-vertex
and a b-vertex, and with a c-face and a d-face, the type of e is (a, b, c, d) where
a ≤ b, c ≤ d. The weight w(e) of an edge e = uv is the sum degG(u) + degG(v).
The edge weight w(G) of a plane graph G is equal to min

uv∈E(G)
{degG(u) + degG(v)};

the dual edge weight w∗(G) of G is the edge weight of the dual of the graph G. Let
Gc(δ, ρ, w, w∗) be the family of all c-connected plane graphs with minimum vertex
degree at least δ, minimum face degree at least ρ, edge weight at least w and dual
edge weight at least w∗; for c = 3, we will use the notation G(δ, ρ, w, w∗).

It is well known that every plane graph contains a vertex of degree at most 5.
Among numerous generalizations of this result (see [6]), the fundamental role plays
the Kotzig’s theorem [7] stating that for each polyhedral graph G, w(G) ≤ 13, and
if G is of minimum degree at least 4, then w(G) ≤ 11; both these bounds are sharp.
Thus, the family of all polyhedral graphs with minimum edge weight at least 14
(and of the ones with minimum degree at least 4 and minimum edge weight at least
12) is empty. Considering the dual graphs, we obtain the analogical results for dual
weight constraints. Note that the Kotzig’s theorem provides no information about
degrees of two faces incident with an edge that attains the minimum weight in a
graph, but there are generalisations of theorem taking this aspect into account. For
example, in [1] Borodin extended the Kotzig’s result showing that each normal plane
map (that is, a plane pseudograph having no vertices or faces of degree less than
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three) contains either a 3-face incident with an edge of weight at most 13, or a 4-face
incident with an edge of weight at most 8, or else a 5-face incident with an edge of
weight 6; all these bounds being sharp. Another partial results are contained in the
classical paper [8]. It is also possible to consider some combinations of constraints
based on minimum vertex degree, face degree, edge weight and dual edge weight;
to our knowledges, the simultaneous combinations of all four mentioned constraints
were not studied in deeper details.

The aim of this paper is give the complete characterization of quadruples
(δ, ρ, w, w∗) for which the family G(δ, ρ, w, w∗) is empty. The Euler theorem implies
that (4, 4, 8, 8) yields the empty family. From the Kotzig theorem, it follows that
for quadruples (3, 3, 14, 6), (4, 3, 12, 6), the corresponding families are empty, and
from [L] follows the emptiness of families determined by quadruples (4, 3, 8, 9) and
(3, 5, 7, 10). Using the duality, we get that the corresponding families are empty
also for (3, 3, 6, 14), (3, 4, 9, 8), (3, 4, 6, 12), (5, 3, 10, 7).

We prove

Theorem 1. The families G(3, 3, 7, 10),G(3, 3, 8, 9),G(3, 4, 7, 9) are empty.

In each of three cases of theorem, we proceed by contradiction, thus, assuming
the non-emptiness of specified family, we consider its representant G with specified
minimum vertex degree, face size, edge and dual edge weight. At this graph G,
the discharging method is used. We define the charge c : V ∪ E ∪ F → Z by the
following assignments:

(∀v ∈ V ) c(v) = degG(v) − 6

(∀α ∈ F ) c(α) = 2 · degG(α) − 6

(∀e ∈ E) c(e) = 0.

From the Euler Theorem, it follows that
∑

x∈V ∪E∪F

c(x) = −12.

Next, we define the local redistribution of charges between the elements of G such
that the total sum of charges remains the same. This is performed by certain rules
which specify the charge transfers from elements to another elements in specific
situations. After such redistribution, we obtain a new charge c̃ : V ∪ E ∪ F → Q.
Then, we prove that for any element x ∈ V ∪E∪F , c̃(x) ≥ 0 (hence,

∑
x∈V ∪E∪F

c̃(x) ≥

0 ). This contradiction shows that G cannot exist.

The family G(3, 3, 7, 10)

The discharging rules are the following:

Rule 1: Each k-vertex x sends c(x)
k to each incident edge.

Rule 2: Each k-face α, k 6∈ {7, 8, 9, 10, 11} sends c(α)
k to each incident edge.

Rule 3: Each l-face β, l ∈ {7, 8, 9, 10, 11} sends to each incident edge e of type
(a, b, c, d) the following charge:

(a) 3
2 if a = 3, 3 ≤ c ≤ 4,

(b) 4
5 if a = 3, c = 5,

(c) 3
4 if a = 3, c ≥ 6,

(d) 1 otherwise.
14



For proving the nonnegativity of final charges, firstly observe that all vertices
and all k-faces, k 6∈ {7, 8, 9, 10, 11} are discharged to zero. Now we analyze the final
charge of the remaining faces and edges.

1. Let β be an l-face, 7 ≤ l ≤ 11. Then β is incident with at most five 3-vertices
(since w(G) ≥ 7).

(a) If β is not incident with a 3-vertex then c̃(β) ≥ 2l − 6− l · 1 = l − 6 > 0 by
Rule 3(d).

(b) Let β be incident with exactly t 3-vertices, 1 ≤ t ≤ 5 . Then 2t transfers
from β are by Rule 3(a), (b), or (c), and the remaining ones are by Rule
3(d). Moreover, for transfers through a pair of edges of β with common
3-vertex, Rule 3(a) may be used only with Rule 3(c) (since w∗(G) ≥ 10).
From this fact we have that the maximum charge transferred from β is in
the case when each of Rules 3(a) and 3(c) is used t times; then c̃(β) ≥
2l − 6 − t 3

2 − t 3
4 − (l − 2t) · 1 = l − 6 − t

4 . Hence, c̃(β) ≥ 0 for t ≥ 4; for
t = 5, we have l ∈ {10, 11} and so c̃(β) > 0.

2. Let e be an edge of G of the type (a, b, c, d); note that a + b ≥ 7 since w(G) ≥ 7.

(a) If a = 3, 3 ≤ c ≤ 4, 7 ≤ d ≤ 11, then c̃(e) ≥ −1 − 1
2 + 3

2 = 0 by Rules 1 and
3(a).

(b) If a = 3, 3 ≤ c ≤ 4, d ≥ 12, then c̃(e) ≥ −1 − 1
2 + 2·d−6

d ≥ 0 by Rules 1 and
2.

(c) If a = 3, c = 4, d = 6, then c̃(e) ≥ −1− 1
2 + 1

2 + 2·6−6
6 = 0 by Rules 1 and 2.

(d) If a = 3, c = 5, 5 ≤ d ≤ 6, then c̃(e) ≥ −1 − 1
2 + 4

5 + 2·d−6
d > 0 by Rules 1

and 2.
(e) If a = 3, c = 5, 7 ≤ d ≤ 11, then c̃(e) ≥ −1 − 1

2 + 4
5 + 4

5 > 0 by Rules 1, 2
and 3(b).

(f) If a = 3, c = 5, d ≥ 12, then c̃(e) ≥ −1− 1
2 + 4

5 + 2d−6
d > 0 by Rules 1 and 2.

(g) If a ≥ 3, c ≥ 6, d ≥ 6, then c̃(e) ≥ −1 − 1
2 + 1 + 3

4 > 0 by Rules 1 and 2 (or
3(c) or 3(d)).

The family G(3, 3, 8, 9)

The discharging rules are the following:

Rule 1: Each k-vertex x sends c(x)
k to each incident edge.

Rule 2: Each k-face α, k 6∈ {6, 7} sends c(α)
k to each incident edge.

Rule 3: Each k-face β, k ∈ {6, 7} sends to each incident edge e of type (a, b, c, d)
the following charge:

(a) 6
5 if a = 3, b ≥ 5, 3 ≤ c ≤ 4,

(b) 1 if a ≥ 4, b ≥ 4, c ≥ 3,
(c) 3

5 if a = 3, b ≥ 5, c ≥ 5.

Like in previous proof, all vertices and all k-faces, k 6∈ {6, 7} are discharged to
zero. Now we analyze the final charge of the remaining faces and edges.]

1. Let β be an l-face, 6 ≤ l ≤ 7. Then β is incident with at most three 3-vertices
(since w(G) ≥ 8).

(a) If β is not incident with a 3-vertex then c̃(β) ≥ 2l − 6− l · 1 = l − 6 ≥ 0 by
Rule 3(b).
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(b) Let β be incident with exactly t 3-vertices, 1 ≤ t ≤ 3 . Like in previous
proof, 2t transfers from β are by Rule 3(a) or (c), and the remaining ones are
by Rule 3(b). Again, for transfers through a pair of edges of β with common
3-vertex, Rule 3(a) may be used only with Rule 3(c) (since w∗(G) ≥ 9); this
yields that the maximum charge transferred from β is in the case when each
of Rules 3(a) and 3(c) is used t times. Hence, c̃(β) ≥ 2l− 6− 6

5 t− 3
5 t− (l−

2t) · 1 = l − 6 + t
5 > 0.

2. Let e be an edge of G of the type (a, b, c, d); as w(G) ≥ 8, we have a + b ≥ 8.

(a) If a = 3, b ≥ 5, 4 ≤ c ≤ 5, d = 5 then c̃(e) ≥ −1 − 1
5 + 4

5 + 1
2 = 1

10 > 0 by
Rules 1 and 2.

(b) If a ≥ 4, b ≥ 4, c ≥ 4, d ≥ 5 then c̃(e) ≥ 2 ·
(
− 1

2

)
+ 4

5 + 1
2 = 3

10 > 0 by Rules
1 and 2.

(c) If a = 3, b ≥ 5, 3 ≤ c ≤ 4, 6 ≤ d ≤ 7 then c̃(e) ≥ −1− 1
5 + 6

5 = 0 by Rules 1
and 3(a).

(d) If a ≥ 4, b ≥ 4, c ≥ 3, 6 ≤ d ≤ 7 then c̃(e) ≥ 2 ·
(
− 1

2

)
+ 1 = 0 by Rules 1 and

3(b).
(e) If a = 3, b ≥ 5, c = 5, 6 ≤ d ≤ 7 then c̃(e) ≥ −1 − 1

5 + 4
5 + 3

5 = 1
5 > 0 by

Rules 1, 2 and 3(c).
(f) If a = 3, b ≥ 5, 6 ≤ c ≤ 7, 6 ≤ d ≤ 7 then c̃(e) ≥ −1− 1

5 + 2 · 3
5 = 0 by Rules

1 and 3(c).
(g) If a = 3, b ≥ 5, c ≥ 3, d ≥ 8 then c̃(e) ≥ −1 − 1

5 + 2·8−6
8 = 1

20 > 0 by Rules
1 and 2.

(h) If a ≥ 4, b ≥ 4, c ≥ 3, d ≥ 8 then c̃(e) ≥ 2 · −1
2 + 2·8−6

8 = 1
4 > 0 by Rules 1

and 2.

The family G(3, 4, 7, 9)

The discharging rules are the following:

Rule 1: Each k-vertex x sends c(x)
k to each incident edge.

Rule 2: Each k-face α, k 6= 5 sends c(α)
k to each incident edge.

Rule 3: Each 5-face β sends to each incident edge e of type (a, b, c, d) the following
charge:

(a) 1 if a = 3, b ≥ 4, c = 4,
(b) 3

4 if a = 3, b ≥ 4, c ≥ 5,

(c) 1
2 if a ≥ 4, b ≥ 4, c ≥ 4.

All vertices and all faces except a 5-face are discharged to zero. Consider the
final charge of 5-faces and edges:
1. Let β be a 5-face. If β is not incident with a 3-vertex then c̃(β) ≥ 2 ·5−6−5 · 12 =
3
2 > 0. Otherwise, β is incident with t 3-vertices, 1 ≤ t ≤ 2. Again, due to the
fact that w∗(G) ≥ 9, for transfers through a pair of edges of β sharing common
3-vertex, Rule 3(a) may be used only in the combination with Rule 3(c). Thus,
c̃(β) ≥ 2 · 5 − 6 − 1 · t − 3

4 · t − (5 − 2t) 1
2 = 3

2 − 3t
4 ≥ 0.

2. Let e be an edge of G of the type (a, b, c, d); as w(G) ≥ 7, a + b ≥ 7.

(a) If a = 3, b ≥ 4, c = 4, d ≥ 5 then c̃(e) ≥ −1 − 1
2 + 1 + 1

2 = 0 by Rules 1, 2
and 3(a).

(b) If a = 3, b ≥ 4, c = 5, d ≥ 5 then c̃(e) ≥ −1 − 1
2 + 2 · 3

4 = 0 by Rules 1 and
3(b).
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(c) If a ≥ 4, b ≥ 4, c ≥ 4, d ≥ 5 then c̃(e) ≥ 2 ·
(
− 1

2

)
+ 2 · 1

2 = 0 by Rules 1 and
3(c).

Fig. 1 Fig. 2

Concluding remarks

1. Concerning the quadruples (3, 3, 6, 13), (3, 3, 7, 9), (3, 3, 8, 8), (3, 4, 6, 11), (3, 4, 7, 8)
and (3, 5, 6, 11) (and the quadruples derived from them by swapping the first entry
with the second one, and the third with the fourth one), it is easy to show that the
corresponding families are nonempty (and, in fact, infinite); the examples are: the
truncated dodecahedron, the graph of Fig. 1, the icosidodecahedron, the dual of
the graph of Fig. 2, the rhombic dodecahedron and the truncated icosahedron (for
the names of these polyhedra, see [9]). In this sense, our results are best possible.
The diagram on Fig. 3 presents the hierarchy of all nonempty families generated
by quadruples (δ, ρ, w, w∗) under the set inclusion partial ordering.

Fig. 3
17



2. The Kotzig theorem was further generalized in many ways, one of which con-
sidered, for the specified family of polyhedral graphs, the existence of longer paths
with the degrees of their vertices bounded above by a finite constant that depends
only of the specified family and of path length; such paths are called light. For the
related results regarding various families, see [2], [3], [4] or [5]. In the connection
with the results presented in this paper, one may consider, for given integer k ≥ 1,
the families of polyhedral graphs with prescribed weight of i-paths and dual i-paths
for all i ∈ {1, . . . , k}. To our knowledge, currently there are no results involving
both normal and dual weights for k ≥ 3.

References

1. O.V. Borodin, Joint generalization of the Lebesgue and Kotzig theorems on combinatorics of

plane maps, Diskretn. Mat. 3 (1991), no. 4, 24–27. (Russian)
2. I. Fabrici, E. Hexel, S. Jendrol’, H. Walther, On vertex-degree restricted paths in polyhedral

graphs, Discrete Math. 212 (2000), 61–73.
3. I. Fabrici, S. Jendrol’, Subgraphs with restricted degrees of their vertices in planar 3-connected

graphs, Graphs and Combin. 13 (1997), 245–250.
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Abstract. In this paper we study the exponential decay of posterior probability
of a set of sources and conditioning by rare sources for both uniform and general
prior distributions of sources. The decay rate is determined by L-divergence and
rare sources from a convex, closed set asymptotically conditionally concentrate on
an L-projection. L-projection on a linear family of sources belongs to Λ-family of

distributions. The results parallel those of Large Deviations for Empirical Measures
(Sanov’s Theorem and Conditional Limit Theorem).

1. Introduction

Information divergence minimization, which is also known as Relative Entropy
Maximization or MaxEnt method, has – thanks to Large Deviations Theorems
for Empirical Measures – gained a firm probabilistic footing, which justifies its
application in the area of the convex Boltzmann Jaynes Inverse Problem (the α-
problem, for short). For the β-problem – an ’antipode’ of the α-problem – Large
Deviations Theorems for Sources single out the L-divergence minimization method.

The paper is organized as follows: First, necessary terminology and notation are
introduced. A brief survey of Large Deviations Theorems for Empirical Measures
that includes Sanov’s Theorem and a Conditional Limit Theorem is given next.
Then, a set-up for a study of conditioning by rare sources is formulated and Sanov’s
Theorem and the Conditional Limit Theorem for Sources are stated; under various
assumptions. Next, Theorems are proven for the continuous case and the results are
applied to a criterion choice problem associated with the β-problem. An End-Notes
section points to relevant literature and contains further discussion.
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2. Terminology and notation

Let P(X ) be a set of all probability mass functions on a finite alphabet X ,

{x1, x2, . . . , xm} of m letters. The support of p ∈ P(X ) is a set S(p) , {x : p(x) >
0}.

A probability mass function (pmf) from P(X ) is rational if it belongs to the set

R , P(X )∩Qm. A rational pmf is n-rational, if denominators of all its m elements
are n. The set of all n-rational pmf’s will be denoted by Rn.

Let x1, x2, . . . , xn be a sequence of n letters, that is identically and independently
drawn from a source q ∈ P(X ). Type and n-type are other names for empirical mea-

sures induced by a sequence of the length n. Formally, type νn , [n1, n2, . . . , nm]/n,
where ni is the number of occurrences of i-th letter of the alphabet in the sequence.
Note that there are Γ(νn) , n!(

∏m
i=1 ni!)

−1 different sequences of length n, which
induce the same type νn. Γ(νn) is called the multiplicity of type. Finally, observe
that νn is n-rational; νn ∈ Rn.

Let Π ⊆ P(X ). Πn , Π ∩Rn.
The information divergence (±-relative entropy, Kullback-Leibler distance etc.)

I(p||q) of p with respect to q (both from P(X )) is I(p||q) ,
∑

X p log p
q , with

conventions that 0 log 0 = 0, log b/0 = +∞. The information projection p̂ of q on

Π is p̂ , arg infp∈Π I(p||q). The value of the I-divergence at an I-projection of q
on Π is denoted by I(Π||q).

On P(X ) topology induced by the standard topology on Rm is assumed.
The support S(C) of a convex set C ⊂ P(X ) is just the support of the member

of C for which S(·) contains the support of any other member of the set.
The following families of distributions will be needed:
1) Linear family L(u, a) , {p :

∑
X p(x)uj(x) = aj , j = 1, 2, . . . , k}, where uj is

a real-valued function on X and aj ∈ R.

2) Exponential family E(ρ, u, θ) , {p : p(x) = zρ(x) exp(
∑k

j=1 θjuj(x)), x ∈ X},

where a normalizing factor z ,
∑

X ρ(x) exp(
∑k

j=1 θjuj(x)) and ρ belongs to P(X );
θj ∈ R.

3) Λ-family Λ(ρ, u, θ, a) , {p : p(x) = ρ(x)[1 −
∑k

j=1 θk(uj(x) − aj)]
−1, x ∈ X}.

The definitions of the families can be extended to continuous X in a straightfor-
ward way.

In what follows, r ∈ P(X ) will be the ’true’ source of sequences and hence types.

3. Conditioning by rare types

It is convenient to begin with a brief survey of the Large Deviations Theorems
for Empirical Measures (Sanov’s Theorem and a Conditional Limit Theorem).

First, it is necessary to introduce the probability π(νn; r) that the source r
generates an n-type νn. The probability that r generates a sequence of n letters
x1, x2, . . . , xn which induces a type νn is

∏m
i=1(ri)

nνn

i . As it was already men-
tioned, there is a number Γ(νn) of sequences of length n, which induce the same

type νn. The probability π(νn; r) that r generates type νn is thus π(νn; r) ,
Γ(νn)

∏m
i=1(ri)

nνn

i . Consequently, for A ⊆ B ⊆ P(X ), π(νn ∈ A|νn ∈ B; r) =
π(νn∈A;r)
π(νn∈B;r) ; provided that π(νn ∈ B; r) 6= 0.

Π is rare if it does not contain r. Given that the source r produced an n-type
from rare Π, it is of interest to know how the conditional probability/measure
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spreads among the rare n-types from Π; especially as n grows beyond any limit.
For the rare set of a particular form, this issue is answered by Conditional Limit
Theorem (CoLT) which is also known as Conditional Weak Law of Large Numbers.

CoLT can be established by means of Sanov’s Theorem (ST).

ST. ( [6] Thm 3) Let Π be a set such that its closure is equal to the closure of its
interior. Let r be such that S(r) = X . Then,

lim
n→∞

1

n
log π(νn ∈ Π; r) = −I(Π||r).

Sanov’s Theorem (ST) states that the probability π(νn ∈ Π; r) decays exponen-
tially fast, with the decay rate given by the value of the information divergence at
an I-projection of the source r on Π.

CoLT. ( [8] Thm 4.1, [2] Thm 12.6.2) Let Π be a convex, closed rare set. Let B(p̂, ε)
be a closed ε-ball defined by the total variation metric, centered at I-projection p̂ of
r on Π. Then for any ε > 0,

lim
n→∞

π(νn ∈ B(p̂, ε) | νn ∈ Π; r) = 1.

Informally, CoLT states that if a dense rare set admits a unique I-projection,
then asymptotically types conditionally concentrate just on it. Thus, provided that
for sufficiently large n a type from rare Π occurred, with probability close to 1 it is
just a type close to p̂. Numeric examples of ST and CoLT can be found at [2].

This suggests that, conditionally upon the rare Π, it is the I-projection p̂ rather
than r, which should be considered as the true iid source of data. Gibbs’ Con-
ditioning Principle (GCP) - an important strengthening of CoLT - captures this
’intuition’; cf [3], [7].

If S(L) = X then the I-projection p̂ of r on Π ≡ L is unique and belongs to the
exponential family of distributions E(r, u, θ); i.e., L(u, a) ∩ E(r, u, θ) = {p̂}.

4. Conditioning by rare sources

In the above setting there is a fixed source r and a rare set Πn of n-types. We
now consider an opposite setting where the n-type is unique, and there is a set
Qn , Q∩Rn, where Q ⊆ P(X ), of rare n-sources of the type.

Furthermore, n-sources qn are assumed to have prior distribution π(qn). If from
Rn n-source qn occurs, then the source generates n-type νn with the probability
π(νn|qn) , Γ(νn)

∏m
i=1(q

n
i )nνn

i .
We are interested in the asymptotic behavior of the probability π(qn ∈ B | (qn ∈

Q)∧ νn) that if the n-type νn and an n-source qn from a rare set Q occurred, then
the n-source belongs to a subset B of Q. Note that π(qn ∈ B | (qn ∈ Q) ∧ νn) =
π(qn∈B|νn)
π(qn∈Q|νn) ; provided that π(qn ∈ Q|νn) > 0. The posterior probability π(qn|νn) is

related to the defined probabilities π(νn|qn) and π(qn) via Bayes’s Theorem.
Asymptotic investigations will be first carried on under the assumption of uni-

form prior distribution of n-sources (Sect. 4.1). The assumption will be relaxed in
Section 4.2. Within each of the sections, two cases of convergence will be consid-
ered: a static and a dynamic case. For the static case asymptotic investigations
are carried over a subsequence of types, which are k-equivalent to νn0 . A type
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νkn0 , [kn1, . . . , knm]/kn0, k ∈ N, is called k-equivalent to νn0 . The dynamic case
assumes that there is a sequence of n-types which converges in the total variation
to some p ∈ P(X ). For each case what is meant by rare source will be defined
separately.

For p, q ∈ P(X ), the L-divergence L(q||p) of q with respect to p is the map

L : P(X ) × P(X ) → R ∪ {∞}, L(q||p) , −
∑

X p log q. The L-projection q̂ of p

on set of sources Q is: q̂ , arg infq∈Q L(q||p). The value of L-divergence at an
L-projection of p on Q (i.e., infq∈Q L(q||p)) is denoted by L(Q||p).

4.1 Uniform prior.

Within this section it is assumed that n-sources have a uniform prior distribution.
Since there is total N =

(
n+m−1

m−1

)
n-sources (cf. [4]), the uniform prior probability

π(qn) = 1/N , for all qn ∈ Rn.

4.1.1 Static case.
Let there be an n0-type νn0 . A set Q of sources is rare if it does not contain

νn0 .
Sanov’s Theorem for Sources (abbreviated LST) is a counterpart of the Sanov’s

Theorem for Types.

Static LST. Let νn0 be a type. Let Q be an open set of sources. Then, for n → ∞
over a subsequence n = kn0, k ∈ N,

1

n
log π(qn ∈ Q|νn) = −{L(Q||νn0) − L(P||νn0)}.

Proof. Under the assumption of uniform prior distribution of of n-sources

log π(qn ∈ Q|νn) = log
∑

qn∈Q

∏

X

(qn)nνn

− log
∑

qn∈P

∏

X

(qn)nνn

.

Since N < (n+1)m (cf. Lemma 2.1.2 of [7]), 1
n0

log π(qn0 ∈ Q|νn0) can be bounded
from above and below as:

− L(Qn0
||νn0) + L(Rn0

||νn0) −
m

n0
log(n0 + 1) ≤

1

n0
log π(qn0 ∈ Q|νn0) ≤

≤ −L(Qn0
||νn0) + L(Rn0

||νn0) +
m

n0
log(n0 + 1).

Fix p ∈ P(X ). Equip R ∪ {∞} with the standard topology (i.e., the topology
induced by the total order). As for each open subset A of R ∪ {∞}, L−1(A) is an
open subset of P(X ), the L-divergence is continuous in q.

Q is open by the assumption.
Thus, L(Qn0

||νn0) converges to L(Q||νn0) as n → ∞, n = kn0, k ∈ N. Also,
L(Rn0

||νn0) converges to L(P||νn0) for n → ∞, n = kn0, k ∈ N. �

The Law of Large Numbers for Sources (LLLN) is a direct consequence of LST.

Static LLLN. Let νn0 be a type. Let q̂ be L-projection of νn0 on P(X ). And let
B(q̂, ε) be a closed ε-ball defined by the total variation metric, centered at q̂. Then,
for ε > 0 and n → ∞ over the types which are k-equivalent with νn0 ,

π(qn ∈ B(q̂, ε) | (qn ∈ P) ∧ νn) = 1.
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Proof. Let BC(q̂, ε) , P(X )\B(q̂, ε). Since BC(q̂, ε) is open by the assumption,
LST can be applied to it. Since BC ⊂ P , L(BC ||νn0) − L(P||νn0) > 0. Thus,
π(qn ∈ BC(q̂, ε)|νn) converges to 0, as n → ∞ over a subsequence of n = kn0,
k ∈ N. �

Obviously, the L-projection q̂ of νn0 on P(X ) is q̂ ≡ νn0 .
LLLN is a special case of the Conditional Limit Theorem for Sources (LCoLT),

which is a consequence of LST, as well.

Static LCoLT. Let νn0 be a type. Let Q be a convex, closed rare set of sources.
Let q̂ be the L-projection of νn0 on Q and let B(q̂, ε) be a closed ε-ball defined by
the total variation metric, centered at q̂. Then, for ε > 0 and n → ∞ over a
subsequence n = kn0, k ∈ N,

π(qn ∈ B(q̂, ε) | (qn ∈ Q) ∧ νn) = 1.

Proof. Let BC(q̂, ε) , P(X )\B(q̂, ε). Clearly,

log π(qn0 ∈ BC(q̂, ε) | (qn0 ∈ Q)∧ νn0) = log π(qn0 ∈ BC |νn0)− log π(qn0 ∈ Q|νn0).

Since both BC(q̂, ε) and Q are open, LST can be applied. As BC(q̂, ε) ⊂ Q,
L(BC ||νn0) − L(Q||νn0) > 0. Hence π(qn ∈ BC |(qn ∈ Q) ∧ νn) converges to 0, as
n → ∞ over a subsequence of n = kn0, k ∈ N. Since under the assumptions on Q
the L-projection of νn0 on Q is unique, the claim of the Theorem follows. �

Example. Let X = {1, 2, 3, 4}. Let Q = {q :
∑

x∈X q(x)x = 1.7}. Let n0 = 10 and
νn0 = [1, 1, 1, 7]/10. The L-projection of νn0 on Q is q̂ = [0.705, 0.073, 0.039, 0.183].
Let ε = 0.1. The concentration of n-sources on the L-projection, which is captured
by the Static LCoLT, is for types k-equivalent to νn0 (k = 5, 10, 20, 30) illustrated
in Table 1.

Table 1. Values of π(qn ∈ B(q̂, ε)|(qn ∈ Q) ∧ νn)
for n = kn0, k = 5, 10, 20, 30.

n π(·|·)

50 0.868
100 0.948
200 0.994
300 0.999

The L-projection at the above Example can be found by means of the following
Proposition.

Proposition. Let Q ≡ L(u, a). Let p ∈ P(X ) be such that S(p) = S(L). Then
the L-projection q̂ of p on Q is unique and belongs to Λ(p, u, θ, a) family; i.e.,
L(u, a) ∩ Λ(p, u, θ, a) = {q̂}.

Proof. In light of Theorem 9 of [6] it suffices to check that q̂ = p[1−
∑k

j=1 θk(uj(x)−

aj)]
−1, with θ such that q̂ ∈ L(u, a), satisfies:

∑

S(p)

p

(
1 −

q′

q̂

)
= 0,
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for all q′ ∈ Q, which is indeed the case. �

4.1.2 Dynamic case.
Let there be a sequence of n-types which converges in the total variation to a

pmf p ∈ P(X ), denoted as νn → p. In this case, a set Q of sources is rare if it does
not contain p.

Dynamic LST. Let νn → p. Let Q be an open set of sources. Then,

lim
n→∞

1

n
log π(qn ∈ Q|νn) = −{L(Q||p) − L(P||p)}.

Dynamic LLLN. Let νn → p. Let q̂ be L-projection of p on P. And let B(q̂, ε) be
a closed ε-ball defined by the total variation metric, centered at q̂. Then, for ε > 0,

lim
n→∞

π(qn ∈ B(q̂, ε) | (qn ∈ P) ∧ νn) = 1.

Dynamic LCoLT. Let νn → p. Let Q be a convex, closed rare set of sources. Let
q̂ be the L-projection of p on Q and let B(q̂, ε) be a closed ε-ball defined by the total
variation metric, centered at q̂. Then, for ε > 0,

lim
n→∞

π(qn ∈ B(q̂, ε) | (qn ∈ Q) ∧ νn) = 1.

Proofs can be constructed along the lines for the static case.

4.2 General prior.

Let π(q) be a prior pmf on R. From this pmf, a prior distribution πA(qn) on

Rn is constructed by a quantization A , {A1, A2, . . . , AN} of R into disjoint sets,

such that each A ∈ A contains just one qn from Rn. Then πA(qn) , π({Aj : qn ∈
Aj , j = 1, 2, . . . , N}).

Let S , S(π(·)). Let Qπ , Q∩ S, Pπ , P ∩ S.
As the static case is subsumed under the dynamic one, only the latter limit

theorems will be presented.

General prior LST. Let νn → p. Let Qπ be an open set of sources. Then,

lim
n→∞

1

n
log πA(qn ∈ Qπ|νn) = −{L(Qπ||p) − L(Pπ||p)}.

Proof. For a zero-prior-probability n-source, the posterior probability is zero as
well; so such sources can be excluded from considerations. Let Sn , S(πA(qn)),

Qπ
n , Q∩ Sn, Pπ

n , P ∩ Sn.

log πA(qn ∈ Q|νn) = log
∑

qn∈Qπ
n

πA(qn)
∏

X

(qn)nνn

− log
∑

qn∈Pπ
n

πA(qn)
∏

X

(qn)nνn

.

Denote by λ(Qπ
n||ν

n) , infqn∈Qπ
n

λ(qn||νn), where λ(qn||νn) , L(qn||νn) −
1
n log πA(qn). Using this notation and invoking the same argument as in the proof
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of LST for uniform prior, 1
n log πA(qn ∈ Q|νn) can be bounded from above and

below as:

− λ(Qπ
n||ν

n) + λ(Pπ
n ||ν

n) −
m

n
log(n + 1) ≤

1

n
log πA(qn ∈ Q|νn) ≤

≤ −λ(Qπ
n||ν

n) + λ(Pπ
n ||ν

n) +
m

n
log(n + 1).

Since for n → ∞, Sn = S, and νn → p, and Qπ is open, it taken together, implies
that λ(Qπ

n||ν
n) converges to L(Qπ||p). Similarly, λ(Pπ

n ||ν
n) converges to L(Pπ||p).

�

Let νn → p. A set of sources is rare if it does not contain p. Then, from the
General prior LST, follows

General prior LCoLT. Let νn → p. Let Qπ be a convex, closed rare set of
sources. Let q̂π be the L-projection of p on Qπ. Let B(q̂π , ε) be a closed ε-ball
defined by the total variation metric, centered at q̂π. Then, for ε > 0,

lim
n→∞

πA(qn ∈ B(q̂π, ε) | (qn ∈ Qπ) ∧ νn) = 1.

4.3 Conditioning by rare sources: continuous alphabet

Sanov’s Theorem for continuous alphabet can be established either via ’the
method of types + discrete approximation’ approach (cf. [4]) or by means of the
large deviations theory (cf. [7]). The former approach will be used here to formulate
continuous alphabet version of LST.

Let (Y ,F) be a measurable space. Let T m be a partition of the alphabet Y

into finite number m of sets T m , (T1, T2, . . . , Tm); Ti ∈ F . The T m-quantized
P , denoted by P T , is defined as the distribution P (T1), P (T2), . . . , P (Tm) on the

finite set X , {1, 2, . . . , m}.
Let P(Y) be the set of all probability measures on (Y ,F). Let Q ⊆ P . For

probability measures (pm’s) P, Q ∈ P(Y), the Lm-divergence Lm(Q||P ) of Q with
respect to P is defined as

Lm(Q||P ) , sup
T m

L(QT ||P T ),

where the supremum is taken over all m-element partitions. Lm(Q||P ) denotes

supQ∈Q Lm(Q||P ). Let QT , {Q : QT ∈ Q}, Lm(QT ||P T ) , supQ L(QT ||P T ).
The empirical distribution νn,m of an n-sequence of Y-valued random variables

Y with respect to a partition T m is defined as

νn,m
j =

1

n
Card{Yi : Yi ∈ Tj ; 1 ≤ i ≤ n}, 1 ≤ j ≤ m.

The τm-topology of pm’s on (Y ,F) is the topology in which a pm belongs to the
interior of a set Q of pm’s iff for some partition T m and ε > 0

{Q′ : |Q′(Tj) − Q(Tj)| < ε, j = 1, 2, . . . , m} ⊂ Q.

Thus, an n-source qn ∈ Rn(X ) belongs to the interior of Q if there exists T m of
Y and ε > 0 such that the set {Q′ : |Q′(Tj) − qn

j | < ε, j = 1, 2, . . . , m} is a subset
of Q.

Under the assumption of uniform prior distribution of n-sources, a continuous
analogue to the Dynamic LST is:
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Continuous LST. Let, as n → ∞, νn,m → R, R ∈ R(X ). Let Q be a rare (i.e.,
R /∈ Q) open subset of P(Y). Then

lim
n→∞

1

n
log π(qn ∈ Q|νn,m) = −{Lm(Q||R) − Lm(P||R)}.

Proof. First, an asymptotic lower bound to 1
n log π(qn ∈ Q|νn) will be established.

Pick up a Q such that for a T m, and an ε > 0, Q ∈ Q. Let MT (Q) , {qn :
|qn

j − Q(Tj)| < ε, j = 1, 2, . . . , m}. By the Dynamic LST for uniform prior,

limn→∞
1
n log π(qn ∈ MT (Q)|νn) = −{L(MT (Q)||RT ) − L(RT ||RT )} which is

greater or equal to −{L(QT ||RT )−L(RT ||RT )}, since QT ∈ MT (Q). Let M(Q) ,
∪T mMT (Q). Then, for n → ∞, 1

n log π(qn ∈ M(Q)|νn) ≥ supT m −{L(QT ||RT )−

L(RT ||RT )} ≡ −{Lm(Q||R) − Lm(R||R)}. Since π(qn ∈ Q|νn) ≥ supQ∈Q π(qn ∈
M(Q)|νn),

lim
n→∞

1

n
log π(qn ∈ Q|νn) ≥ sup

Q∈Q
−{Lm(Q||R) − Lm(R||R)}

≡ −{Lm(Q||R) − Lm(P||R)}.

Asymptotic upper bound: for T m as above, by the Dynamic LST with a uniform
prior,

lim
n→∞

1

n
log π(qn ∈ QT |νn) = −{Lm(QT ||RT ) − Lm(PT ||RT )}

≡ sup
Q

−{L(QT ||PT ) − L(RT ||RT )}.

Since π(qn ∈ Q|νn) ≤ supT m π(qn ∈ QT |νn),

lim
n→∞

1

n
log π(qn ∈ Q|νn) ≤ −{Lm(Q||R) − Lm(P||R)}.

As the asymptotic lower and upper bounds coincide, the claim follows. �

5. Application to Criterion Choice Problem

1. Let there be an alphabet X (finite, for simplicity) and prior distribution π(q)
of sources. From the prior π(q) a source is drawn, and the source then generates
an n-type νn. We are not given the actual source, but rather a set Q to which
the source belongs. Given the alphabet X , the n-type νn, the prior distribution of
sources π(·) and the set Q ⊆ P(X ) the objective is to select a source q ∈ Q. This
constitutes the β-problem. Since Q in general contains more than one source the
problem is under-determined and in this sense ill-posed. This paper is concerned
with the special case of the β-problem where rational sources (i.e., n-sources) are
considered.

If Q ≡ P(X ), then under the assumption of uniform prior distribution of n-
sources, Static LLLN shows that asymptotically (along the types k-equivalent with
νn) it is just q̂ ≡ νn which is the ’only-possible’ source of νn (i.e., of itself)1.

1Note that in the case of unrestricted Q, νn is known to be Non-parametric Maximum Likeli-
hood Estimator of the source. Here, νn is the Maximum A-posteriori Probability source.
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Dynamic LLLN, assuming that νn → r, implies that the n-sources concentrate on
the true source. However, they do not, if a general prior is assumed, such that it
puts zero probability on the true source. In the dynamic case (νn → r) with general
prior, n-sources concentrate on the L-projection of r on Pπ.

What if Q does not contain νn? How should an n-source be selected in this
case of static rare Q? One possibility is to select qn from Q by minimization of a
distance or a convex statistical distance measure [16] between νn and Qn. In this
way, the original β-problem of selecting qn ∈ Q is transformed into an associated
Criterion Choice Problem (CCP).

If the rare Q is convex and closed, Static LCoLT shows that - at least for n
sufficiently large - the CCP associated with this instance of the β-problem should
be solved by minimization of the L-divergence over Q. A major qualifier has to
be added to this statement: it holds provided that uniform prior distribution of n-
sources is assumed. If a general prior, strictly positive on the entire set of rational
sources is assumed, then the statement still holds. Prior matters only if it is not
strictly positive on the entire R. Then, it is the L-projection of νn on Qπ that
should be selected (recall the General prior LCoLT).

2. Confront the β-problem with the following α-problem (also known as Boltz-
mann Jaynes Inverse Problem): let there be a source q that emits letters from an
alphabet X . From the source q an n-type was drawn. We are not given the actual
n-type, but rather a set Π to which the n-type belongs. Given the alphabet X , the
source q and the set Π the objective is to select an n-type νn ∈ Π.

The CCP associated with the α-problem is solved by CoLT and GCP provided
that Π is a convex, closed rare set. The Theorems imply that at least for sufficiently
large n, the I-projection of q on Π should be selected.

6. EndNotes

0) While preparing the final form of the paper, the author learned about the work
[10] by Ayalvadi Ganesh and Neil O’Connell, where an inverse of Sanov’s Theorem
has already been studied and established. The authors also discuss relevance of the
Theorem for Bayesian nonparametric consistency. Some differences: the authors
work with prior distribution on P(X ) where the alphabet X is finite. Here the
concept of n-source is used and continuous X is also considered. The rate function
of General prior LST of the present work appears to be more general than that
of Theorem 1 of [10], as the latter was established for the case of π(p) > 0. The
Conditional Limit Theorem (LCoLT) was not explicitly considered at [10].

1) The terminology and notation of this paper follow more or less closely [2],
[4], [6], [7]. The brief survey of Large Deviations Theorems for Empirical Measures
(Sect. 3) draws from the same sources. Reader interested in tracking evolution of
the Theorems is directed to [1], [3], [7], [8], [12], [16], [18], [19], [22], [23], [24], [25],
[27], among others; see [13] for new developments. In relation to the Proposition
of Sect. 4.1 see also [9]. The continuous case of conditioning by rare sources (Sect.
5) is built parallel with [12] and [4].

2) This work is motivated by [11], where a problem of selecting between Empirical
Likelihood and Maximum Entropy Empirical Likelihood (cf. [20], [21]) has been
addressed on probabilistic, rather than statistical, grounds. Further discussion,
relevant also to the CCP associated with the α and β-problems, can be found
there.
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3) Any of the results presented here may be stated in terms of reverse I-
projections [5]. For instance the right-hand side of the General prior LST could be

equivalently expressed as −(I(p||Qπ)− I(p||Pπ)), where I(p||C) , infq∈C I(p||q) is
the value of the I-divergence at a reverse I-projection of p on C. The above men-
tioned statistical considerations (and 4) below) served as a motivation for stating
the results in terms of the newly introduced L-divergence, though the L-projection
is formally identical with the reverse I-projection, which is already in use in a para-
metric context, cf. [5]. The present work leaves open the issue whether it is more
advantageous to state the Theorems of conditioning by rare sources in terms of the
L-projection or in terms of the reverse I-projection.

4) If p is an n-type then the L-divergence is known as Kerridge’s inaccuracy;
cf. [14], [15]. Watanabe in a fundamental work [26] which also addresses questions
related to that of the present paper, calls negative of Kerridge’s inaccuracy con-
firmability. A reviewer pointed out that the L-divergence can be identified with
mean code length.

5) For any prior π(·), the L-projection q̂π of p on Qπ is the same as the source
which has asymptotically supremal over Qπ value of the posterior probability
π(qn|νn). In the case of uniform prior the correspondence holds for any n.
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