
Acta Univ. M. Belii Math.

No. 12(2005), pp. 31–41

COMBINATORIAL GENERATION OF MATROID

REPRESENTATIONS: THEORY AND PRACTICE

PETR HLINĚNÝ

Abstract. Matroids (also called combinatorial geometries) present a strong
combinatorial generalization of graphs and matrices. Unlike isomorph-free

generation of graphs, which has been extensively studied both from theoreti-
cal and practical points of view, not much research has been done so far about
matroid generation. Perhaps the main problem with matroid generation lies
in a very complex internal structure of a matroid. That is why we focus on
generation of suitable matroid representations, and we outline a way how to
exhaustively generate matroid representations over finite fields in reasonable
computing time. In particular, we extend here some enumeration results on
binary (over the binary field) combinatorial geometries by Kingan et al. We
use the matroid generation algorithm of [P. Hliněný, Equivalence-Free Ex-

haustive Generation of Matroid Representations] and its implementation in
[Macek; http://www.mcs.vuw.ac.nz/research/macek].

1. Introduction

Matroids, introduced by Whitney in 1935, present a common generalization of
the concept of independency in graphs and matrices. We follow Oxley [10] in our
matroid terminology, and we refer the reader to Section 2 for a brief outline of
terms.

In graph theory, one often uses pictures to visualize particular graphs. On con-
trary, such visualization is very difficult in matroid theory – it is almost impossible
to give a “nice drawing” of a general matroid in rank higher than 3. That fact
makes matroid research more difficult, and brings a strong need for an automated
matroid generation routine. (It is often such that proving a theorem in struc-
tural matroid theory requires one to check many small cases by hand. As matroid
researchers know themselves, checking the “small cases” can be quite long and
painful, and prone to errors.) However, great complexity and enormous numbers
of (even small) matroids makes the task much harder than generation of, say,
graphs.

A promising tractable approach is to generate matroid representations as ma-
trices. Matroids represented by matrices over finite fields play an important role
in structural matroid theory, similar to the role that graphs embedded on a sur-
face play in structural graph theory. Hence exhaustive generation routines for

2000 Mathematics Subject Classification. Primary: 05A99; Secondary: 05B35, 68R05.
Key words and phrases. Macek, matroid representation, exhaustive generation

Supported by the Institute of Theoretical Computer Science, project No. 1M0545, and by Czech
research grant GAČR 201/05/0050.
An extended abstract to be published in Proceedings AACC 2005.
Submitted: October 14, 2005.

31

matroid representations over finite fields could have important applications in ma-
troid research. One such a routine is based on the theoretical matroid generation
algorithm of [6] (as outlined here in Section 4), which is implemented in our soft-
ware package Macek [3]. We have successfully used this tool in matroid structure
theory research, namely for getting the excluded minors for matroids of branch-
width three [4, 5] over small fields.

This paper (an extended abstract) brings, in addition to a brief overview of
matroids and matroid generation, an outline of the Algorithm [6] from the im-
plementation point of view (Algorithm 1). It is then used to obtain significant
new results on enumeration of small simple binary matroids (binary combinatorial
geometries) in Table 2 (extending the works of Acketa [1] and Kingan et al. [8]).
Finally, we add a simple theoretical enumeration result about enumeration of bi-
nary matroids in Proposition 6.

2. Basics of Matroids

For clarity, we briefly review basic matroid terminology [10]. A matroid is a
pair M = (E,B) where E = E(M) is the ground set of M (elements of M), and
B ⊆ 2E is a nonempty collection of bases of M . Moreover, matroid bases satisfy the
“exchange axiom”; if B1, B2 ∈ B and x ∈ B1 −B2, then there is y ∈ B2 −B1 such
that (B1 −{x})∪ {y} ∈ B. We consider only finite matroids. Subsets of bases are
called independent sets, and the remaining sets are dependent. Minimal dependent
sets are called circuits. All bases have the same cardinality called the rank r(M)
of the matroid. The rank function rM (X) in M is the maximal cardinality of an
independent subset of a set X ⊆ E(M).

If G is a (multi)graph, then its cycle matroid on the ground set E(G) is denoted
by M(G). The independent sets of M(G) are acyclic subsets (forests) in G, and
the circuits of M(G) are the cycles in G. In fact, a lot of matroid terminology
is inherited from graphs. Another example of a matroid is a finite set of vectors
with usual linear dependency. If A is a matrix, then the matroid M formed
by the column vectors of A is called the vector matroid of A, and A is called a
(matrix) representation of M . (Not all matroids are vector matroids.) Two matrix
representations are (strongly) equivalent if one can be obtained from the other by
pivoting, non-zero scaling, and permuting rows or columns. (Note that, unlike
Oxley [10], we do not allow for automorphisms of the underlying field here.) A
matroid M is representable over a field IF if M has a matrix representation over IF.
Matroids representable over all fields are regular, those over GF (2), GF (3) are
called binary, ternary, resp. See Figure 1.

K4

a b

c

d

ef
→

a bc

d

e

f

»

1
0
0

– »

0
1
0

–

»

1
1
0

–

»

1
1
1

–

»

0
0
1

–

»

1
0
1

–

Figure 1. An example of a vector representation of the cycle
matroid M(K4). The matroid elements are depicted by dots, and
their (linear) dependency is shown using lines.

32

A matroid M is simple if M contains no loops or parallel elements. The dual
matroid M∗ of M is defined on the same ground set E, and the bases of M ∗

are the set-complements of the bases of M . A deletion M \ e of an element
e simply removes e from the ground set of M . A contraction M/e is defined
using duality M/e = (M∗ \ e)∗. (This corresponds to contracting an edge in a
graph.) Conversely, a matroid M ′ is a one-element extension (coextension) of M
if M = M ′ \ e (M = M ′/e) for some e. A minor N of a matroid M is obtained
by a sequence of deletions and contractions of elements (the order of which does
not matter), and M is then an extension of N .

An important concept in structural matroid theory is connectivity, which is just
slightly different from traditional graph connectivity. The connectivity function λM

of a matroid M is defined for A ⊆ E by λM (A) = rM (A)+rM (E−A)−r(M)+1. A
partition (A, E−A) is called a k-separation if λM (A) ≤ k and both |A|, |E−A| ≥ k.
Geometrically the spans of the two sides of a k-separation intersect in a subspace
of rank less than k, and in a graph view the two edge parts A, E − A share ≤ k
vertices provided they are both connected. A matroid M is n-connected, for n > 1,
if it has no k-separation for k = 1, 2, . . . , n−1, and |E(M)| ≥ 2n−2. For instance,
matroid connectivity is preserved under duality, and a 3-connected matroid has to
be simple.

3. About Exhaustive Matroid Generation

Unlike for graphs or other common combinatorial objects, the history of matroid
enumeration is rather short. We refer to [8] for a nice overview and bibliography.
In particular, we mention here the old work of Acketa [1] on enumeration and
construction of small binary matroids, which is closely related to further mentioned
work [8] and to our contribution in Section 5.

Perhaps the main problem with matroid generation lies in a very complex inter-
nal structure of a matroid – a single matroid on n elements carries an amount of
information exponential in n. That is why we are looking for generation of suitable
matroid representations which would be easier to handle. Incidently, such are ma-
trix representations of matroids over finite fields, which happen to be interesting
and useful in matroid structure theory. We refer the works of Dharmatilake [2]
and Kingan [7] as two examples of tasks of matroid-representations generation for
the purpose of obtaining theoretical structural results.

Dharmatilake [2] used computer generation of binary matroid representations
in order to find the binary excluded minors for matroids of branch-width three.
He, in fact, found all 10 (3 new) of them, but his search was not finished. We
have completed [4] the search exhaustively using our (faster) generation routine;
and moreover, we have found [5] all the ternary excluded minors for branch-width
three and generated many more such excluded minors over larger fields.

Among some recent works we cite Kingan et al. [8], and (unpublished) Penda-
vingh [11]. Kingan et al. present a generation algorithm for matroid represen-
tations, which we compare with our generation routine in Section 4, and we
significantly extend their enumeration results in Section 5. On the other hand,
Pendavingh systematically generates matroids in general (as set systems), which
is computationally very hard. The point of our interest in his work is that some
nontrivial outcomes of his search (e.g. the small excluded minors for representabil-
ity over GF (5) and GF (7)) agree with results we can obtain with our tools.

33

As in the above mentioned cases, it often turns out that 3-connected matroids
are most useful when assisting theory research, as 3-connected matroids capture
the interesting structural properties. Moreover, every matroid is easily decompos-
able into 3-connected components. A special feature of our generation routine is
that it allows to generate exclusively 3-connected matroids, and thus significantly
speeding up the process in many cases. For an illustration we present (see also [6])
our exhaustive enumeration results of small representable 3-connected matroids in
Table 1. (It is hardly imaginable generating those amounts of matroids without the
3-connectivity restriction. To our knowledge, no similar large-scale enumeration
of 3-connected representable matroids has been carried out till now.)

Table 1. The numbers of small 3-connected matroids repre-
sented over small fields.

representable \ elements 4 5 6 7 8 9 10 11 12 13 14 15
regular: 0 0 1 0 1 4 7 10 33 84 260 908
GF (2), non-regular: 0 0 0 2 2 4 17 70 337 2080 16739 181834

GF (3), non-regular: 1 0 1 6 23 120 1045 14116 330470 ? ? ?

(Below we present both the numbers of non-equivalent and non-isomorphic ones.)

representable \ elements 4 5 6 7 8 9 10 11

GF (4), non-GF (2, 3): 0 2 2 8 78 1040 26494 1241588
– non-isomorphic: 0 2 2 8 69 748 15305 ?

GF (5), non-GF (2, 3, 4): 0 0 3 16 271 8336 497558 ?
– non-isomorphic: 0 0 3 12 192 6590 ? ?

GF (7), non-GF (2, 3, 4, 5): 0 0 0 18 1922 252438 ? ?
– non-isomorphic: 0 0 0 10 277 97106 ? ?

GF (8), non-GF (2, 3, 4, 5, 7): 0 0 0 0 94 ? ? ?
– non-isomorphic: 0 0 0 0 20 ? ? ?

4. Matroid Extension Generation Algorithm

A simple approach to combinatorial generation of certain objects is the follow-
ing: Exhaustively construct all possible “presentations” of the objects of given
size (called [9] also labeled objects or labeled representations), and then select
one representative of each isomorphism class by means of an isomorphism tester.
Since there are typically many presentations for each one resulting object, and
the procedure requires to isomorph-test each pair of the constructed presenta-
tions, that approach quickly becomes infeasible. Moreover, even worse specific
problem – with non-uniqueness, arises when a matroid has several inequivalent
representations (quite often over large fields), and not all of them extend further
to representations of the extensions of this matroid (cf. [8]).

A better solution is provided by the technique of a “canonical construction
path” which has been explicitly formulated by McKay [9], and used (explicitly
or implicitly) in many combinatorial searches. Its idea is briefly described here:
Select a small base object. Then, out of all ways how to construct our big ob-
ject by single-element steps from the base object (construction paths), define the
lexicographically smallest one (the canonical construction path). Adapt the con-
struction process so that all non-canonical extensions at each step are thrown away
immediately (assuming that the canonical lexicographic order is hereditary). In

34

this way every object is generated only once, and no explicit isomorphism tests
are necessary. (Though the isomorphism problem may be implicitly contained in
the definition of the canonical order.)

It appears that the canonical construction path technique has not been fully
implemented before in matroid generation. The works mentioned in Section 3
usually use variations of the above simple generation method. Although Kingan
et al. [8] claim to use the canonical construction path method, they implement it
only partially — there is no definition of a canonical order, but an isomorphism
tester is used to select the representatives of one-element matroid extensions.

The main theoretical contribution of our work is in a complete adaptation of
the canonical construction path technique for exhaustive generation of matroid
representations over finite fields. (We can, moreover, generate matroid represen-
tations over so called [12] “partial fields”.) The adaptation is not at all obvious
due to mentioned specific difficulties with matroid representations. Our base ob-
ject is a common minor of all generated matroid representations, and one-element
extensions and coextensions (see Section 2) play the role of single-element steps.

The following points summarize the important advantages of our approach:

• We actually generate all inequivalent matroid representations, which
means that we naturally overcome the difficulties caused by non-
uniqueness of a matroid representation over large fields.

• We can generate all matroids containing a given minor, by selecting the
minor as the base object. This is often useful or even necessary when
assisting matroid structure research.

• The construction path definition is quite flexible, and we can control var-
ious properties of it. Most importantly, we can generate exclusively 3-
connected matroids by using Seymour’s splitter theorem [13].

• We can easily distribute branches of a large computation among several
(or many) independent computers.

• Finally, the implementation of our generation algorithm [3] appears to be
faster than the other methods and programs mentioned in Section 3.

Elimination sequences of matroid representations. Before giving formal
statements about our algorithm, we have to clarify some terms concerning matroid
representations. As we already know, a (vector) representation of a matroid M is a
matrix A such that the elements of M label the column vectors of A, and matroid
independence coincides with usual linear independence of the vectors. We always
assume that the matrix A has full row rank, and so we can write A = [I |A′]
(standard form), where the columns of the identity matrix I are labeled by a basis
BI , which is said to be displayed by this representation A. Naturally, we can now
strip the identity matrix I , and work with the reduced representation A

′ instead,
where the rows of A

′ are labeled by the basis BI and the columns by E(M)−BI .
It is useful to notice that each regular square submatrix D of reduced A

′ is in
a one-to-one correspondence with the basis BI∆ED where ED ⊆ E(M) are the
elements labeling the rows and columns of D in A

′. Every basis of M can be
displayed by suitable pivoting in a reduced representation. Matroid duality corre-
sponds to a transposition of a reduced representation, and contracting /deleting a
matroid element corresponds to deleting a row/ column from a reduced represen-
tation. So every minor of M can be shown as a submatrix in a suitable reduced
representation of M .

35

Hence any r×c matrix X is a reduced representation of an (r+c)-element rank-r
matroid. The definition of a (strong) matrix equivalence of matroid representations
from Section 2 clearly applies in the same way also to reduced representations. In
this sense an equivalence class of matrix representations over a field IF shall be
called an IF-represented matroid. Represented matroids refine the isomorphism
classes of all IF-representable matroids, and it may easily happen over fields larger
than GF (3) that different represented matroids are isomorphic (non-uniqueness
of representations). ¿From now on, when speaking about matroids, we implicitly
consider represented matroids in the defined sense, and we treat them as unlabeled
objects. We moreover say that a represented matroid N is a represented minor of
M if some matrix of N is a submatrix of some matrix of M . (Notice that this is
a stronger requirement than a usual minor.)

To understand the coming notion of an elimination sequence, imagine a matroid
N that is a represented minor of M , and representations AN and AM of those
such that AN actually is a submatrix of AM . Then AM can be reduced to
AN in steps by removing single columns or rows. Conversely, we can generate
represented extensions of N in steps by adding single columns or rows to the base
matrix A0. (By allowing both one-element extensions and co-extensions, we add
more flexibility to our generation routine, compared to [8]. The added flexibility
is necessary, for example, for handling generation of 3-connected matroids.)

Definition. Let A, A0 be matrices over IF of dimensions r×c, r0×c0, respectively.
A triple S = (A0,A, q) is called an elimination sequence of length k if the following
are true: (See an illustration in Figure 2.)

• A0 (called a base) is a top-left submatrix of A, and k = r + c − r0 − c0.
• q is a {0, 1}-sequence of length k containing r − r0 zeros. Moreover, there

is a sequence of matrices A1, . . . ,Ak = A such that Ai, 1 ≤ i ≤ k is
obtained from Ai−1 by adding one row (qi = 0) or one column (qi = 1)
vector.

• Denote by ~ui the vector that extends Ai−1 into Ai, 1 ≤ i ≤ k. Then each
~ui is in a “unit form” with respect to Ai−1. (If we generate only connected
matroids, that simply means the first non-zero entry is scaled to 1 for each
row or column in A not intersecting A0. Obviously, non-zero scaling does
not change the generated matroid.)

A column vector ~x is in a unit form with respect to a matrix Y if the following
holds: Two rows of Y are said to be connected if they both have nonzero entries in
a common column of Y . In the vector ~x, the first nonzero entry of every connected
components of rows with respect to Y must be 1. The unit form of a row vector
is defined analogously.

A =

A0 u1 u2

u3

u4

Figure 2. An illustration of an elimination sequence (A0,A, q)
where q = (1, 1, 0, 1).

36

Definition. Let S = (A0,A, q) and S′ = (A0,A
′, q′) be two elimination sequences

of length k and the same base A0. Then S ≺ S′ (is lexicographically smaller than)
if q is lexicographically smaller than q′, or q = q′ and the sequence of vectors
(~u1, . . . , ~uk) is lexicographically smaller than the sequence (~u′

1, . . . , ~u
′
k).

An elimination sequence S = (A0,A, q) is said to produce the matroid rep-
resented by A. Out of all elimination sequences S with base A0 producing a
represented matroid M , the unique lexicographically minimal one is called the
canonical elimination sequence of M with respect to A0 and IF. The main contri-
bution of our full theoretical paper [6] is in a detailed proof of the following basic
generation theorem (and its corollaries).

Theorem. Let A0 be a matrix over a finite field IF. Algorithm 1 outputs the
canonical elimination sequence S with base A0 producing M ; for every IF-repres-
ented matroid M of given size that can be produced by some elimination sequence
with base A0 (subject to further user-defined restrictions on the sequences).

There are, roughly saying, two kinds of “user-defined” restrictions that can be
applied to generated sequences. The first kind – structural restrictions, control
chosen (hereditary) properties of the matroid represented by the resulting matrix
A of S. Such is, for example, a restriction excluding certain minors in generated
matroids. The second kind – sequential restrictions, control the proper order in
which matrix lines can be added to produce the resulting matrix A. Such is, say,
a matroid connectivity restriction at each extension step A1, . . . ,Ak = A of S.
For instance, the promised exhaustive generation of 3-connected matroids can be
handled in single-element steps (with a small exception of wheels and whirls as
the base minors) using Seymour’s Splitter Theorem [13]:

Theorem. (Seymour) Let M, N be 3-connected matroids such that N is a minor
of M . Suppose that if N is a wheel (a whirl), then M has no larger wheel (no larger
whirl) as a minor. Then there is a 3-connected matroid N1 such that |E(N1)| =
|E(N)| + 1, and that M has an N1-minor.

Extensions generation scheme. In this paper, we outline the theoretical al-
gorithm of Theorem 4 [6] from an application point of view, precisely as it is
implemented in Macek [3].

Algorithm 1. Recursive generation of (up to) `-step extensions of the matroid
generated by a matrix A0 over IF.

S0 = (A0,A0, ∅)
matroid-generate(S0);

procedure matroid-generate
(

S = (A0,A, q)
)

output the matroid generated by A;
if length(S) ≥ ` then exit;
s0 = number of rows of A; s1 = number of columns of A;
for x ∈ {0, 1}, and ~z ∈ IFsx do

q1 = (q, x);
A1 = A with added ~z as the last row (x = 0) or column (x = 1);
S1 = (A0,A1, q1);
if ¬ unit-check(S1) then continue;
if ¬ sequence-check(S1) then continue;
if ¬ structure-check(S1) then continue;

37

if ¬ canonical-check(S1) then continue;
matroid-generate(S1);

done

end.

The procedure unit-check tests, whether the last-added vector ~z is in the unit
form with respect to A. (Actually, to save computing time, we directly generate
vectors ~z of the cycle in the unit form. An analogous note applies also to further
Algorithm 2.)

The procedures sequence-check and structure-check realize the above men-
tioned user-defined restrictions on elimination sequences. Two rules have to be
observed to make the scheme work properly and efficiently: The properties tested
in structure-check should inherit to all minors of the matroid represented by A,
and the tests in sequence-check should be computationally fast.

Finally, the most complex procedure canonical-check determines (by brute
force) whether the given sequence S is canonical. It is implemented, using the
same(!) unit-check and sequence-check procedures as Algorithm 1, as follows:

Algorithm 2. Testing canonical elimination sequence S with base A0.

procedure canonical-check
(

S = (A0,A, q)
)

for q′ ≤lexicographically q, and all A
′ equivalent to A

such that A0 is a top-left submatrix of A
′ do

k = length(S); S′ = (A0,A
′, q′);

S′
i = the i-th step subsequence of S ′, i = 1, 2, . . . , k;

if ¬ unit-check(S ′
i), i = 1, . . . , k then continue;

if ¬ sequence-check(S ′
i), i = 1, . . . , k then continue;

if q′ <lexicographically q, or
(~u′

1, . . . , ~u
′
k) of S′ <lex. (~u1, . . . , ~uk) of S then

return false;
done

return true;
end.

5. Practical Computations

As already noted above, we have used Algorithm’s 1 implementation in
Macek [3] for carrying out several successful matroid generation projects. (It
is worth to mention here that Macek implements also many other structural
computations over matroids, like minor, connectivity, or isomorphism tests, gener-
ation of representations of a fixed matroid over other fields, etc.) Mainly we have
focused on generation of 3-connected represented matroids. The success of it is
based on the following corollary of Theorems 4 and 4:

Corrolary. Assume the procedure sequence-check implements a 3-connectivity
test for each extension step of the sequence, and that A0 over IF represents a 3-
connected matroid that is not a wheel or a whirl. Then Algorithm 1 outputs all
the 3-connected IF-represented matroids of given size having the matroid of A0 as
a represented minor, without repetition.

Using suitable structural results on minors in representable matroids, one may
exhaustively generate 3-connected matroids using this corollary. In this way we

38

have proved the complete list of binary excluded minors for the matroids of branch-
width three [4] (extending Dharmatilake [2]), and found all such ternary excluded
minors [5]. Similarly we compute [6] the enumeration results on 3-connected rep-
resentable matroids summarized in Table 1.

Our Macek package is available for free under the GPL license. More-
over, we have added a new trial online interface to Macek accessible from
http://www.cs.vsb.cz/hlineny/MACEK. This java-applet based interface allows
everybody to run small matroid computations without necessity to install the
whole package. Many motivation examples are presented in the online documen-
tation. Two such examples are described next.

The matroid called R10 is well known for being a splitter for the class of reg-
ular matroids. (A splitter has no 3-connected extension or coextension in its
class.) Using Macek, one can easily prove that R10 is a splitter also for the
class of all near-regular matroids (those representable over all fields larger than
GF (2), at least). Running Macek (through the online interface) with arguments
‘near-reg’ ‘!extend’ ‘R10’ shows:

MACEK 1.2.01 (26/06/05) starting...

~126~ Generated 0 non-equiv 3-conn row co-extensions of the sequence [R10] (5x5|5x5).
~126~ Generated 0 non-equiv 3-conn column extensions of the sequence [R10] (5x5|5x5).

One can also get all inequivalent representations of a matroid over a field. Running
with ‘GF(7)’ ‘!verbose;!represgen (S) all’ ‘U36 U37’ shows:

MACEK 1.2.01 (26/06/05) starting...

~675~ There are 140 GF(7)-representations of #1 matroid [U36] (3x3, GF(7)).
~676~ There are 120 GF(7)-representations of #2 matroid [U37] (3x4, GF(7)).

At last, the reader may naturally ask how the results of our computations com-
pare to others. Unfortunately, there are not many established results on matroid
enumeration so far. Out of a few published ones, we focus in this work on the
enumeration of small simple binary matroids, started by Acketa [1] by hand, and
continued by Kingan et al. [8] using their matroid computing package. This part
brings the main new computational results of our paper.

Noticing that a simple rank-r matroid M on more than r elements always
contains a circuit C of length at least 3, and that deleting any element e not in C
preserves simplicity of M \ e, we obtain the following conclusion of Theorem 4:

Corrolary. Assume the procedure sequence-check implements just a simplicity
test for each extension step of the sequence, and that A0 =

(

1
1

)

over GF (2). Then
Algorithm 1 outputs all the simple binary matroids of given size n ≤ ` + 3 and
rank r < n, without repetition.

The results we have obtained using the corollary and Macek are summa-
rized in Table 2. We have independently verified all the enumeration results of
Kingan et al. [8] on up to 11 elements, and moreover we have added significant
new results for matroids on 12 and 13 elements. For instance, the number of 8-
element rank-5 simple binary matroids can be obtained by running Macek with
‘GF(2)’ ‘@ext-simple;!extendsize 5 3’ ‘1;1’.

MACEK 1.2.09 (26/08/05) starting...

......
~652~ In total 15 (co-)extensions of 1 matrix-sequence generated for "size" over GF(2).

(One needs the latest version ≥ 1.2.09 of Macek to run this.) Actually, a
faster way to generate all such rank-5 matroids on up to 9 elements is using
‘GF(2)’ ‘@ext-simple;!extend rrrcc’ ‘1;1’. Try this yourself.

For interested readers, we add a short summary of real running times of our
enumerations (after some tuning-up). All the results on at most 11 elements are

39

Table 2. An enumeration of small simple binary matroids – bi-
nary combinatorial geometries. (The *-marked numbers are the
new contributions.)

rank \ elements 2 3 4 5 6 7 8 9 10 11 12 13

2 1 1 0 0 0 0 0 0 0 0 0 0
3 1 2 1 1 1 0 0 0 0 0 0
4 1 3 4 5 6 5 4 3 2 1
5 1 4 8 15 29 46 64 89 ∗ 112

6 1 5 14 38 105 273 ∗ 700 ∗ 1794

7 1 6 22 80 312 ∗ 1285 ∗ 5632

8 1 7 32 151 ∗ 821 ∗ 5098

9 1 8 44 266 ∗ 1948

10 1 9 59 ∗ 440

11 1 10 ∗ 76

12 1 11
13 1

quite easy, they take just seconds or at most minutes to finish. For 12 elements,
the computation took approximately 3 hours (rank 6), 13 hours (rank 7), and 16
hours (rank 9); for 13 elements it took 11 hours (rank 6), 110 hours (rank 7), 260
hours (rank 8), 300 hours (rank 9), and 140 hours (rank 10). (Computing times
are normalized to 1GHz CPU.)

6. Conclusions

We have presented a matroid extension generation scheme which fully imple-
ments the idea of a generation via a canonical construction path by McKay. Com-
pared with other known matroid generation programs, the implementation of our
algorithm appears to be remarkably faster and more powerful in generation of
matroids representable over finite fields. We have already used it to prove some
results of theoretical interest, and significantly extended known enumeration re-
sults of small matroids. In current work we are extending the enumeration in
Table 2 to ternary and other representable matroids. (For instance, we have so far
verified the ternary results of [8].)

A simple observation contained in [8] reads: There is one r-element rank-r
simple binary matroid, and r − 1 of r + 1-element rank-r simple binary matroids.
Partially inspired by our enumeration results from Table 2, we have derived the
following claim. (One could actually obtain a closed formula for this sum in a
straightforward way, but that would be a complicated and boring expression.)

Proposition. The number of r+2-element rank-r simple binary matroids is given
by

r
∑

i=3

bi/2c
∑

j=0

max
{

0, r − 2i + j + 3
}

.

Sketch of proof. Using standard arguments about binary matroids, it is easy
to argue that an r+2-element rank-r simple binary matroid M can be decomposed

40

into E(M) = C1 ∪ C2 ∪ F0 such that C1, C2, and C1∆C2 provided they intersect,
are all circuits; and that F0 are coloops – elements contained in no dependent
set. (Actually, such matroids are always cycle matroids of simple graphs.) Now
consider C1 the shortest circuit in M , and denote i = |C1| ≥ 3, j = |C1 ∩C2| ≥ 0.
To avoid symmetric duplicate cases, assume j ≤ bi/2c. Then the length of C2 is
at least |C1| = i and at most |E(M)| − |C1 − C2| = r + 2 + j − i; and so, fixing
valid values of i, j, there are r + 3 + j − 2i choices for the circuit C2. The above
formula follows in a straightforward way.

Acknowledgments

The large-scale computations summarized in Tables 1 and 2 have been run on
the minos computing cluster at West Bohemia University (ITI center).

References

[1] D.M. Acketa, A construction of non-simple matroids on at most 8 elements, J. Combin.
Inform. System Sci. 9 (1984), 121–132.

[2] J.S. Dharmatilake, Binary Matroids of Branch-Width 3, PhD. dissertation, Ohio State Uni-
versity, 1994.

[3] P. Hliněný, The Macek Program, http://www.mcs.vuw.ac.nz/research/macek,
http://www.cs.vsb.cz/hlineny/MACEK, 2002–2005, version 1.2.09.

[4] P. Hliněný, On the Excluded Minors for Matroids of Branch-Width Three, Electronic Jour-
nal of Combinatorics 9 (2002), #R32.

[5] P. Hliněný, Using a Computer in Matroid Theory Research, Acta Math. Univ. M. Belii 11
(2004), 27–44.

[6] P. Hliněný, Equivalence-Free Exhaustive Generation of Matroid Representations, Discrete
Appl. Math., accepted (2005).

[7] S.R. Kingan, Matroid Structure, Ph.D. dissertation, 1994, Louisiana State University.
[8] R.J. Kingan, S.R. Kingan, W. Myrvold, On matroid generation, Proceedings of the Thirty-

Fourth Southeastern International Conference on Combinatorics, Graph Theory, and Com-
puting, Congressus Numerantium 164 (2003), 95–109.

[9] B.D. McKay, Isomorph-free exhaustive generation, J. Algorithms 26 (1998), 306–324.
[10] J.G. Oxley, Matroid Theory, Oxford University Press 1992.
[11] R. Pendavingh, personal communication, 2004.

[12] C. Semple, G.P. Whittle, Partial Fields and Matroid Representation, Advances in
Appl. Math. 17 (1996), 184–208.

[13] P.D. Seymour, Decomposition of Regular Matroids, J. Combin. Theory Ser. B 28 (1980),
305–359.

Faculty of Informatics,, Masaryk University in Brno,, Botanická 68a, 602 00

Brno, Czech Rep., Department of Computer Science,,, VŠB – Technical University

Ostrava, hlineny@fi.muni.cz

41

