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USING TRACE TO IDENTIFY IRREDUCIBLE POLYNOMIALS

Ondrej Šuch

Abstract. We prove a criterion to check whether a polynomial is irreducible. This
criterion is related to trace map computations. It may be effectively used to detect
irreducibility of polynomials of prime degree over their base field.

1 Introduction

Motivation for our paper is to provide a new way to check if a polynomial with
coefficients in a finite field is irreducible. In computer science as well as experimental
mathematics, this is a crucial problem to solve in order to generate an explicit finite
field.

The context is as follows. Let F be a finite field of cardinality q, and a polynomial
f(x) of degree n over F. For any m ≥ 1 one can define F -linear trace map

Trm : y 7→ yqm−1

+ . . . + yq + y

that maps F [x] to itself. It induces an F -linear map on F [x]/(f), which we denote
by Trm,f .

If f is irreducible, then E := F [x]/(f) is a field and in fact E/F is a cyclic
Galois extension of degree n. Its Galois group is generated by the Frobenius map
F : x 7→ xq. For any element e ∈ E the sum

e + F (e) + F 2(e) + . . . + Fn−1(e) = Trn,f(e)

is clearly invariant under the Frobenius F and thus belongs to F . In fact, the image
of Trn,f is precisely F . All this holds if the polynomial f is irreducible. (see e.g.
[3 (VI, §5, Theorem 5.2, p. 286)], or [2 (Chaper 12)] for basic properties of finite
fields).

In this paper we investigate whether a converse holds with the intention of pro-
ducing a criterion to check irreducibility of f . This paper builds upon our previous
paper [4] where we studied irreducibility of quadratic polynomials. Here we deal
with polynomials of arbitrary degree. We note that our main result, Theorem 5,
essentially proves Conjecture 3 from [4].
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2 Trace maps

It is well known that xqn

− x is the product of all monic irreducible polynomials of
degree dividing n with coefficients in a finite field of cardinality q [3 (V, §6, exercise
22, p. 254)]. The following is a less known, but closely related fact.

Lemma 1. For any element a in F , the polynomial ga,m(x) := Trm(x) − a has
no repeated roots, and its divisors are only the irreducible polynomials of degree
dividing m.

Proof. Since the derivative of ga,m(x) is 1, it clearly has no repeated roots. Now
we proceed to prove the rest of the lemma.

Suppose h(x) is an irreducible polynomial of degree k. Then Trk,h(x) is a con-
stant, in fact if

h(x) = akxk + ak−1x
k−1 + . . . + a0,

then Trk,h(x) = −ak−1/ak. Moreover, for any mutiple of k we have

Trkj,h(x) = j Trk,h(x) = −jak−1/ak.

It follows that h(x) divides Trkj,h(x) + jak−1/ak.
Consider the product P of all irreducible monic polynomials of degree dividing

m. By the above reasoning

P |
∏

a∈F

(Trm(x) − a)

On the other hand, the product P is known to equal to

P = xqm

− x

Since each polynomial Trm(x) − a is monic of degree qm−1, it follows that

qm = deg P = deg
∏

a∈F

(Trm(x) − a) = qm

and thus
P =

∏

a∈F

(Trm(x) − a)

and the lemma is proved. �

Corollary 2. If Trn,f (x) is a constant in F [x]/(f), then f has no repeated roots.

Proof. To say that Trn,f (x) is a constant is to say that f divides Trn(x) − a for
some a in F . But Trn(x) − a is squarefree by the above lemma.

3 Key lemma

Lemma 3. Let p be a prime and n an integer ≥ 1. Denote Mn,p the set of
positive integers k dividing n such that (p, n/k) = 1. If f(x) is a monic irreducible
polynomial of degree d in Mn,p over a finite field F of characteristic p, then knowing
Trn,f(xi) for i = 1, . . . , 2n−1 uniquely determines f(x) among all irreducible monic
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polynomials of degree from Mn,p. If char(F ) > n, then it is sufficient to know
Trn,f(xi) for i = 1, . . . , n.

Proof. For brevity, let us denote Si = Trd,f(xi) and write f(x) =
∑

k akxk. Well
known Newton identities state

ad−1 + adS1 = 0

2ad−2 + ad−1S1 + adS2 = 0

...

da0 + a1S1 + . . . + ad−1Sd−1 + adSd = 0

For k = 1, 2, 3, . . .

(1) a0Sk + a1Sk+1 + . . . ad−1Sk+d−1 + adSk+d = 0

Consider now the matrix

A :=







Sd Sd−1 . . . S0

Sd+1 Sd . . . S1

. . .
S2d−1 S2d−2 . . . Sd−1







We claim that A has rank d.
In fact the determinant of the minor gotten from A by leaving out the first

column is nonzero. It is the discriminant of the trace form which is equal to [3 (VI,
§Ex, exercise 32, pg. 325)] the discriminant of f , which is nonzero, because f is
irreducible. Thus the right nullspace W of A is a rank 1 vector space over F . An
obvious element of W is the column vector (ad, ad−1, . . . , a0). It is the only element
of W whose first coordiate equals to 1. It follows that the only element of W whose
first coordinate is 0 is the zero vector.

Let us return to traces Trn,f (xi) = (n/d)Si. Suppose there was another polyno-
mial f ′(x) =

∑

a′

kxk of degree d′ ≥ d such that

Trn,f ′(xi) = Trn,f(xi)

Then we would have for k ≥ 0

a′

0Sk + a′

1Sk+1 + . . . a′

d′−1Sk+d′−1 + a′

d′Sk+d′ = 0(2)

Let us write
f ′(x) = f(x)g(x) + h(x), deg h(x) < d

where

g(x) =
∑

k

bkxk

h(x) =
∑

k

ckxk

We can substract a linear combination of shifted relations (1) from (2) to arrive at

c0Sk + c1Sk+1 + . . . cd−1Sk+d−1 = 0, k ≥ 0

Vector (0, bd−1, . . . , b0) belongs to W , thus by above analysis, it has to be the zero
vector. It follows that f ′(x) is divisible by f(x).

If char(F ) > n, then one can use Newton formulae to recursively compute
ad−1, . . . , a0. �
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Example 4. Note that over field of three elements F = Z/3Z, the polynomials
f1(x) = (x4 + x3 + 2) and f2(x) = (x4 + x3 + 2x + 1) have identical matrix of
trace form. Thus knowing the trace quadratic form by itself does not determine
the underlying monic irreducible polynomial uniquely. In particular it implies that
knowing Trn,f(xi) for i ≤ 2n − 2 is not sufficient to determine a monic irreducible
polynomial.

4 Main result

Now we can prove our main result.

Theorem 5. Polynomial f(x) of degree n over a finite field F of cardinality q
is irreducible, if and only if the image of the trace map Trn,f are precisely the
constants.

Proof. If f(x) is irreducible, then any element of F [x]/(f) can viewed as an element
of the splitting field of f , and its trace is necessarily constant. Since the trace form
is nondegenerate, the image of trace map cannot consists of only 0. This proves
the “if” part.

Suppose now that Trn,f consists only of constants. By Corollary 2, f(x) is a
squarefree polynomial. Let f = f1 · · · fr be its factorization over F . Then

F [x]/(f) ≈ F [x]/(f1) ⊕ · · · ⊕ F [x]/(fr)

and Trn,f = Trn,f1
⊕ · · ·⊕Trn,fr

. The constants in F [x]/(f) are precisely elements
(a, a, . . . , a) with a in F , the so called Berlekamp subalgebra. From Lemma 1 it
follows that deg fi divides n for i = 1, . . . , n. Since the image of Trn,f does not
consists of only zero, the same is true for Trn,fi

. Therefore for all i, n/ deg(fi) are
not divisible by p. But it follows from Lemma 3 that this implies that all fi are
equal. Since f(x) is squarefree, it follows that f(x) is irreducible.

5 Applications

In [1 (Section 5], an algorithm is presented that computes the trace map Trn,f using

O (̃n(ω+1)/2 +n log q) and tests irreducibility of degree n polynomial with the same
complexity. Here ω denotes the complexity of the algorithm used for multiplying
two n×n matrices (one can choose ω < 2.376, while standard algorithm uses ω = 3),
and g = O (̃h) means that g = O(h(log h)k) for some constant k.

Our main result, Theorem 5, implies an algorithm to test irreducibility of f(x).
Namely, compute trace values Trn,f (xi) for i = 1, . . . (n − 1) and the polynomial
is irreducible if and only if they are all constants. However, complexity of this
algorithm is O (̃n(n(ω+1)/2 + n log q)) steps, which is worse than known algorithms,
e.g. above, if n is large.

It would be nice if it were sufficient to check whether a single Trn,f (xi) is a
constant. This is not true however.

Example 6. We can construct an example from polynomials shown in Example 4.
Consider f(x) = (x4 + x3 + 2)(x4 + x3 + 2x + 1) over the field of cardinality three.
Then Tr8,f(xi) is constant for i = 1, . . . , 6. It is only Tr8,f(x7) that is not constant.

But there is one special case, when our algorithm is equally fast, because it is
sufficient to test whether single Trn,f (x) is constant.
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Lemma 7. If the degree of f(x) is prime and not divisible by char(F ), then f(x)
is irreducible if and only if Trn,f (x) is a constant in F [x]/(f).

Proof. If f(x) is irreducible, then Trn,f (x) is clearly constant. In fact it is the minus
of coefficient of xn−1 of f(x).

Suppose now Trn,f (x) is a constant. From Lemma 1 it follows that either f(x) is
irreducible, or that f(x) is the product of distinct linear factors (x−a1) · · · (x−an).
In the latter case the trace Trn,f (x) is then n(a1, . . . , an) in

F [x] ≈ F [x]/(x − a1) ⊕ · · · ⊕ F [x]/(x − an)

which cannot be constant if p does not divide n. �

6 Errata

In our previous paper [4], in the proof of Proposition 1, we incorrectly stated that
f(x) is irreducible if and only if Pq(x, y) = 0. In fact f(x) is irreducible if and only
if Pq(x, y) = −1. The rest of proof stands as written. The author would like to
thank Ms. Soontharanon from Thailand for pointing this out.
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