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A GEOMETRICAL APPROACH TO AGGREGATION

J. RECASENS

ABSTRACT. Considering the family F' of contour curves F = {h(z,y) =
k) of an (idempotent) aggregation operator h in two variables as a one-
parametric family of curves, the differential equation y’ = f(z,y) having F
as general solution is associated to h. Properties of h have then be translated
to properties of its differential equation. Reciprocally, for a differential
equation fulfilling some easy properties its general solution can be seen as
the contour curves of an idempotent aggregation operator so that properties
of the equation can have their counterpart in the ones of the aggregation
operator.

1. INTRODUCTION

It is well known that the orthogonal projection of a point P = (a, ) of the plane
on the line [ with equation y = x is the point (aTer, “;‘b), so that the coordinates
of the projection of P are the arithmetic mean of the coordinates of P. This
gives a nice geometrical interpretation to the arithmetic mean of two numbers.
In a similar way, if we project the point P following the direction given by the
vector (—¢,p) (with p,q > 0 and p 4+ ¢ = 1) the projection on [ is the point with
coordinates (pa + gb, pa + ¢b) obtaining the weighted arithmetic mean in, again,
a geometrical way.

Going back to the arithmetic mean, two points lying in a line perpendicular to
[ will have the same orthogonal projection onto ! and therefore their coordinates
will have the same arithmetic mean. In this way, we have a one-parametric family
of lines F' = {z + y = k} with the property that all points of a given line of F’
have the same arithmetic mean.

A similar situation occurs for weighted arithmetic means where, given the
weights p,q¢ > 0, p + ¢ = 1, the one-parametric family {pz + qy = k} plays the
same role as F.

It seems therefore interesting to study what happens if we permit points to
move toward [ without the constraint of following a straight line, but allowing
more general curves. This paper is devoted to this study.
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Next Section will determine which conditions a family of curves must fulfill
to be associated to an (idempotent) aggregation operator and which ones are
related to desirable properties of these operators.

Of course, if an aggregation operator should be obtained from a family of
curves, they must satisfy at least the following two conditions:

e There must pass a curve of the family through every point of the plane
(or some restricted domain).
e No two curves can pass through the same point.

These are necessary conditions for the existence of an ordinary differential
equation having the family as solution. If the curves are ”smooth enough”, then
the aggregation operator will have associated this differential equation as well.

Two very easy examples are the arithmetic mean and weighted arithmetic
means, the family associated to the first one being the solution of the differential
equation ' = —1 while the latter to the equation y’ = —g.

Reciprocally, a differential equation fulfilling some conditions will generate an
aggregation operator and the properties of this operator can be translated to the
equation.

Section 3 will study the relation with aggregation operators, one-parametric
families of curves and differential equations.

As particular cases, the one-parametric family of curves and differential equa-
tions of the most popular aggregation operators will be given; namely: means,
quasi-arithmetic means and OWA operators.

2. CONTOUR CURVES

Definition 2.1. An aggregation operator (in two variables) is a map h : X x X —
X where X is some subset of the real line satisfying
(1) Min(z,y) < h(z,y) < Maz(z,y) Yo,y € X
(2) h(x1,91) < h(x2,92) if 1 < 29 and y1 < yo Va1, 22,y1,92 € X (mono-
tonicity)

h is symmetric if and only if
h(z,y) = h(y,z) Yo,y € X

It is straightforward to prove that aggregation operators are idempotent, i.e.:
they satisfy

h(z,z) =2 Vx € X

Throughout the paper we will assume that all aggregation operators are con-
tinuous.
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Given an aggregation operator h, we can consider its contour curves, i.e. the
sets of points (z,y) in the domain of h with h(xz,y) = k where k is a given
constant. In this way we associate a continuous one-parametric family F of
curves to h with the particularity that the coordinates of all points P of the same
curve have the same aggregation with h, which geometrically are the coordinates
of the intersecting point (p,p) of this curve with I. (We will write in short that
the point (p,p) is the aggregation of P). Some of the properties of h can be
translated to F' and visualized by its behavior.

Reciprocally, a continuous one-parametric family F' of curves of the plane
satisfying certain conditions can be seen as the contour curves of h.

Let us consider a family F' of continuous parameterized curves ¢ (t) = (z(t), yr(t)),
k € X C R of the plane such that all of them intersect the line [ of equation
y = z in a single point and let (px, pr) be the intersection of the curve ¢ with I.
If we want that (pg,px) could be considered an aggregation of any point (a,b) of
¢ (t), some restrictions should be imposed to ¢ (t).
First, pr must be between a and b for any point (a,b) € cx(t) (Min(a,b) <
pr < Mazx(a,b)) which means that (pg, px) must lay between the intersections of
the lines * = a and y = b with .

Proposition 2.2. Let F' = {ci} be a one-parametric family of continuous curves
such that each curve ¢, of F intersects the line | in a point (px,px). If F is the
family of contour curves of an aggregation operator, then for all points (ax, by) of
the curve cx (pk,pr) must lay between the intersections of the lines x = a and
y = b with .

For example, the curve partly represented in Figure 1 could be a member of a
family F' generated by an aggregation operator, while the one of Figure 2 could
not.

Next proposition provides a geometric translation of monotonicity.

Proposition 2.3. Let F = {cy} be the contour family of a map h satisfying 2.1.1.
h is non-monotonic if and only if there exists a curve ¢ of F with P = (xo,yo)
and Q = (z1,y1) two points of ¢ with zo < z1 and yo < y1.

Proof. <)

In this case, there would be a point R = (z2,y1) with 25 < x1 in the region
of points of the plane above ¢ belonging to another curve ¢’ of the family. Since
cn¢c =, the aggregation of (x2,y;) is greater than the aggregation of (z1,y1)
and therefore the aggregation operator is non-monotonic. (See Figure 3).

=)

Trivial.
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In the case that the curves ¢ of F' are functional, i.e. we can describe ¢; with
a map y = fr(x), Proposition 2.3 simply means that the associated map h is
monotonic if and only if f; are non-increasing monotonic maps. O

Symmetry of an aggregation operator can also be easily translated to the
behavior of their contour curves.
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FIGURE 3

Proposition 2.4. Let F' = {cy} be the contour family of an aggregation operator
h. h is symmetric if and only if all curves of F are symmetric with respect to the
line l (i.e., if (a,b) is a point of curve ci, then (b,a) is a point of cx as well).

If the curves of F are functional (y = fi(z)) then the associated aggregation
operator is symmetric if and only if the maps fj are strictly decreasing with

fu= It vk

3. DIFFERENTIAL EQUATIONS

In the previous Section we have seen the relation between the properties of an
aggregation operator h and its family of contour curves F' = {h(z,y) = k}. Let us
now suppose that the aggregation has nice differential properties, namely that in

some region of the plane there exist h, = % and hy, = % # 0. In this situation,

the family F' is determined by the differential equation 3’ = —Z—z.

For example, the family F of contour curves of the arithmetic mean h(z,y) =
# is F' = {z+y = k} that are the solutions of the differential equation ' = —1.

Reciprocally, a differential equation y' = f(x,y) satisfying certain conditions
will have as solution the family of contour curves of an aggregation operator h.
We will say in this case that y' = f(x,y) is the differential equation associated
to h.

This Section will study which conditions a differential equation must satisfy
for having as solution a family of contour curves of an aggregation operator h

and how the properties of A are transfered to the differential equation.
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Proposition 3.1. Let y = f(x,y) be a differential equation. If f(x,y) <
0 Vz,y € R then it is associated to an aggregation operator.

Proof. Ify' <0, the curves solution of the equation will not satisfy the hypothesis
of Proposition 2.3. O

Proposition 3.2. The differential equation y' = f(x,y) represents a symmetric
aggregation operator iff f(x,y) - f(y,z) = 1.

Proof. This implies that the curves are symmetric with respect to the line y = .
O

Example 3.3. Table 1 shows the most popular symmetric aggregation operators
with their respective families of one-parametrized curves F' and the corresponding
differential equation.

TABLE 1
h F y
ariﬁgﬁtic %y ry—k y = —1
ge;n;z‘:lric JET oy =k Y =1
ha;lr:;);ﬁc vy 2zy = k(z +y) y=-5
i | @ | ek | v
vt arthmetic | 5 st [+ sy -k |y =
OWA operators pMax(z, y) pMax(z,y) y = { _5 %f Ty
+qMin(z,y) +qMin(z,y) = k _% ifz>y

Example 3.4. Table 2 displays the most popular non-symmetric aggregation
operators with their respective families of one-parametrized curves F and the
corresponding differential equation.

If F ={y = f(z,k)} is a one-parametric family of curves such that for all
k % is between —1 and 1, then rotating F' —45° with respect to the origin
(0,0), we obtain a family of contour curves of an aggregation operator.
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TABLE 2

h F %
weighted B .,
arithmeticmean pT+qy pr+aqy =k ¥y ="y
weighted o a oa .
geometric mean Y abyl =k Y ="
weighted oy B .
harmonic mean qztpy zy = k(qz + py) Y =02
weighted o N N o e
generalized means (p2® + qy*) Pt +qy® =k Y = g
weighted ,
quasi F A pf (@) +afW) | pf@) +af(y) =k |y = —25E
arithmetic means

A nice easy way to generate aggregation operators is therefore to start with

amap y = f(z) with —1 < f/(z) < 1 Vz and rotate —45° the family F' = {y =
f(z) + k} with respect to the origin (0, 0).

Definition 3.5. Let y = f(z) be a map with —1 < f'(z) < 1 Vz. my will be

the aggregation operator whose contour curves are the family obtained form the
curves y = f(x) + k rotated —45° with respect to the origin (0,0).

The differential equation fulfilled by this family is

The aggregation my is

24y~ VI() + V21 (0)
2
acos(z) with 0 < o < 1 we get the family

mpy (l‘, Yy
Example 3.6. (1)
solution of

ozsin(%) +1

asin(%) -1
and with aggregation operator

T+y— \/ﬁacos(%) + V2«
2

m(z,y)
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(See Figure 4).

FIGURE 4

(2) Fromy = e with 0 < o < \/g we get the family solution of

17y2
| oV -y

o —1)2
—av/2(x — y)e_%) +1
and with aggregation operator

m—yz
z+y—\/§o¢e*( 7 +\@o¢
m(z,y) = 5

(See Figure 5).

The following result is straightforward.
Proposition 3.7. my is symmetric if and only if f is an even function (i.e.:
f@)=f(-z)).
4. CONCLUDING REMARKS

This paper has provided a first attempt to relate aggregation operators with
differential equations. This have been achieved assigning to every (idempotent)
aggregation operator in two variables the differential equation which has its con-
tour curves as general solution.

Some properties of the aggregation operator have been translated to properties
of the associated differential equation and vice versa.
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FIGURE 5

The author will try to extend the results of this paper to more than two
variables in forthcoming works.
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