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SUPERPRIMES AND GENERALIZED DIRICHLET THEOREM
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Dedicated to the 70th birthday of Alfonz Haviar

Abstract. A concept of a superprime meaning a prime number whose all
digits are prime numbers is introduced and a question whether there is an
infinite number of superprimes is raised. A positive answer to this and a few
related questions is conjectured and supported by several observations and
computations via Mathematica. Among the conjectures is a generalized
version of Dirichlet’s Theorem on primes which implies certain conjectures
presented here as well as the famous conjectures about the infinite number
of Mersenne and Fermat primes.

1. The main problem

There are several different proofs of the fact that there is an infinite number
of primes [1], the best known being likely the one due to Euclid. In this note
we introduce a more specific notion of a superprime and ask if there is still an
infinite number of superprimes.

Definition 1.1. By a superprime we mean a prime number whose all digits (in
its decimal representation) are prime numbers.

We note that instead of the decimal representation one can consider base m
positional notation for m ≥ 4. (The case m = 3 is not interesting as it gives us
only one prime digit 2.)

Example 1.2. The numbers 2, 3, 5, 7, 23, 37, 53, 73, 223, 227, 233, 257, 277,
337, 353, 373, 523, 557, 577, 727, 733, 757 and 773 are all superprimes among
the natural numbers up to one thousand.

Problem 1. Is there an infinite number of superprimes?
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Example 1.3. A simple way to generate (and print) all superprimes having at
most r digits is to use, within Mathematica, the following command:

p [ 0 ] = 2 ; p [ 1 ] = 3 ; p [ 2 ] = 5 ; p [ 3 ] = 7 ;

Do[number = 0;Do[m = n; q = 0;Do[z = Mod[m, 4];m = Floor[m/4];

q = p[z] ∗ 10i + q, {i, 0, k − 1}]; If[PrimeQ[q], number++;Print[{k, q}]],

{n, 0, 4k − 1}];Print[number], {k, 1, r}]

Here are the four-digit superprimes obtained:
2237, 2273, 2333, 2357, 2377, 2557, 2753, 2777, 3253, 3257, 3323, 3373, 3527,

3533, 3557, 3727, 3733, 5227, 5233, 5237, 5273, 5323, 5333, 5527, 5557, 5573,
5737, 7237, 7253, 7333, 7523, 7537, 7573, 7577, 7723, 7727, 7753, 7757.

In the table below, Pk is the number of k-digit superprimes for 1 ≤ k ≤ 15.
From this table one can conjecture that Pk > 3k for k ≥ 10.

k Pk
k
√
Pk k Pk

k
√
Pk k Pk

k
√
Pk

1 4 4.000000000 6 389 2.701831538 11 214432 3.052549327
2 4 2.000000000 7 1325 2.792742150 12 781471 3.097961899
3 15 2.466212074 8 4643 2.873094002 13 2884201 3.139966685
4 38 2.482823796 9 16623 2.944202734 14 10687480 3.177331457
5 128 2.639015822 10 59241 3.000974037 15 39838489 3.211344203

Based on the computations above we now state the following two conjectures:

Conjecture 1. There is an infinite number of superprimes.

Conjecture 2. For any integer k > 0 there is a k-digit superprime.

Remark 1. We note that it would be interesting to find the limit L := limk→∞
k
√
Pk.

It is likely that L > 3 and one cannot refute that L = 4. For the limit L we have
the asymptotic inequality Pk > (L− ε)k for every ε > 0.

Remark 2. We also note that in the base m positional notation for m ≥ 4 the
situation seems to be analogous: the number Pm

k denoting the number of k-digit
superprimes in the basem positional notation has been calculated for 4 ≤ m ≤ 12
and it turns out that it grows roughly as ak, where a is slightly smaller than the
number π(m− 1). (Here π(x) is the prime-counting function, so π(m− 1) is the
number of primes used in the base m positional notation.) Hence Conjecture 1
and Conjecture 2 formulated above with respect to the decimal representation
can analogously be formulated in the base m positional notation for arbitrary
m ≥ 4.

22



2. Generalized Dirichlet Theorem

The well-known Dirichlet’s Theorem on Primes in Arithmetic Progressions
was first published in 1837. In his article [4], P.G.L. Dirichlet stated it as follows:
“each unlimited arithmetic progression, with the first member and the difference
being coprime, will contain infinitely many primes." We present it formally as a
theorem below.

Dirichlet’s Theorem. Assume that a, b are coprime positive numbers. There
is an infinite number of primes in the arithmetical sequence

a, a+ b, a+ 2b, a+ 3b, . . . .

Our aim here is to conjecture a Generalized Dirichlet Theorem. Let us call
by Dirichlet sequence the sequence in Dirichlet’s Theorem. We shall consider the
sequence (xn)∞n=0 defined by the recursive formula

(1) xn+1 = axn + b

where a, b and x0 are integers such that b is coprime to a · x0. We shall call
it Generalized Dirichlet sequence. We note that one obtains Dirichlet sequence
from it in the special case a = 1.

For our Generalized Dirichlet (GD) sequence we have the explicit formula

xn =

{
an
(
x0 + b

a−1

)
− b

a−1 = anx0 + b(an−1)
a−1 for a 6= 1,

x0 + n b for a = 1.

We note that the cases a ∈ {−1, 0} are trivial and in case b = −(a− 1)x0 our
sequence is constant. So, we shall assume a /∈ {−1, 0, 1} and b 6= −(a − 1)x0.
Throughout this section we shall also need to consider as primes all members
xn for which |xn| is prime - so even the negative integers. (This is not unusual,
we note that also Mathematica treats prime numbers the same way and the
commands PrimeQ[-3] or ProvablePrimeQ[-3] give answers ‘True’). Such a con-
sideration of prime numbers will help us to simplify the statements in this section
and yet it will not negatively influence our main goal here which is to conjecture
a Generalized Dirichlet Theorem.

Remark 3. If a 6= −1 a b 6= −(a− 1)x0, then the explicit formula above yields
that all members of the GD sequence are different.

Also, the explicit formula above yields immediately the following statement.

Proposition 2.1. Let (xn)∞n=0 be a GD sequence. If a · x0 and b have a divisor
d > 1, then all xn for n ≥ 1 are divisible by d, and consequently, the GD sequence
contains at most three primes.

Example 2.2. Let us take in a GD sequence a = 3, b = −12 and x0 = 5. Then
the GD sequence (5, 3,−3,−21,−75, . . . ) contains only the primes 5, 3 and −3.
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Remark 4. We note that also a partial converse to Proposition 2.1 is true: if two
consecutive members xn and xn+1 of the GD sequence have a common divisor
d > 1, then a · x0 and b have the divisor d, too.

Example 2.3. (i) Let us take in the GD sequence x0 = 3, a = 5 and b = 1.
Hence xn+1 = 5xn+1. Then xn+2 = 25xn+6, which means that all members x2k

are divisible by 3. Since x1 = 16, all members x2k+1 are even and the sequence
(xn)∞n=0 contains only the prime x0 = 3.

(ii) Let us consider x0 = 14, a = 16 and b = 1. We have xn+1 = 16xn + 1.
Then xn+3 = 4096xn + 273. We note that x0 = 14 = 7 · 2, x1 = 225 = 3 · 75,
x2 = 3601 = 13 · 277 and 273 = 3 · 7 · 13.

It can easily be seen from the formulas above that all members x3k are divisible
by 7, all x3k+1 are divisible by 3 and all x3k+2 are divisible by 13. The GD
sequence (xn)∞n=0 does not contain any prime.

The previous examples show that even if b is coprime to a · x0, the GD se-
quence (xn)∞n=0 can be partitioned into k subsequences, of which each has its own
nontrivial divisor, and so the sequence (xn)∞n=0 contains only a finite number of
primes. Our aim is to study conditions forcing the GD sequence to contain only
a finite number of primes.

Let us put

Ak := 1 + a+ . . . ak−1 =
ak − 1
a− 1

for k ≥ 0

Bk := Akb

y(k,j)
n := xkn+j for k ≥ 2 and 0 ≤ j ≤ k − 1

Obviously, y(k,j)
n+1 = Aky

(k,j)
n +Bk and y(k,j)

0 = xj .

Proposition 2.4. Assume that there exists k ≥ 2 such that the following condi-
tions hold:

(ak) for all j ∈ {0, . . . , k − 1}, Ak has a common divisor dj > 1 with xj .

Equivalently,
(bk)

for all j ∈ {0, . . . , k − 1}, Ak has a common divisor dj > 1 with x0 −Ajb.

Then the GD sequence (xn)∞n=0 contains only a finite number of primes.

Proof. Assume that there exists k ≥ 2 such that, for all 0 ≤ j ≤ k − 1, Ak

has a common divisor dj > 1 with xj = y
(k,j)
0 . Then dj is a common divisor

of Bk = Akb and xj , which means that, for all 0 ≤ j ≤ k − 1, the sequence
(y(k,j)

n )∞n=0 contains a finite number of primes. Consequently, the GD sequence
(xn)∞n=0 contains only a finite number of primes.
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Now we show that (ak) is equivalent to (bk). If j = 0, then xj = x0 − Ajb,
thus (ak) immediately implies (bk). For 1 ≤ j ≤ k − 1 we continue as follows. If,
by (ak), Ak has a common divisor dj > 1 with xj , it also has the common divisor
dj with xj − Akb = ajx0 + (Aj − Ak)b = aj(x0 − Ak−jb). Since Ak is coprime
to a, it has the common divisor dj with (x0 − Ak−jb). Hence Ak has a common
divisor with x0 −Ajb for all 1 ≤ j ≤ k − 1. Consequently, (bk) holds.

Conversely, to show that (bk) implies (ak), let for all 0 ≤ j ≤ k − 1, Ak has
a common divisor dj > 1 with x0 − Ajb. If j = 0, then Ak has the common
divisor d0 with x0. If 1 ≤ j ≤ k − 1, then Ak has the common divisor dj with
ak−j(x0 − Ajb) = ak−jx0 − Ak−jb + Akb. This means that Ak has the common
divisor dj with ak−jx0−Ak−jb = xk−j . Hence Ak has a common divisor with xj

for all j ∈ {0, . . . , k − 1}. The proof is complete. �

Remark 5. We note that in the conditions (ak) and (bk) we could write Bk

instead of Ak. The equality Bk = Akb means that if Bk has a common divisor
dj > 1 with xj , but Ak is coprime to xj , then b has a common divisor with xj .
Then b has a common divisor with axj−1. Now if b has a common divisor with
a, we may apply Proposition 2.1. If b is coprime to a, it has a common divisor
with xj−1 and then, by induction, it has a common divisor with xn for n ≥ 0.
So, these cases are in fact already covered by Proposition 2.1.

We also note that it follows from above that if we want the GD sequence
to contain an infinite number of primes, then we have to guarantee that the
conditions (ak) and (bk) are not satisfied for all k ≥ 2, which is not a simple task.
The most convenient way to guarantee it seems to be to show that Ak is coprime
to x0 or to x1 as we do it later with respect to Mersenne and Fermat primes (see
Remark 8 and Remark 9, respectively). An alternative way is to show that Ak

is coprime to x0 − b = x0 −A1b, which is applied at the very end of Section 3.

Remark 6. (i) For k = 2 the condition (ak) above means that a+1 has common
divisors with x0 and x1, and the equivalent condition (bk) means that a+ 1 has
common divisors with x0 and x0 − b.

Our following observations concerning the conditions (ak) and (bk) for k > 2
are based on our computations via Mathematica and C++.

(ii) For k = 3 the conditions (ak) and (bk) are not satisfied for all a, b, x0 with
the integer values in the interval from −15 to 15 provided a · x0 is coprime to b.

(iii) For k = 5 the conditions (ak) and (bk) are not satisfied for all a, b, x0

with the integer values in the interval from −361 to 361 provided a ·x0 is coprime
to b.

If 361 above is replaced with 1000, then there is exactly one example of a, b, x0

with the given integer values where the conditions (ak) and (bk) are satisfied,
namely a = −139, b = 67, x0 = 362.
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(iv) Similarly, for k = 7 the conditions (ak) and (bk) are not satisfied for all
a, b, x0 with the integer values in the interval from −1500 to 1500 provided that
a · x0 is coprime to b.

(v) An interesting situation occurs in case k = 12. The conditions (a12) and
(b12) are satisfied for the values a = −11, b = 7, x = −9 (as well as for a = 7,
b = −23, x0 = 25), but for the same values the conditions (a4) and (a6) (as well
as (b4) and (b6)) are not satisfied. Hence the validity of the conditions is not
transferred from k’s to their divisors.

The following statements are related to properties of (generalized Mersenne)
numbers an−1

a−1 where a /∈ {−1, 0, 1}, which can be primes only when n is a prime.
However, as we shall see, they can be primes for only a finite number of values n.

Proposition 2.5. Let c /∈ {−1, 0, 1} and m > 1 be integers. Then un = cmn−1
cm−1

is not prime for n > m.

Proof. The number cmn − 1 is divisible by numbers cm − 1 and cn − 1, and so is
divisible by their least common multiple which we denote byM . We can consider
M > 0. Obviously, M ≥ |cn − 1|.

First we shall show that |cn − 1| > |cm − 1| for n > m. We have the inequali-
ties |cn − 1| ≥ |c|n − 1 ≥ |c|m+1 − 1 ≥ 2|c|m − 1 = |c|m + |c|m − 1 ≥ |c|m + 3 >
|c|m + 1 ≥ |cm − 1|. Hence M > |cm − 1|. Further, |cmn − 1| ≥ |cmn| − 1 ≥
|c2n| − 1 = (|cn| − 1)(|cn|+ 1) > |cm− 1||cn− 1| ≥M . So we obtain a non-trivial
factorization cmn−1

cm−1 = cmn−1
M

M
cm−1 . �

Proposition 2.6. Let the GD sequence satisfy the condition

(c) a = ckm, b = ±c
km − 1
cm − 1

, x0 = ±c
jm − 1
cm − 1

,with c /∈ {−1, 0, 1}, j ≥ 0, k ≥ 1,m ≥ 2

integer numbers and with a choice of the same signs ± .

Then the GD sequence contains only a finite number of primes.

Proof. W.l.o.g., let us choose the sign +. We have that xn is equal to

ckmn c
jm − 1
cm − 1

+
ckmn − 1
ckm − 1

ckm − 1
cm − 1

=
cm(j+kn) − ckmn

cm − 1
+
ckmn − 1
cm − 1

=
cm(j+kn) − 1
cm − 1

.

If j + kn > m, then xn is not a prime by Proposition 2.5. �

Though a = −4c4 is not a power of an integer, the next proposition shows
that it behaves similarly to a = cm, which is likely related to the fact that
−4c4 = (1 + i)4c4.

Proposition 2.7. Let c ≥ 1 and n ≥ 1. Then the integer un = (−4c4)n−1
−4c4−1 is

prime only for c = 1 and n = 2.
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Proof. We note that u0 = 0, u1 = 1 and u2 = 1 − 4c4 = (1 − 2c2)(1 + 2c2). If
2 < n = 2k, then

un =
(−4c4)2k − 1
−4c4 − 1

=
((−4c4)k − 1)((−4c4)k + 1)

−4c4 − 1
=

(−4c4)k − 1
−4c4 − 1

((−4c4)k + 1) .

If 1 < n = 2k + 1 then, with x = 2kc2k+1, we use the following identity due to
Sophie Germain:

4x4 + 1 = (2x2 + 2x+ 1)(2x2 − 2x+ 1).
We obtain

un =

(
4c4
)2k+1 + 1

4c4 + 1
=

4 · (2kc2k+1)4 + 1
4c4 + 1

=
(2 · (2kc2k+1)2 + 2 · 2kc2k+1 + 1)(2 · (2kc2k+1)2 − 2 · 2kc2k+1 + 1)

4c4 + 1
.

�

Proposition 2.8. Let the GD sequence satisfies the condition

(d) a = (−4c4)k, b = ± (−4c4)k − 1
−4c4 − 1

, x0 = ± (−4c4)j − 1
−4c4 − 1

with c ≥ 1, j ≥ 0, k ≥ 1 integer

numbers and with a choice of the same signs ± .

Then the GD sequence contains at most one prime.

Proof. W.l.o.g., let us choose the sign +. We have that xn is equal to

(−4c4)kn (−4c4)j − 1
−4c4 − 1

+
(−4c4)kn − 1
(−4c4)k − 1

(−4c4)k − 1
−4c4 − 1

=
(−4c4)(j+kn) − 1
−4c4 − 1

.

If j + kn 6= 2, then xn is not a prime by Proposition 2.7. �

The next statements are related to the factorizations of an − bn or to the
identity of Sophie Germain that we already used in the proof of Proposition 2.7.

Proposition 2.9. Let c /∈ {−1, 0, 1}, d 6= 0, α 6= 0 and m > 1 be integers. Then
the number un = αmcmn − dm is prime for only a finite number of values n.

Proof. The number αcn−d is obviously a divisor of un. The equalities αcn−d =
±1 and αcn − d = ±un can be satisfied for only a finite number of values n. �

Proposition 2.10. Let the GD sequence satisfies the condition

(e) a = cm, b = ±dm(cm − 1), x0 = ± (αm − dm)with d 6= 0, c /∈ {−1, 0, 1}, α 6= 0
integer numbers and a choice of the same signs ± .

Then the GD sequence contains only a finite number of primes.
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Proof. W.l.o.g., let us choose the sign +. We have

xn = cmn(αm − dm) +
dm(cm − 1)(cmn − 1)

cm − 1
= αmcmn − dm.

�

Remark 7. If c, d are not coprime, then a, b are not coprime, too, so in the
previous proposition we could add the condition that c, d are not coprime.

Proposition 2.11. Let c ≥ 2, d ≥ 1 and α ≥ 1 be integers. Then the numbers
un = α4c4n + 4d4 and vn = 4α4c4n + d4 are prime only for d = 1, α = 1 and
n = 0.

Proof. Again, the identity due to Sophie Germain,

x4 + 4y4 = (x2 + 2xy + 2y2)(x2 − 2xy + 2y2) =
(
x+ y)2 + y2

) (
x− y)2 + y2

)
,

leads to the factorizations

un = α4c4n + 4d4 =
(
αcn + d)2 + d2

) (
αcn − d)2 + d2

)
vn = 4α4c4n + d4 =

(
d+ αcn)2 + c2n

) (
d− αcn)2 + α2c2n

)
.

All factors are greater than 1 excepting the case d = 1, α = 1 and n = 0. �

Proposition 2.12. Let the GD sequence satisfies one of the the conditions

a = c4, b = ±4d4(1− c4), x0 = ±
(
α4 + 4d4

)
,

(f)

a = c4, b = ±d4(1− c4), x0 = ±
(
4α4 + d4

)
,

(g)

with c ≥ 2, d ≥ 1, α ≥ 1 integer numbers and a choice of the same signs ± .
Then the GD sequence contains at most one prime.

Proof. Assuming that the condition (f) (the condition (g)) is satisfied, one obtains
xn = ±un (xn = ±vn) from Proposition 2.11. �

Propositions 2.6, 2.8 2.10 and 2.12 give us another necessary conditions for the
GD sequence to contain an infinite number of primes, namely that the integers
a, b and x0 cannot have the values given in the conditions (c), (d), (e), (f) and
(g). We are now ready to conjecture Generalized Dirichlet Theorem.

Conjecture 3. (Generalized Dirichlet Theorem) Let a, b and x0 be integers
such that b is coprime to a · x0. Consider the GD sequence (xn)∞n=0 defined by
the recursive formula

xn+1 = axn + b

in which none of the following conditions is satisfied:
(i) the conditions (ak) (equivalently (bk)) from 2.4, for k ≥ 2;
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(ii) the condition (c) from 2.6;
(iii) the condition(d) from 2.8;
(iv) the condition(e) from 2.10;
(v) the conditions (f) and (g) from 2.12.
Then the GD sequence (xn)∞n=0 contains an infinite number of primes.

Remark 8. In the special case x0 = 0, a = 2, b = 1 one obtains in the GD
sequence xn = 2n − 1 which is a prime only if n is a prime meaning xn is a
Mersenne prime. We note that, for all k ≥ 2, the condition (ak) is indeed not
satisfied as Ak = 2k − 1 and x1 = 1 are coprime. None of the other conditions
(c) - (g) is satisfied, too. Thus our Generalized Dirichlet Theorem implies a well-
known conjecture saying that there is an infinite number of Mersenne primes.

Remark 9. In the special case x0 = 2, a = 2, b = −1 we obtain the GD sequence
xn = 2n + 1 which is a prime only if n = 2k meaning xn is a Fermat prime. Now
the numbers Ak = 2k−1 and x0 = 2 are coprime. Hence, similarly, as above, our
Generalized Dirichlet Theorem implies a famous conjecture saying that there is
an infinite number of Fermat primes.

Remark 10. In the case a = 10, b = 1, x0 = 0, we have that Ak is coprime to x1,
and we get the GD sequence with xn = (10n−1)/9 = 1 · · · 1, that is, with members
xn consisting only of the digits 1 for n ≥ 1. Generalized Dirichlet Theorem implies
that there is an infinite number of primes whose decimal representation has only
digits 1. Here Mathematica found the primes for

n = 2, 19, 23, 317 and 1031.

More primes in this sequence have not been found.

Example 2.13. Let a = 18, b = 1 and x0 = 0. Then xn = 18n−1
17 . Using Mathe-

matica, we have found out that xn is not prime for 2 < n ≤ 25000. However, we
do not see any explanation for this fact.

Therefore also a weaker form of the conjecture seems to be interesting.

Conjecture 4. (Weak Generalized Dirichlet Theorem) There are integers
a 6= ±1, x0 and b 6= (1− a)x0 such that the GD sequence (xn)∞n=1 defined by

xn+1 = axn + b

contains an infinite number of primes.

3. Variations of the problem

There are several variations of the main problem regarding the infinite number
of superprimes. For example, it looks as there is an infinite number of superprimes
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consisting only of arbitrary two fixed prime digits. Even a variation of Conjec-
ture 2 saying that there is such specific k-digit superprime for any k > 0 seems
to be true. We look more closely to superprimes consisting of the digits 2 and 3.

Example 3.1. To generate, via Mathematica, all superprimes having at most
r digits from the set {2, 3}, one can easily modify the command from Exam-
ple 1.3. Here is the output obtained for r = 8: 2, 3, 23, 223, 233, 2333,
3323, 23333, 32233, 32323, 33223, 222323, 232333, 233323, 323233, 323333,
333233, 333323, 2222333, 2223233, 2232323, 2233223, 2332333, 2333323, 3222223,
3223223, 3223333, 3233323, 3233333, 3332233, 3333233, 22222223, 22223323,
22232233, 22232323, 23222233, 23223223, 23223323, 23322223, 32322223, 32323223,
32333333, 33222223, 33323333.

In the table below, Pk denotes the number of k-digit primes of the considered
type. One can ask what is the limit L := limk→∞

k
√
Pk. For L we again have the

asymptotic inequality Pk > (L− ε)k for every ε > 0.

k Pk
k
√
Pk k Pk

k
√
Pk k Pk

k
√
Pk

1 2 2.000000000 8 13 1.377980015 15 1337 1.615878716
2 1 1.000000000 9 39 1.502397860 16 1922 1.604111626
3 2 1.259921050 10 52 1.484568818 17 4549 1.641237856
4 2 1.189207115 11 104 1.525340028 18 7778 1.644975106
5 4 1.319507911 12 197 1.553121812 19 15926 1.664039040
6 7 1.383087554 13 382 1.579866021 20 25210 1.659887454
7 13 1.442562919 14 618 1.582545917 21 57882 1.685729112

Example 3.2. Here is the command and the output in Mathematica for all
numbers 0 < n ≤ 11000 such that there is a superprime with the first digit 2
followed by n digits 3:

Do[p = 2 ∗ 10n + (10n − 1)/3; If[PrimeQ[q],Print[n]], {n, 1, 11000}];

n = 1, 2, 3, 4, 10, 16, 22, 53, 91, 94, 106, 138, 210, 282, 522, 597, 1049, 2227, 6459, 10582.

That is, the first five superprimes of this specific form are

23, 233, 2333, 23333, 23333333333.

Based on the above computation we state a stronger version of Problem 1 and
the following two conjectures:

Problem 2. Is there an infinite number of superprimes consisting of the digits 2
and 3? More generally, is there, for any pair of distinct prime digits, an infinite
number of superprimes with only these two fixed digits?
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Conjecture 5. There is an infinite number of superprimes with the first digit 2
which is followed by n digits 3 (n > 0). This is also true if the pair of prime digits
(2, 3) is replaced with any pair (p, q) of distinct prime digits where q /∈ {2, 5}.

Conjecture 6. For any integer k > 0 there is a k-digit superprime consisting
only of the digits 2 and 3. This is also true if the prime digits 2, 3 are replaced
with any two distinct prime digits.

Remark 11. The sequence of numbers 2, 23, 233, 2333, . . . from Example 3.2 can
be obtained from our Generalized Dirichlet Theorem in the special case a = 10,
b = 3 a x0=2. In this case we have that x0 = 2 is coprime to Ak = 1 · · · 1.

Hence Generalized Dirichlet Theorem implies an affirmative answer to the the
first part of Problem 2 and, of course, implies the first part of the Conjecture 5,
too.

A stronger version of the main problem we consider here asks if there is an
infinite number of superprimes with a stronger property that every subchain of
the superprime’s decimal representation consisting of the two subsequent digits
is again a decimal representation of a prime number. For example, 373 is the
first such superprime with 3 digits as both 37 and 73 are primes.

The following example indicates that there might be an infinite number of the
superprimes having this stronger property. Let us call them strong superprimes.
(We note that also strong superprimes can be considered in arbitrary base m
positional notation for m ≥ 4.)

Example 3.3. To generate, via Mathematica, all strong superprimes having at
most r digits, one can again easily modify the command from Example 1.3. Here
is the list of the first 7 strong superprimes with at least 3 digits:

373, 237373, 537373, 5373737, 53737373, 53737373737, 237373737373.

The output indicates that there are three types of the strong superprimes:
(i) Type A: 23 followed by n copies of 73, the first one is 237373 (n = 2);
(ii) Type B: 53 followed by n copies of 73, the first one is 537373 (n = 2);
(iii) Type C: 5 followed by n copies of 37, the first one is 5373737 (n = 3).

We have generated, via Mathematica, the strong superprimes of the given three
types with at most 2000 digits by a modification of the command from Exam-
ple 3.2:

(i) Type A strong superprimes: n = 2, 5, 20, 441;
(ii) Type B strong superprimes: n = 2, 3, 12, 21, 23, 483;
(iii) Type C strong superprimes: n = 3, 5, 8, 11, 15, 24, 53, 369, 710.

Conjecture 7. There is an infinite number of strong superprimes of each of the
three types A, B, C described above.
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We again note that our Generalized Dirichlet Theorem in section 2 implies
the Conjecture 7. To see this, let us put in Generalized Dirichlet Theorem in all
three cases a = 100. For b = 73 and x0 = 23 one obtains the type A, for b = 73
and x0 = 53 the type B and for b = 53 and x0 = 5 type C. In all three cases we
have A1 = 1 and Ak = 10 . . . 101 for k ≥ 2. Since 23− 73 = −50, 53− 73 = −20
a 5− 37 = −32, the requirement that x0−A1b is coprime to Ak is satisfied in all
three cases. Here one can see that sometimes checking the condition (bk) might
be more convenient then checking (ak). In all three cases the conditions (c)-(g)
are obviously not satisfied.

We finally consider the question whether there is an infinite number of su-
perprimes with even a stronger property that all subchains of the superprime’s
decimal representation consisting of the two and three subsequent digits are again
decimal representations of prime numbers. Here 373 is the first such superprime
as all of 37, 73 and 373 are primes. It is obviously the only such strong super-
prime among the types A, B, C, because the number 737 is not prime. Hence
strengthening further the concept of a strong superprime introduced here does
not seem to be fruitful anymore.

Remark 12. We note that in the base m positional notation for m ≥ 4 the
situation is quite different than in the above casem = 10. We have been searching
(using simple modifications of the given commands in Mathematica) for strong
superprimes in the base m positional notation for 4 ≤ m ≤ 16.

Just to illustrate our findings, we note that for m = 5 there are two 2-digit
superprimes 13 = 235 and 17 = 325, one 3-digit strong superprime 67 = 2325 and
one 5-digit strong superprime 2213 = 323235. We have found a 17-digit strong
superprime 1540415445963 = 323232323232323235. For the base m = 6 there are
two 2-digit superprimes 17 = 256 and 23 = 356; from this it can be easily shown
that for k > 2 there are no k-digit strong superprimes in the base 6 positional
notation. For m = 8 there are eight 2-digit superprimes: 19 = 238, 23 = 278,
29 = 358, 31 = 378, 43 = 538, 47 = 578, 59 = 738 and 61 = 758. Then also the
number of k-digit strong superprimes is of course greater in the base m positional
notation for m = 8 than for m = 10.

4. Observations on sequences related to the problem

Our first observation in this section concerns the increasing sequence (an)∞n=1

of all natural numbers (not necessarily superprimes) consisting only of the prime
digits 2, 3, 5 and 7. This is the sequence

2, 3, 5, 7, 22, · · · , 77, 222, · · · , 777, 2222, · · · , 7777, · · · .
Assume that the n-th member an consists of k digits. Then

2
9
(
10k − 1

)
≤ an ≤

7
9
(
10k − 1

)
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and
4 + 16 + · · ·+ 4k−1 < n ≤ 4 + 16 + · · ·+ 4k ,

whence
4k − 4

3
< n ≤ 4(k+1) − 4

3
.

Thus
4k − 1

3
≤ n < 4(k+1) − 1

3
which yields

4k ≤ 3n+ 1 < 4k+1 .

Therefore

k ≤ log(3n+ 1)
log 4

< k + 1

whence

k =
[
log(3n+ 1)

log 4

]
.

Consequently, for k we have

log(3n+ 1)
log 4

− 1 < k ≤ log(3n+ 1)
log 4

.

Hence we obtain the inequalities
2
9

(
10

log(3n+1)
log 4 −1 − 1

)
< an ≤

7
9

(
10

log(3n+1)
log 4 − 1

)
,

which can be rewritten as
2
90

(3n+ 1)log4 10 − 2
9
< an ≤

7
9
(3n+ 1)log4 10 − 7

9
.

The last inequalities yield

lim inf
n→∞

an

nlog4 10
≥ 2

90
3log4 10

and

lim sup
n→∞

an

nlog4 10
≥ 7

9
3log4 10 .

We conclude that the sequence (an)∞n=1 behaves as (na)∞n=1, where

a = log4 10 = 1.660964 . . . .

Our second observation concerns the sequence (bn)∞n=1 of all natural numbers,
which are not primes. We first note the well-known Prime Number Theorem says
that the number of primes among the first n natural numbers is asymptotically

n
log n . This yields that the sequence (bn)∞n=1 is growing ‘slowly’.

33



More precisely, let π(n) denote the number of primes less than or equal to a
natural number n and let pn be the n-th prime. It is well-known that

lim
n→∞

π(n) lnn
n

= 1 .

This implies that
lim

n→∞

pn

n lnn
= 1 .

Moreover, by [5],

pn > n lnn for all natural numbers n .

We shall show that

n

(
1 +

1
lnn+ 2

)
< bn < n

(
1 +

1
lnn− 5

)
for n > e6 , i.e. n ≥ 404 .

We note that the right inequality is an improvement of the asymptotic inequality

bn < (1 + ε)n for every ε > 0.

On the other hand, the left inequality shows that the right inequality cannot be
essentially improved.

For n ≥ 55 we have (we refer to [5])
n

lnn+ 2
< π(n) <

n

lnn− 4
.

This is our starting point for the following observation. Let n > e5 > 55, hence
lnn > 5. Let us denote m := bn. Obviously, m > n and

n = m− π(m) > m

(
1− 1

lnm− 4

)
> m

(
1− 1

lnn− 4

)
= m

lnn− 5
lnn− 4

.

Therefore

m < n
lnn− 4
lnn− 5

= n

(
1 +

1
lnn− 5

)
.

From this it follows lnm < lnn+ ln
(
1 + 1

ln n−5

)
< lnn+ 1

ln n−5 and

n = m−π(m) < m

(
1− 1

lnm+ 2

)
< m

(
1− 1

lnn+ 2 + 1
ln n−5

)
= m

ln2 n− 4 lnn− 4
ln2 n− 3 lnn− 9

.

Hence

m > n
ln2 n− 3 lnn− 9
ln2 n− 4 lnn− 4

= n

(
1 +

lnn− 5
ln2 n− 4 lnn− 4

)
.

Under the condition that lnn ≥ 6 we have
lnn− 5

ln2 n− 4 lnn− 4
≥ 1

lnn+ 2
.

34



Thus
m > n

(
1 +

1
lnn+ 2

)
.

So we conclude that the growth of the sequence (bn)∞n=1 is comparable with the
growth of the sequence of the natural numbers and yet it does not contain any
prime. The sequence (pn)∞n=1 is growing a bit faster than the sequence of the
natural numbers and yet it contains all (and only) primes. From this it follows
that having a sequence of natural numbers, one cannot conclude anything about
as whether it contains primes or not.

Remark 13. The inequalities above can even be slightly improved. We note
that for 17 ≤ n < e100 as well as for n > e200 we have (we refer again to [5])

n

lnn
< π(n) <

n

lnn− 2
.

From this one can analogously as above derive

n

(
1 +

1
lnn

)
< an < n

(
1 +

1
lnn− 3

)
for n > e200 .
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