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ON FORMATIONS OF LATTICES

JUDITA LIHOVÁ AND JOZEF PÓCS

Dedicated to the 70th birthday of Alfonz Haviar

Abstract. A class of lattices is said to be a formation if it is closed under
homomorphic images and finite subdirect products. Let us denote by F the
collection of all formations of lattices. Then F can be partially ordered by
the class–theoretical inclusion. We study the properties of this partially
ordered class; e.g., there are described all atoms of F.

1. Introduction

A class of algebras is said to be a formation if it is closed under homomorphic
images and finite subdirect products. This concept appeared first in the 1970’s in
the connection with finite groups. Formations of groups were studied by several
authors. Let us mention at least the monograph [3] of Shemetkov, which deals
with formations of finite groups. Nevertheless, Chapter I of [3] contains a detailed
presentation of basic notions of the theory without assuming the finiteness of the
groups under consideration. In fact, the above definition can be used for any class
of similar algebras. Formations of lattice ordered groups and GMV–algebras were
investigated by Jakubík [2].

Let F be the collection of all formations of lattices. For F1,F2 ∈ F we write
F1 ≤ F2 if F1 is a subclass of F2. The collection F is large; namely, there exists
an injective mapping of the class of all infinite cardinals into the collection F.
Nevertheless, with respect to the relation ≤ in F, we will use the usual notions
and the notation of the theory of partially ordered sets. We will prove that for
any indexed system of elements of F, both supremum and infimum exist.

For any class K of lattices, we will describe the least formation form(K) con-
taining K. Each formation of lattices, except the least one, contains subdirectly
irreducible lattices. But, in contrast with varieties of lattices, different formations
of lattices can have the same subclass of subdirectly irreducible lattices.
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In Section 5, we will describe all atoms in F. They form a proper class, just
like antiatoms of F.

Finally, we will show that the class of formations of distributive lattices con-
tains both large chains and large antichains.

2. Preliminaries

We will use the terminology and the notation as in Grätzer [1].
The direct product of an indexed system (Li)i∈I of lattices is defined in the

usual way; we apply the notation
∏
i∈I Li or L1×L2×. . .×Ln if I = {1, 2, . . . , n}.

For x = (xi)i∈I in
∏
i∈I Li, xi is the component of x in Li; we write also xi =

x(Li). Let K ⊆
∏
i∈I Li and i0 ∈ I; we put K(Li0) = {x(Li0) : x ∈ K}. If K

is a sublattice of
∏
i∈I Li and K(Li) = Li for each i ∈ I, then K is said to be a

subdirect product of the system (Li)i∈I . In such a case we write K ≤
∏
i∈I Li.

If the index set I is finite, K will be referred to as a finite subdirect product.
If L is a lattice, θ a congruence relation on L and a ∈ L, the symbol [a]θ will

be used for the congruence class containing the element a.

3. The class form(K)

Let L be the class of all lattices. For any class K of lattices we denote by
H(K)– the class of all homomorphic images of elements of K;
PFS(K)– the class of all finite subdirect products of elements of K.

A class F of lattices is said to be a formation if is closed with respect to the
operators H and PFS.

It is easy to see that each variety of lattices is also a formation. The converse
does not hold in general; e.g., the class of all finite lattices is a formation which
fails to be a variety.

Let K be any class of lattices. We will describe the least formation containing
K. If K = ∅, then it is evidently the class of all one–element lattices. Suppose
that K 6= ∅. It is PFS H(K) ⊆ HPFS(K); this can be shown in the same way as
the well–known inclusion PS H(K) ⊆ HPS(K), where PS stands for the operator
of forming subdirect products. Using also the idempotency of the operators H
and PFS, we obtain:

Theorem 3.1. Let K be any nonempty class of lattices. Then HPFS(K) is a
formation of lattices. Moreover, it is the least one containing K.

For any K ⊆ L, the least formation containing K will be denoted by form(K).
So, if K 6= ∅, then form(K) = HPFS(K). Let us remark that HPS(K) is the least
variety of lattices containing K (cf. [1],Corollary 5.1.5).

We will show that if K contains only distributive lattices, then formK =
PFS H(K), i.e., the operators H, PFS can be applied in arbitrary order. We
will use the following assertions.
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Proposition 3.2 ([1], Theorem 2.3.6). Let K be a sublattice of a distributive
lattice L. Any congruence relation θ of K can be extended to L; that is, there
exists a congruence relation φ on L such that x φ y iff x θ y for x, y ∈ K.

Proposition 3.3 ([1], Theorem 1.3.13). Let L and K be lattices, let θ be a
congruence relation of L, and let φ be a congruence relation of K. Define the
relation θ × φ on L×K by

(a, b) θ × φ (c, d) iff a θ c and b φ d.

Then θ × φ is a congruence relation on L × K. Conversely, every congruence
relation of L×K is of this form.

Theorem 3.4. Let K be a class containing only distributive lattices. Then
form(K) = PFS H(K).

Proof. In view of Theorem 3.1, it suffices to prove the inclusion HPFS(K) ⊆
PFS H(K). Let L ∈ HPFS(K). Then there exist lattices A1, . . . , An ∈ K, B ≤
A1×. . .×An and a homomorphism ϕ of B onto L. Let θ = Ker ϕ, φ an extension
of θ to a congruence relation of A1 × . . . × An. Further, let φ = φ1 × . . . × φn
with φi being a congruence relation of Ai for i = 1, . . . , n.

We are going to show that L is isomorphic to a subdirect product of (Ai/φi)i∈{1,...,n}.
Let us define ψ : L→ A1/φ1 × . . .×An/φn by

ψ(a) = ([b1]φ1, . . . , [bn]φn),

where b = (b1, . . . , bn) is any element of B with ϕ(b) = a.
It is easy to see that the definition of ψ is correct and that ψ is a one–to–one

homomorphism. Moreover, if ai ∈ Ai and c is any element of B with c(Ai) = ai,
we have

(ψ (ϕ(c))) (Ai/φi) = [ai]φi.

Since Ai/φi ∈ H(K) for all i ∈ {1, . . . , n}, we have proved L ∈ PFS H(K). �

Let L be a nontrivial lattice, ω the least congruence relation of L. If ω is
a completely meet–irreducible (a meet irreducible) element in the complete lat-
tice Con L of all congruence relations on L, then L is said to be a subdirectly
irreducible (a finitely subdirectly irreducible) lattice.

The following theorem is a slight modification of the well–known Jónsson’s
lemma ([1], Theorem 5.1.9).

Theorem 3.5. Let K be any class of lattices. If A is a finitely subdirectly irre-
ducible lattice, A ∈ form(K), then A ∈ H(K).

Proof. Let A be a finitely subdirectly irreducible lattice, A ∈ form(K). By Theo-
rem 3.1, there exist lattices A1, . . . , An ∈ K, B ≤ A1× . . .×An, θ ∈ Con B such
that A ∼= B/θ.
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For i ∈ I = {1, . . . , n}, let πi be the projection of B onto Ai. We are going to
show that there exists i0 ∈ I such that Ker πi0 ⊆ θ. Evidently

⋂
i∈I Ker πi =

ω ⊆ θ, so that
θ = θ ∨ (

⋂
i∈I

Ker πi) =
⋂
i∈I

(θ ∨Ker πi).

As the lattice B/θ is finitely subdirectly irreducible, we have θ = θ ∨Ker πi0 ⊇
Ker πi0 for some i0 ∈ I.

Now using the second isomorphism theorem we obtain that B/θ is a homo-
morphic image of B/Ker πi0 . But B/Ker πi0 is isomorphic to Ai0 and thus
B/θ ∈ H({Ai0}) ⊆ H(K). Consequently A ∈ H(K). �

Since evidently each subdirectly irreducible lattice is also finitely subdirectly
irreducible, in the way described in the preceding theorem, all subdirectly irre-
ducible lattices of form(K) are discovered. Each formation, except the least one,
contains subdirectly irreducible lattices. Namely, if L is any lattice, |L| > 1,
then L is a subdirect product of subdirectly irreducible lattices, L ≤

∏
i∈I Li, in

any variety containing L, where I need not be finite. Nevertheless, each Li, as a
homomorphic image of L, belongs to each formation containing L.

Let Si(F) denote the class of all subdirectly irreducible lattices belonging to
the formation F . Let us note that F is not uniquely determined by Si(F). For
example, each formation of distributive lattices contains the only subdirectly
irreducible lattice, the two–element chain.

4. The class of formations

Let F be the collection of all formations of lattices. For F1,F2 ∈ F we write
F1 ≤ F2 if F1 is a subclass of F2. The collection F is large; it is easy to see that
for any infinite cardinal κ, the class of all lattices of cardinality not exceeding κ,
is a formation. Nevertheless, with respect to the relation ≤ in F, we can apply
for F the usual notions and notation of the theory of partially ordered sets. Thus,
for {Fi : i ∈ I} ⊆ F, the symbols sup{Fi : i ∈ I} or

∨
i∈I Fi denote the least

upper bound of {Fi : i ∈ I} in F; the symbols inf{Fi : i ∈ I},
∧
i∈I Fi have a

dual meaning.
It is easy to see that the intersection of any non–empty collection of formations

is a formation. Moreover, F contains a least element, the class of all one–element
lattices and the greatest element, the class L of all lattices. So we have:

Theorem 4.1. The collection F of all formations of lattices is a complete lat-
tice in the sense, that

∧
i∈I Fi and

∨
i∈I Fi exist for any nonempty collection of

formations {Fi : i ∈ I}. Moreover,∧
i∈I
Fi =

⋂
i∈I
Fi ,

∨
i∈I
Fi = HPFS(

⋃
i∈I
Fi).
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Theorem 4.2. A formation F of lattices is a compact element in F if and only
if it is generated by a single lattice.

Proof. Let F = form({L}), L ∈ L. Assume that F ≤
∨
i∈I Fi, where {Fi : i ∈

I} ⊆ F. Then L ∈ HPFS(
⋃
i∈I Fi), hence there exist lattices L1, . . . , Ln ∈⋃

i∈I Fi, B ≤ L1 × . . . × Ln and a homomorphism of B onto L. If L1 ∈
Fi1 , . . . , Ln ∈ Fin , we have L ∈ HPFS(

⋃n
j=0 Fij ) = Fi1 ∨ . . .∨Fin , which implies

F ≤ Fi1 ∨ . . . ∨ Fin .
Conversely, suppose that F ∈ F is compact. Let F = {Li : i ∈ I}. As

evidently F ≤
∨
i∈I form({Li}), we have F ≤ form({L1}) ∨ . . . ∨ form({Ln}) for

some L1, . . . , Ln ∈ F . But then F = form({L1})∨ . . .∨ form({Ln}) = form({L1×
. . .× Ln}). �

Using the trivial fact that any formation F of lattices can be expressed as
sup{form({L}) : L ∈ F}, we obtain:

Corollary 4.3. The collection F of all formations of lattices is an algebraic
lattice.

Let Fd denote the collection of all formations of distributive lattices.

Theorem 4.4. The collection Fd is a complete sublattice of F; moreover, the
relation

F ∧
∨
i∈I
Fi =

∨
i∈I

(F ∧ Fi)

is valid for any F ,Fi ∈ Fd.

Proof. It suffices to verify the relation

F ∧ (
∨
i∈I
Fi) ⊆

∨
i∈I

(F ∧ Fi).

Using Theorem 3.4 and the fact that each Fi is closed under homomorphic images,
we obtain F ∧ (

∨
i∈I Fi) = F ∩ form(

⋃
i∈I Fi) = F ∩ PFS H(

⋃
i∈I Fi) = F ∩

PFS(
⋃
i∈I H(Fi)) = F ∩PFS(

⋃
i∈I Fi).

Now if L ∈ F ∩ PFS(
⋃
i∈I Fi), then L ∈ F and L ≤ L1 × . . . × Lk for some

L1, . . . , Lk ∈
⋃
i∈I Fi. Each Lj , as a homomorphic image of L, belongs to F , so

each Lj belongs to F∩(
⋃
i∈I Fi) =

⋃
i∈I(F∩Fi). Thus L ∈ PFS(

⋃
i∈I(F∩Fi)) ⊆

form(
⋃
i∈I(F ∩ Fi)) =

∨
i∈I(F ∧ Fi). �

The question, if this infinite distributive law or at least finite distributive law
is valid in F, is open.

Consider the following condition concerning a subclassM of L:
L ∈ H(M), L is subdirectly irreducible ⇒ L ∈M.(∗)

The following assertion is obvious.
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Lemma 4.5. Let F be any formation of lattices. Then Si(F) fulfils the condition
(∗).

To show that the condition (∗) is also sufficient for a class M of subdirectly
irreducible lattices to be Si(F) for a formation F , let us notice that the following
holds:

Lemma 4.6. Let {Fi : i ∈ I} be a nonempty class of formations of lattices.
Then

Si(
∧
i∈I
Fi) =

⋂
i∈I

Si(Fi) , Si(
∨
i∈I
Fi) =

⋃
i∈I

Si(Fi).

Proof. The first equality is evident, just like the inclusion
⋃
i∈I Si(Fi) ⊆ Si(

∨
i∈I Fi).

Now let L ∈ Si(
∨
i∈I Fi). Then the lattice L is subdirectly irreducible and

L ∈ form(
⋃
i∈I Fi). By Theorem 3.5, L ∈ H(

⋃
i∈I Fi) =

⋃
i∈I(H(Fi)) =

⋃
i∈I Fi,

so that L ∈
⋃
i∈I Si(Fi). �

Lemma 4.7. LetM be any class of subdirectly irreducible lattices satisfying the
condition (∗). Then formations F with Si(F) = M form an interval in F. The
least element of this interval is form(M).

Proof. First of all, let us notice that Si(form(M)) =M. The implication Si(form(M)) ⊆
M follows from Theorem 3.5 and (∗), while the converse one is obvious. So
F0 = form(M) is the least one of all formations F satisfying Si(F) =M.

Further, let F1 be the least upper bound of the collection of all formations F
with Si(F) = M. By 4.6, Si(F1) = M. If F0 ⊆ F ⊆ F1, then also Si(F) = M.
We have proved that {F ∈ F : Si(F) =M} is the interval [F0,F1]. �

Let C2 be a two–element chain. Then M = {C2} evidently satisfies (∗). It
is easy to see that F ∈ F with Si(F) = {C2} are just formations belonging to
the interval [F0,F1], where F0 is the formation containing all finite distributive
lattices and F1 that of all distributive lattices.

Let M be the collection of all classes M of subdirectly irreducible lattices
satisfying the condition (∗). It is easy to see that M is closed under arbitrary
(not only finite) intersections and unions so that (M,⊆) can be considered as a
complete lattice.

The following assertion is evident.

Theorem 4.8. Let ≡ be a binary relation on F defined by

F ≡ F ′ ⇔ Si(F) = Si(F ′).

Then ≡ is a congruence relation and the mapping f : F/ ≡ → M defined by
f([F ] ≡) = Si(F) is an isomorphism.
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5. Atoms and antiatoms

Let L be a lattice with a least element 0. An element a ∈ L is said to be an
atom of L if a covers 0. If b ∈ Lr {0} and there is no atom a with a ≤ b, then b
is referred to as an antiatom. We are able to describe all atoms of F.

Consider the following condition concerning a lattice L:

L′ ∈ H({L}), L′ is subdirectly irreducible ⇒ L ∈ H({L′}).(∗∗)

Theorem 5.1. A formation F of lattices is an atom of F if and only if F =
form({L}) for a subdirectly irreducible lattice L satisfying the condition (∗∗).

Proof. Let F be an atom. As we have remarked, F contains a subdirectly irre-
ducible lattice L. Then form({L}) ≤ F , so that F = form({L}), as F is an atom.
We are going to show that L satisfies (∗∗). Let L′ be a subdirectly irreducible lat-
tice with L′ ∈ H({L}). Thus it is also F = form({L′}). But then L ∈ form({L′})
implies L ∈ H({L′}) by Theorem 3.5.

Conversely, let F = form({L}), where L is a subdirectly irreducible lattice
fulfilling (∗∗). Let F ′ be a formation of lattices different from the least one
satisfying F ′ ≤ F . Take any subdirectly irreducible lattice L′ ∈ F ′. Then
L′ ∈ F = form({L}), so that L′ ∈ H({L}) by Theorem 3.5. Using (∗∗) we obtain
L ∈ H({L′}), which implies F = form({L}) ≤ form({L′}) ≤ F ′. Thus F ′ = F
and F is an atom. �

Evidently each simple lattice is a subdirectly irreducible lattice satisfying (∗∗).
So each simple lattice generates an atom in F, non–isomorphic lattices generate
different atoms. Let κ be any cardinal, κ ≥ 3, I any set of cardinality κ. Set
Mκ = {0, 1} ∪ {ai : i ∈ I} and define ≤ on Mκ by 0 < ai < 1 for all i ∈ I, ai
mutually non–comparable.

Evidently Mκ are simple lattices, mutually non-isomorphic. So we obtain:

Corollary 5.2. Atoms of F form a proper class.

If a formation F contains finite lattices with more than one element, then F
contains also simple finite lattices, so that there exist atoms which lie in F under
F . Thus in the case that we are interested in antiatoms, we must concentrate
upon formations containing, besides the one–element lattices, only infinite ones.
The aim is to prove that antiatoms form a proper class, too.

Let us have an infinite ascending chain of cardinals (κi)i∈N, κ1 < κ2 < . . . ,
κ1 ≥ 3. Let Mκi

be as above, with κi instead of κ. Define lattices Li for i ∈ N
by induction as follows:

L1 = Mκ1

Ln+1 = (Ln →Mκn+1) for n ∈ N,
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where (Ln →Mκn+1) means a lattice obtained from Mκn+1 by interchanging one
of its “middle” elements by Ln.

If we take, e.g., the sequence 3 < 4 < 5 < . . . , we obtain a sequence of lattices,
whose first three members are depicted in Fig. 1.

Fig. 1

It is easy to see that (Li)i∈N, with natural embeddings fi : Li → Li+1, form a
direct family of lattices. Let L((κi)i∈N) be the direct limit of this direct family.
We remark, that the direct limit in this case is nothing else than a directed (set–
theoretical) union. (When we consider the natural embeddings as set inclusions.)

The following assertion is easy to verify.

Lemma 5.3. The congruence lattice of Ln is an (n + 1)–element chain, that
of L((κi)i∈N) is isomorphic to the ordinal ω0 + 1. Hence both Ln (n ∈ N) and
L((κi)i∈N) are subdirectly irreducible lattices.

Lemma 5.4. Homomorphic images of the lattice L((κi)i∈N) are just those iso-
morphic to L((κn+i)i∈N) for n ∈ N0, and one–element lattices.

Proof. Let θ0 ⊂ θ1 ⊂ . . . be the sequence of all congruence relations of L =
L((κi)i∈N) different from the greatest one. Then L/θ0 is isomorphic to L; L/θ1
is isomorphic to L((κ1+i)i∈N), and so on. In particular, for all n ∈ N0, L/θn is
isomorphic to L((κn+i)i∈N). �

Theorem 5.5. Let L = L((κi)i∈N), Then the formation form({L}) is an an-
tiatom in F.

Proof. By way of contradiction, let F be an atom in F with F ≤ form({L}). Then
F = form({M}) for a subdirectly irreducible lattice M satisfying the condition
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(∗∗), M ∈ form({L}). By Theorem 3.5, M ∈ H({L}), so that M is isomorphic
to L((κn+i)i∈N) for some n ∈ N0. As L((κn+1+i)i∈N) ∈ H(L((κn+i)i∈N)) =
H({M}), using (∗∗) we obtain M ∈ H({L((κn+1+i)i∈N)}). This contradicts
Lemma 5.4. �

Theorem 5.6. There exists a proper class of mutually non–comparable antiatoms
in F.

Proof. Let (κi)i∈N and (κi)i∈N be infinite ascending sequences of cardinals with
κi < κj for all i, j ∈ N. Denote Fκ, Fκ the formation generated by the lattice
L((κi)i∈N), L((κi)i∈N), respectively.

Suppose that Fκ ≤ Fκ . Then L((κi)i∈N) ∈ form(L((κi)i∈N)) and using The-
orem 3.5 we obtain L((κi)i∈N) ∈ H(L((κi)i∈N)). By Lemma 5.4, L((κi)i∈N) is
isomorphic to L((κn+i)i∈N) for some n ∈ N0, which implies κ1 = κn+1, a con-
tradiction. Similarly, Fκ ≤ Fκ implies κ1 = κm+1, for some m ∈ N0, again a
contradiction.

In order to complete the proof, it is sufficient to find a proper class of such
sequences of cardinals. Obviously, {(ℵα+i)i∈N : α limit ordinal } forms a proper
class and for limit ordinals α, β with α < β and i, j ∈ N, we have ℵα+i <
ℵβ+j . �

6. Formations of distributive lattices

In Section 4, we have introduced the denotation Fd for the collection of all for-
mations of distributive lattices. This collection is a proper class. For any infinite
cardinal κ, let Fd(κ) be the class of all distributive lattices with cardinalities not
exceeding κ. Then Fd(κ), for various infinite cardinals κ, form a large chain. We
are going to show that Fd contains also large antichains.

Lemma 6.1. Let α, β be any limit ordinals. Then β ∈ H({α}) if and only if α
contains a cofinal subset of the type β.

Proof. Let f be a homomorphism of α onto β. For y ∈ β, let x(y) be the least
element of f−1(y). It is easy to see that {x(y) : y ∈ β} is a cofinal subset of α
isomorphic to β.

Conversely, let X ⊆ α be a cofinal subset of α, g an isomorphism of X onto
β. For any a ∈ α, let xa be the least element of the set {x ∈ X : x ≥ a}. Set
f(a) = g(xa). Then f is a homomorphism of α onto β. �

For any limit ordinal α > 0, let cf(α) denote the cofinality of α. If cf(α) = α,
then α is said to be a regular ordinal. In fact, each regular ordinal is an initial
ordinal, i.e., cardinal. In the sequel we will denote the initial ordinals as usual
by ωα, α ∈ Ord . The Axiom of Choice guarantees the existence of a proper class
of regular ordinals, in particular for each α ∈ Ord , ωα+1 is a regular ordinal.

71



If ωα is regular and L ∈ H({ωα}), then L is isomorphic to ωα or to a successor
ordinal less then ωα, by Lemma 6.1.

Theorem 6.2. Let ωα, ωβ be any different regular ordinals. Then formations
generated by ωα and ωβ are non–comparable.

Proof. Let us suppose that ωα < ωβ . Since form({ωα}) contains only lattices L
with |L| ≤ ℵα, ωβ does not belong to form({ωα}).

Further, we will show that ωα /∈ form({ωβ}). By way of contradiction, let
ωα ∈ form({ωβ}) = PFS H({ωβ}), due to Theorem 3.4. Then ωα is a subdirect
product of some Li, (i = 1, . . . , n), Li ∈ H({ωβ}). Each Li is a homomorphic
image of ωα, too. A homomorphic image of ωα must be a well ordered chain,
which (for the cardinality reason) cannot be isomorphic to a cofinal subset of ωβ .
By 6.1, Li cannot be a limit ordinal, which means that Li has a greatest element.
Hence, the same holds for ωα, a contradiction. �

Corollary 6.3. Formations generated by regular ordinals form an antichain
which is a proper class.
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