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VALUATION OF THE AMERICAN-STYLE OF ASIAN OPTION

BY A SOLUTION TO AN INTEGRAL EQUATION

TOMÁŠ BOKES

Abstract. We extend the model for valuation of American-style of Asian

options introduced by Hansen, Jørgensen (2000) in [3] by including a
nontrivial dividend rate q. We use the theory of conditioned expectations

to calculate the formula of the American-style Asian floating strike option

with a general average of the underlying asset. We determine an integral
equation formula for the value of this type of an option with continuous

geometric average and approximate formula for the continuous arithmetic

average.

1. Introduction

Evolution of trading systems influences the development of the market of financial
derivatives. First, the simple derivatives (as forwards and vanilla options) were
used to hedge the risk of a portfolio. Progress in valuation of these simple financial
instruments pushed traders into inventing less predictable and more complex
derivatives. Using financial derivatives with more complicated pay-offs brings
into attention also new mathematical problems.

Asian options belong to a group of path-dependent options, i.e. part of exotic
options. Here the pay-off depends on the spot value of the underlying during the
whole or some part(s) of the life span of the option. Asian options depend on the
(arithmetic or geometric) average of the spot price of the underlying.

Asian options can be used as a tool for hedging the high volatility of the price
of assets or goods. The price of an underlying varies during the life span of the
option, the holder of the Asian option can be secured for the case when the price
jumps to the unpleasant region (too high for call holder or too low for put holder)
his loss will be reduced.

Asian options can be divided into two subgroups when considering the type of
their pay-off function. The average strike Asian option and the fixed strike Asian
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option with the pay-off function for the call option

(1) VT (S,A) = (S −A)+

and

(2) VT (S,A) = (A−X)+,

respectively.

2. A probabilistic model for pricing of American-Style of Asian
options

In this section we provide a formula for the valuation of the early exercise bound-
ary of an American-style Asian option paying nontrivial dividends. We follow
the derivation introduced by Hansen, Jørgensen in [3]. Their formula for a
floating strike option was derived using the theory of martingales and conditioned
expected values. We extend the formula to Asian options on underlying paying
non-zero dividend rate.

This model is based on the stochastic behavior of the underlying in time. It is
assumed that it is driven by stochastic process satisfying the following stochastic
differential equation

(3) dSt = (r − q)St dt+ σSt dW
Q
t on the time interval [0, T ],

starting almost surely from the initial price S0 > 0, where the constant parameter
r > 0 denotes the risk-free interest rate, q ≥ 0 is a dividend rate, σ is the

volatility of stock returns and WQ
t is a standard Brownian motion with respect

to the standard risk-neutral probability measure Q. A solution of equation (3)
corresponds to the geometric Brownian motion

(4) St = S0e
(r−q− 1

2σ
2)t+σWQ

t ,

for 0 ≤ t ≤ T .
The bond (risk-free) market is driven by the differential equation

(5) dBt = rBt dt,

with B0 = 1, i.e. Bt = ert.
As we have already mentioned above we shall derive the value of an American-

style Asian option with floating strike. If we define the optimal stopping time as
T ∗, the pay-off of the option is set by

(6) VT∗ =
(
ρ(ST∗ −AT∗)

)+
,

where Vt is the value of the option at time t, At is a continuous average of the
stock value during the interval [0, t] and ρ = 1 for a call option and ρ = −1 for a

18



put option. We may consider either the continuous arithmetic average

(7) At =
1

t

∫ t

0

Su du,

or the continuous geometric average

(8) lnAt =
1

t

∫ t

0

lnSu du

or the weighted arithmetic average

(9) At =
1

t

∫ t

0

a(t− u)Su du,

where the kernel function a(.) ≥ 0 with the property
∫∞
0
a(ζ) dζ <∞ is usually

defined as a(s) = e−λs for λ > 0.

3. Valuation

We recall that derivation of the more simple type option was introduced in [3].
According to Hansen and Jørgensen, American-style contingent claims can be
priced by the conditioned expectations approach. The option prices are evaluated
by considering all possible stopping times in the interval [t, T ]

(10) V (t, S,A) = ess sup
s∈T[t,T ]

EQt
[
e−r(s−t)

(
ρ(Ss −As)

)+∣∣∣St = S,At = A
]
,

where T[t,T ] denotes the set of all stopping times in the interval [t, T ] and EQt [X] =

EQ[X|Ft] is the conditioned expectation with information of time t (the informa-
tion is represented by the filtration Ft of the σ-algebra F , where the Brownian
motion is supported).

To simplify the formula we change the probability measure by the martingale

(11) ηt = e−(r−q)t
St
S0

= e−
1
2σ

2t+σWQ
t

the new probability measure Q is defined by

(12) dQ = ηT dQ.

According to Girsanov’s theorem, the process

(13) WQt = WQ
t − σt

is a standard Brownian motion with respect to the measure Q. The value of the
stock under this measure is defined by

(14) St = S0e
(r−q+ 1

2σ
2)t+σWQt .
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All assets priced under this measure are Q-martingales when discounted by the
stock price. According to this fact, we can reduce the dimension of stochastic
variables. We introduce a variable ξt = At

St
and so we can derive

V (t, S,A) = ess sup
s∈T[t,T ]

EQt
[
e−r(s−t)

(
ρ(Ss −As)

)+∣∣∣St = S,At = A
]

= ess sup
s∈T[t,T ]

EQt
[ ηt
ηT
e−r(s−t)

(
ρ(Ss −As)

)+∣∣∣St = S,At = A
]

= ess sup
s∈T[t,T ]

EQt
[er(t−s)
e(r−q)t

St

(
ρ(Ss −As)

)+
EQs
[e(r−q)T

ST

]∣∣∣St = S,At = A
]

= ess sup
s∈T[t,T ]

EQt
[
eqt−rsSt

(
ρ(Ss −As)

)+ e(r−q)s

Ss

∣∣∣St = S,At = A
]

= ess sup
s∈T[t,T ]

EQt
[
e−q(s−t)St

(
ρ
(

1− As
Ss

))+∣∣∣St = S,At = A
]

= ess sup
s∈T[t,T ]

e−q(s−t)S EQt
[(
ρ(1− ξs)

)+∣∣∣St = S,At = A
]
.

The last expression can be rewritten in terms of the new variable ξ = A
S as

follows:

(15) Ṽ (t, ξ) = e−qt
V (t, S,A)

S
= e−qT

∗
t EQt

[(
ρ(1− ξT∗t )

)+]
,

where T ∗t = inf{s ∈ [t, T ]|ξs = ξ∗s} and the function t 7→ ξ∗t describes the early
exercise boundary.

The stopping region S and continuation region C for the call and put options
are defined by

Scall = Cput = {0 ≤ t ≤ T, 0 ≤ ξ < ξ∗t },(16)

Ccall = Sput = {0 ≤ t ≤ T, ξ∗t < ξ <∞}.(17)

Now we solve the problem (with one stochastic variable) formulated in (15).
In what follows, we generalize the result by Hansen, Jørgensen (2000) from
[3] for the case of a nontrivial dividend rate q ≥ 0.

Theorem 3.1. The value of the floating strike Asian option on stock underlying
with dividend rate q ≥ 0 is given by

(18) Ṽ (t, ξt) = ṽ(t, ξt) + ẽ(t, ξt),

where

(19) ṽ(t, ξt) ≡ EQt
[
e−qT

(
ρ(1− ξT )

)+]
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and

(20) ẽ(t, ξt) ≡ EQt
[ ∫ T

t

ρe−quξu1S(u, ξu)
(dAu
Au
− (r − qξ−1u )du

)]
,

with average given by the function At and stopping region S. Here the function
1S(·) is the indicator function of the set S, ρ sets the call option by the value 1
and the put option by the value −1.

In the proof of Theorem 3.1 we will use the following lemma.

Lemma 3.2. The auxiliary variable ξt = At

St
satisfies the following stochastic

differential equation:

(21) dξt = ξt
dAt
At
− (r − q)ξt dt− σξt dWQt .

Proof of Lemma 3.2. We express the differential dξt = d
(
At

St

)
as

dξt =
1

St
dAt −

At
S2
t

dSt +
At
S3
t

(dSt)
2

= ξt
dAt
At
− (r − q)ξt dt− σξt dWQt ,

and the proof of lemma follows. �

Notice that, when comparing to the original expression with a zero dividend
rate, q = 0, the only difference is that the parameter r is replaced by r − q. The

value of dAt

At
depends on the method of averaging of the underlying used in the

valuation. The expression for the arithmetic averaging has form

(22)
dAat
Aat

=
1

t

( 1

ξat
− 1
)
dt.

As far as, the geometric average is concerned, we have

(23)
dAgt
Agt

= −1

t
ln ξgt dt

and for the weighted arithmetic averaging

(24)
dAwat
Awat

=
1

t

(a(0) +
∫ t
0
a′(t− u)Su

St
du

ξwat
− 1
)
dt,

where a′ is the derivative of the function a. The last equation is unusable in its
general form. Neverthless, if we set a(s) = e−λs, it becomes

(25)
dAwat
Awat

=
1

t

( 1

ξwat
− (1 + λt)

)
dt.
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Proof of Theorem 3.1. We follow the proof of the original theorem including
necessary modifications related to the form of averaging and the fact that q ≥ 0.

First, we suppose that (t, ξ) belongs to the continuation region C. The option
is held and so we use Itô’s lemma to calculate the differential

dṼ =
∂Ṽ

∂ξ
dξ +

1

2

∂2Ṽ

∂ξ2
(dξ)2 +

∂Ṽ

∂t
dt

= ξ
∂Ṽ

∂ξ

dA

A
+
[
− (r − q)ξ ∂Ṽ

∂ξ
+

1

2
σ2ξ2

∂2Ṽ

∂ξ2
+
∂Ṽ

∂t

]
dt− σξ ∂Ṽ

∂ξ
dWQ

= −σξ ∂Ṽ
∂ξ

dWQ,

where the last equality holds true, because Ṽ is Q-martingale.
Now we suppose that (t, ξ) belongs to the stopping region S. The value of the

option is defined by

Ṽ (t, ξt) = ρe−qt(1− ξt).
So the differential dṼ has form

dṼ = −ρqe−qt(1− ξ)dt− ρe−qtdξ

= −ρe−qtξ dA
A

+ ρe−qt(rξ − q)dt+ ρe−qtσξdWQ.

For both regions we have an equation

(26) dṼ (t, ξt) = −ρe−qt1S(t, ξt)
(
ξt
dAt
At
− (rξt − q)dt

)
+ dMQt ,

where MQt is a Q-martingale. Integrating (26) from t to T and taking expectation
we have

EQt
[
Ṽ (T, ξT )

]
− Ṽ (t, ξt) = −EQt

[ ∫ T

t

ρe−quξu1S(u, ξu)
(dAu
Au
− (r − q

ξu
)du
)]

+EQt
[ ∫ T

t

dMQu

]
︸ ︷︷ ︸

=0

,

Ṽ (t, ξt) = EQt
[
e−qT

(
ρ(1− ξT )

)+]
︸ ︷︷ ︸

=ṽ(t,ξt)

+EQt
[ ∫ T

t

ρe−quξu1S(ξu)
(dAu
Au
− (r − q

ξu
)du
)]

︸ ︷︷ ︸
=ẽ(t,ξt)

.

this completes the proof of Theorem 3.1. �
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Conclusions

In this paper we extended the Hansen and Jørgensen’s formula for valuation of
the floating strike American-style Asian option by assuming a non-zero dividend
rate q. The theory of the martingales and conditioned expected values was used
in the calculation of an integral equation for the position of the early exercise
boundary. We also present the formula for the weighted arithmetic average with
time dependent weights. The presented formula can be used in the comparison
of the value of the early exercise boundary to the projected SOR method for
Asian option due Kwok, Dai in [1] as well as integral transformation method
described in [7].

The numerical experiments and asymptotic analysis of the early exercise bound-
ary will be the subject of the forthcoming paper being prepared.
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