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FUZZME: A NEW SOFTWARE FOR MULTIPLE-CRITERIA

FUZZY EVALUATION

PAVEL HOLEČEK AND JANA TALAŠOVÁ

Abstract. This paper is focused on an introduction of a new software

product, which is called FuzzME. This software was developed as a tool for
creating fuzzy models of multiple-criteria evaluation and decision making.

The type of evaluations employed in the fuzzy models fully corresponds with

the paradigm of the fuzzy set theory; the evaluations express the (fuzzy) de-
grees of fulfillment of corresponding goals. The FuzzME software works with

both quantitative and qualitative criteria. The basic structure of evaluation
is described by a goals tree. Within the goals tree, aggregation of partial

fuzzy evaluations is done either by one of fuzzified aggregation operators or

by a fuzzy expert system. The FuzzME software takes advantage of linguis-
tic fuzzy modeling to the maximum extent.

This paper also contains a short summary of other available software prod-

uct for fuzzy multiple-criteria evaluation.
In this paper, the possibilities of FuzzME are demonstrated on a sample

problem - evaluation of a new employee.

1. Introduction

There are many situations which require use of multiple-criteria evaluation mod-
els. Such models can be utilized e.q. for evaluation of universities, rating of
clients of a bank or for evaluation of new employees. In the chapter 4, the last
situation will be used as an example and its solution with FuzzME software will
be described more in detail.

In the evaluation models, some of the input data are set expertly (e.g. eval-
uations of alternatives according to qualitative criteria, partial evaluating func-
tions for quantitative criteria, a choice of a suitable type of aggregation, criteria
weights, or eventually, a rule base describing the relation between criteria values
and the overall evaluation). Because uncertainty is the typical feature of any
expert information, the fuzzy set theory is a suitable mathematical tool for cre-
ating such models. For the practical use of the fuzzy models of multiple-criteria
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evaluation, their user-friendly software implementation is necessary. But a good
theoretical basis of the used models is crucial, too. The clear and well-elaborated
theory of multiple-criteria fuzzy evaluation makes it possible to create an under-
standable methodics for the software user. And a good methodics is essential for
correct application of any software to solving real problems.

There is a large number of papers and books dealing with the theory and
methods of multiple-criteria evaluation that make use of the fuzzy approach (e.g.
[1], [2], [3], [4]).

The most commonly used software for multiple criteria evaluation and decision
making based on fuzzy models is FuzzyTECH [5] even if it was not its main
purpose (its main application area is fuzzy control). FuzzyTECH is a general
software product that makes it possible to create and use fuzzy expert systems.
It also includes neural networks algorithms for deriving fuzzy rule bases from
data. Interesting applications of this software to evaluation and decision making
in the area of business and finance were published in [6].

In 2000 a Czech software company, TESCO SW Inc., developed a software
product whose name is NEFRIT. It uses fuzzy methods for multiple criteria
evaluation and decision making. The fuzzy model of evaluation applied there is
described in detail in [7] and in the book [8]. The demo version of this software
is enclosed to the book [8]. NEFRIT can work with expert fuzzy evaluations of
alternatives according to qualitative criteria. The values of quantitative criteria
can be either crisp or fuzzy. Evaluating functions for quantitative criteria repre-
sent membership functions of partial fuzzy goals. For aggregation, the method
of weighted average of partial fuzzy evaluations is used. The weights (crisp, not
fuzzy) express shares of particular partial evaluations in the aggregated evalu-
ation. Fuzzy evaluations on all levels of the goals tree express fuzzy degrees of
fulfillment of the corresponding goals. Publicly available version of NEFRIT does
not make it possible to use a fuzzy expert system for evaluation. This software
was originally developed for the Czech National Bank (decision making about
granting a credit). Further, it was used e.g. by the Czech Tennis Association,
the Czech Basketball Association and in other institutions. Nowadays it is tested
by the Supreme Audit Office of the Czech Republic. The successor of NEFRIT,
in terms of the used theoretical basis, is the FuzzME software.

The FuzzME software (Fuzzy models of Multiple-criteria Evaluation), pre-
sented in this paper, is based on the theoretical concept of evaluation which is
very close to the original Zadeh’s ideas. Similarly to his paper [1], the evalu-
ations of alternatives according to particular criteria represent their degrees of
fulfillment of the corresponding partial goals. Besides evaluations expressed by
real numbers in [0, 1], fuzzy evaluations modeled by fuzzy numbers on the same
interval are employed in the software. They represent, analogously, the fuzzy
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degrees of fulfillment of the partial goals which are connected to the criteria. Re-
sulting fuzzy evaluations, which are obtained by aggregation, have a similar clear
interpretation. This theoretical approach to (fuzzy) evaluation was published in
the book [8] and in the paper [7] and is used also in NEFRIT.

In contrast with NEFRIT, the aggregation is not limited only to simple weighted
average method. The FuzzME software also enables to use the fuzzy OWA oper-
ator for the aggregation or to define evaluating function by a fuzzy rule base.

For the aggregation of the partial evaluations by the method of weighted av-
erage, fuzzy weights can be used (in contrast to NEFRIT which works only with
crisp weights). The theory of normalized fuzzy weights, ways of their setting
(including a method for removing potential inconsistence) and algorithm for cal-
culation of the fuzzy weighted average are taken from [9].

Another fuzzy aggregation operator, available in the FuzzME software, is a
fuzzified OWA operator. Again, it works with normalized fuzzy weights. The
fuzzy OWA operator and the used algorithm for its calculation are described in
[10].

In the FuzzME software, multiple-criteria evaluating functions can also be
defined by means of fuzzy rule bases. Three algorithms are offered for the ap-
proximate reasoning - the standard Mamdani algorithm and two modified Sugeno
algorithms (Sugeno-WA and Sugeno-WOWA). The advantage of this software is
that all of these types of aggregation can be arbitrarily combined in the same
goals tree.

There are also software products for multiple-criteria decision making based on
other mathematical methods but they are usually designed for solving a particular
assignment. Fuzzy toolboxes of general mathematical systems such as Matlab can
be used for multiple-criteria decision making, too. But our investigation by means
of Internet did not result software fully comparable to FuzzME. Its universality
and comprehensiveness make it unique.

2. Preliminaries

A fuzzy set A on a universal set X is characterized by its membership function
A : X → [0, 1]. Ker A denotes a kernel of A, Ker A = {x ∈ X | A(x) = 1}. For
any α ∈ [0, 1], Aα denotes an α-cut of A, Aα = {x ∈ X | A(x) ≥ α}. A support
of A is defined as Supp A = {x ∈ X | A(x) > 0}. The symbol hgt A denotes
a height of the fuzzy set A, hgt A = sup {A(x) | x ∈ X}. An intersection and a
union of the fuzzy sets A and B on X are defined for all x ∈ X by the following
formulas: (A ∩B)(x) = min {A(x), B(x)}, (A ∪B)(x) = max {A(x), B(x)}.

A fuzzy number is a fuzzy set C on the set of all real numbers < which satisfies
the following conditions: a) the kernel of C, Ker C, is not empty, b) the α-cuts
of C, Cα, are closed intervals for all α ∈ (0, 1], c) the support of C, Supp C, is
bounded. A fuzzy number C is called to be defined on [a, b], if Supp C ⊆ [a, b].
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Real numbers c1 ≤ c2 ≤ c3 ≤ c4 are called significant values of the fuzzy number C
if the following holds: [c1, c4] = Cl(Supp C), [c2, c3] = Ker C, where Cl(Supp C)
denotes a closure of Supp C.

Any fuzzy number C can be characterized by a pair of functions c : [0, 1]→ <,
c : [0, 1] → < which are defined by the following formulas: Cα = [c(α), c(α)]
for all α ∈ (0, 1], and Cl(Supp C) = [c(0), c(0)]. The fuzzy number C is called
to be linear if both the functions c, c are linear. A linear fuzzy number is fully
determined by its significant values because c(α) = (c2 − c1) · α + c1, c(α) =
(c3 − c4) · α+ c4. For that reason, we can denote it as C = (c1, c2, c3, c4).

An ordering of fuzzy numbers is defined as follows: a fuzzy number C is greater
than or equal to a fuzzy number D, if Cα ≥ Dα for all α ∈ (0, 1].

A fuzzy scale makes it possible to represent a closed interval of real numbers
by a finite set of fuzzy numbers. Let T1, T2, ..., Ts be fuzzy numbers defined on
[a, b], forming a fuzzy partition on the interval, i.e., for all x ∈ [a, b] the following
holds

(1)

s∑
i=1

Ti(x) = 1,

then the set of the fuzzy numbers can be linearly ordered (see [8]). If the fuzzy
numbers T1, T2, ..., Ts are defined on [a, b], form a fuzzy partition on the interval
and are numbered according to their linear ordering, then they are said to form
a fuzzy scale on [a, b] .

An uncertain division of the whole into m parts can be modeled by normalized
fuzzy weights. Fuzzy numbers V1, ..., Vm defined on [0, 1] are normalized fuzzy
weights if for any i ∈ {1, ...,m} and any α ∈ (0, 1] it holds that for any vi ∈ Viα
there exist vj ∈ Vjα, j = 1, ...,m, j 6= i, such that

(2) vi +

m∑
j=1,j 6=i

vj = 1.

3. The FuzzME software

The mathematical models of the FuzzME software are based primarily on the
theory and methods of multiple-criteria evaluation that were published in [8] and
[7]. The theory of normalized fuzzy weights, the definition of fuzzy weighted
average, and the algorithm for its computation were taken from [9], [11] and [12].
The fuzzified OWA operator and the algorithm for its calculation published in
[10] are also used in the software.

In the FuzzME software, the basic structure of the fuzzy model of multiple-
criteria evaluation is expressed by a goals tree. The root of the tree represents
the overall goal of evaluation and each branch corresponds to a partial goal. The
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Figure 1. The main window of the software

goals at the ends of branches are connected either with quantitative or qualitative
criteria.

When an alternative is evaluated, evaluations with respect to criteria con-
nected with the terminal branches are calculated first. Independently of the
criterion type, each of the evaluations is described by a fuzzy number defined on
the interval [0, 1]. It expresses the fuzzy degree of fulfillment of the corresponding
partial goal.

These partial fuzzy evaluations are then aggregated according to the defined
type of the tree node. Three types of aggregation are available: a fuzzy weighted
average (fuzzy WA), an ordered fuzzy weighted average (fuzzy OWA) or aggre-
gation by means of a fuzzy expert system. For aggregation by fuzzy weighted
average or ordered fuzzy weighted average, normalized fuzzy weights must be set.
The weights express uncertain shares of the partial evaluations in the aggregated
one. For the fuzzy expert system, the fuzzy rule base must be defined and an
inference algorithm must be chosen (the Mamdani algorithm, the Sugeno-WA or
the Sugeno-WOWA algorithm of approximate reasoning).

The overall evaluation reflects the degree of fulfillment of the main goal. A
verbal description of the overall evaluation can be obtained by means of the
implemented linguistic approximation algorithm.

The overall evaluations can be compared within the frame of a given set of
alternatives. By this comparison the best of the alternatives can be chosen. That
is why the FuzzME software can be also used as a decision support system.

The import and export of data is supported by the software, too. The FuzzME
software is available in the Czech and English versions.
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3.1. Goals tree. Goals trees represent the basic structure of fuzzy models of
multiple-criteria evaluation in the FuzzME software. When a goals tree is de-
signed, the main goal is consecutively divided into goals of progressively lower
levels. The process of division is stopped when such goals are reached whose ful-
fillment can be assessed by means of some known characteristics of alternatives
(i.e. quantitative or qualitative criteria).

The design of a tree structure in the goals-tree editor is the first step in forming
a fuzzy evaluation model in FuzzME. In the next step, the type of each node in
the tree must be specified. For the nodes at the ends of tree branches the user
defines if the node is connected with a quantitative or qualitative criterion. For
the other nodes he/she sets the type of aggregation - fuzzy weighted average,
ordered fuzzy weighted average or fuzzy expert system.

3.2. Criteria of evaluation. In the models of evaluation created by the FuzzME
software, qualitative and quantitative criteria can be combined arbitrarily.

3.2.1. Qualitative criteria. According to qualitative criteria, alternatives are eval-
uated verbally, by means of values of linguistic variables of special kinds - lin-
guistic scales, extended linguistic scales and linguistic scales with intermediate
values.

A linguistic variable is defined as a quintuple (V, T (V), X, G,M), where V is a
name of the variable, T (V) is a set of its linguistic values, X is a universal set on
which the meanings of the linguistic values are defined, G is a syntactic rule for
generating values in T (V), and M is a semantic rule which maps each linguistic
value C ∈ T (V) to its mathematical meaning, C = M(C), which is a fuzzy set on
X.

A linguistic scale on [a, b] is a special case of the linguistic variable (V, T (V), X,G,M),
where X = [a, b], T (V) = {T1, T2, ..., Ts} and the meanings of the linguistic val-
ues T1, T2, . . . , Ts are modeled by fuzzy numbers T1, T2, . . . , Ts which form a fuzzy
scale on [a, b]. As the set of linguistic values of the scale is defined explicitly, it
is not necessary to include the grammar G into the scale notation.

In the FuzzME software, the user defines a linguistic scale for each qualitative
criterion in the fuzzy-scale editor. For example, the linguistic scale communi-
cation skills of an employee can contain linguistic values inadequate, adequate,
satisfying, good and very good. The evaluating linguistic scale is usually defined
on [0, 1]; in other cases, it has to be transformed to this interval.

The extended linguistic scale contains, besides elementary terms of the original
scale, T1, T2, . . . , Ts, also derived terms in the form Ti to Tj , where i < j, i, j ∈
{1, 2, . . . , s}. For example, the user can evaluate communication skills of an
employee by the linguistic term satisfying to very good. The meaning of the
linguistic value Ti to Tj is modeled by Ti∪LTi+1∪L · · ·∪LTj , where ∪L denotes the
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Figure 2. Linguistic scale editor

union of fuzzy sets based on the Lukasiewicz disjunction; e.g. (Ti ∪L Ti+1)(x) =
min {1, Ti(x) + Ti+1(x)} for all x ∈ <.

The linguistic scale with intermediate values is the original linguistic scale
enriched with derived terms between Ti and Ti+1, i ∈ {1, 2, . . . , s− 1}. The
meaning of the derived term between Ti and Ti+1 is modeled by the arithmetic
average of the fuzzy numbers Ti and Ti+1.

In the FuzzME software, the user evaluates a given alternative according to a
qualitative criterion by selecting a proper linguistic evaluation from a drop-down
list box. He/she can choose the value from a standard linguistic scale, extended
scale or scale with intermediate values.

Figure 3. Choosing the value of a qualitative criterion
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The three mentioned structures of linguistic values are also applied when re-
sulting fuzzy evaluations are approximated linguistically.

3.2.2. Quantitative criteria. The evaluation of an alternative with respect to a
quantitative criterion is calculated from the measured value of the criterion by
means of the evaluating function expertly defined for the criterion. The eval-
uating function is the membership function of the corresponding partial goal.
The FuzzME software admits both crisp and fuzzy values of quantitative crite-
ria. The fuzzy values represent inaccurate measurements or expert estimations of
the criteria values. In the case of a fuzzy value, the corresponding partial fuzzy
evaluation is calculated by the extension principle.

Figure 4. A quantitative criterion

In the FuzzME software, the evaluating function of a quantitative criterion is
formally set by means of a fuzzy number. For example, if the evaluating function
is defined by a linear fuzzy number F = (f1, f2, f3, f4), then f1 is the lower limit
of all at least partly acceptable values of the criterion, f2 is the lower limit of its
fully satisfactory values, f3 is the upper limit of the fully satisfactory values, and
f4 is the upper limit of the acceptable values.

For example, when a company wants to hire a new employee, the candidates
are evaluated according to the length of their practice. Evaluating function for
this quantitative criterion can be defined by a linear fuzzy number with significant
values 2, 5, 100, 100. In that case, less than 2 years of practice are not satisfying
at all. For the length of practice from 2 to 5 years the satisfaction of the company
is growing linearly. More than 5 years of practice is fully satisfactory from the
company??s point of view. Values greater than 100 are not supposed to occur.
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This way we can define a monotonous evaluating function, which is the most
common in the evaluating models, by a fuzzy number.

In the FuzzME software, this process is simplified for the user. It is necessary to
chooses just the type of the evaluating function (increasing preference, decreasing
preference or preference of a selected value) and set only some of the significant
values.

3.3. Methods of aggregation of partial evaluations. The calculated partial
fuzzy evaluations are then consecutively aggregated according to the structure
of the goals tree. With respect to the defined type of the tree node, the fuzzy
weighted average method, the ordered fuzzy weighted average method or the
fuzzy expert system method is used for the aggregation. Each of the aggregation
methods is suitable for a different situation:

The fuzzy weighted average is used if the goal corresponding with the node
of interest is fully decomposed into disjunctive goals of the lower level. The
normalized fuzzy weights represent uncertain shares of these lower-level goals in
the goal corresponding with the considered node.

Again, the ordered fuzzy weighted average requires that the goal corresponding
with the given node is decomposed into disjunctive goals of the lower level. In
contrast to the fuzzy weighted average, the usage of this aggregation operator
supposes special user’s requirements concerning the structure of partial fuzzy
evaluations. The normalized fuzzy weights again represent uncertain shares of
the partial evaluations in the aggregated one. But the normalized fuzzy weights
are not linked to the individual partial goals; the correspondence between the
weights and the partial evaluations is given by the ordering of partial evaluations
of the alternative of interest. It means, evaluations with respect to the same
partial goal can have different weights for different alternatives.

If the relationship between the evaluations of the lower level and the evalu-
ation corresponding with the given node is more complex (if neither of the two
previous methods can be used), and if expert knowledge about the relationship
is available, then the aggregation function is described by a fuzzy rule base of a
fuzzy expert system. The approximate reasoning is used to calculate the resulting
evaluation. In particular, evaluating function described by a fuzzy expert system
is used if the fulfillment of a goal at the end of a tree branch depends on several
mutually dependent criteria (i.e., if combinations of criteria values bring synergic
or disynergic effects to the resulting multiple-criteria evaluation).

3.3.1. Aggregation by the fuzzy weighted average method. If the fuzzy weighted
average is used for aggregation of partial fuzzy evaluations, then the uncertain
weights of the corresponding partial goals, which express their shares in the supe-
rior goal, must be set. To define consistent uncertain weights, a special structure
of fuzzy numbers, normalized fuzzy weights, must be used.
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In the FuzzME software, both real and fuzzy normalized weights can be used.
Normalized real weights, i.e., real numbers v1, ..., vm, vj ≥ 0, j = 1, ...,m,
m∑
j=1

vj = 1, represent a special case of the normalized fuzzy weights.

The fuzzy weighted average of the partial fuzzy evaluations, i.e., of fuzzy num-
bers U1, ..., Um defined on [0, 1], with the normalized fuzzy weights V1, . . . , Vm, is
a fuzzy number U on [0, 1] whose membership function is defined for any u ∈ [0, 1]
as follows

U(u) = max{min {V1(v1), ..., Vm(vm), U1(u1), ..., Um(um)}

|
m∑
i=1

viui = u,

m∑
i=1

vi = 1, vi, ui ∈ [0, 1], i = 1, ...,m}.(3)

For an expert who sets the fuzzy weights, it is not so easy to satisfy the
condition of normality. That is why the FuzzME software allows to set only an
approximation to the normalized fuzzy weights - fuzzy numbers W1, ...,Wm on
[0, 1] satisfying the following weaker condition

(4) ∃wi ∈ Ker Wi, i = 1, ..., n :

n∑
i=1

wi = 1.

The software removes the potential inconsistence in W1, ..., Wm and derives the
normalized fuzzy weights V1, ..., Vm from them.

The structure of normalized fuzzy weights and the fuzzy weighted average
operation are studied in detail in [9], [11] and [12]. Conditions for verifying nor-
mality of fuzzy weights, an algorithm for normalization of fuzzy weights satisfying
the condition (4), and an algorithm for calculating fuzzy weighted average, which
are all used in the FuzzME software, can be found there. Let us notice, that the
used algorithm of fuzzy weighted average calculation is very effective.

3.3.2. Aggregation by the ordered fuzzy weighted average. The fuzzy OWA oper-
ator is used in case that the evaluator has special requirements concerning the
structure of the partial evaluation. For example, he/she does not want any partial
goal to be satisfied poorly. Then the weight of the minimum partial evaluation of
any alternative equals 1, and the weights of all its other partial evaluations equal
0. The aggregated fuzzy evaluations then represent the guaranteed fuzzy degrees
of fulfillment of all the partial goals (the fuzzy MINIMAX method). Another
example of the fuzzy OWA operator usage could be the evaluation of subjects
who can choose in which of the three areas they will be mostly involved. The
evaluation algorithm should take into account their right of choice. Then, e.g.,
the results in the area where the subject performs best contribute to the overall
evaluation by about one half, results from the second area by one third and results
from the area in which the subject was least involved contribute to the overall
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evaluation only by one sixth. A practical application of such a fuzzy evaluation
model could be the overall evaluation of the academic staff with respect to their
results in the areas of research, education, and management of education and
science.

The ordered fuzzy weighted average represents a fuzzification of the crisp OWA
operator by means of the extension principle. Uncertain weights are modeled by
normalized fuzzy weights as in the case of fuzzy weighted average.

The following notation will be used to define the ordered fuzzy weighted aver-
age: if (x1, ..., xm) is a vector of real numbers, then (x(1), ..., x(m)) is a vector in
which for all j ∈ {1, . . . ,m}, x(j) is the j-th greatest number of x1, ..., xm.

The ordered fuzzy weighted average of the partial fuzzy evaluations, i.e., of
fuzzy numbers U1, ..., Um defined on [0, 1], with the normalized fuzzy weights
V1, . . . , Vm, is a fuzzy number U on [0, 1] whose membership function is defined
for any u ∈ [0, 1] as follows

U(u) = max{min {V1(v1), ..., Vm(vm), U1(u1), ..., Um(um)}

|
m∑
i=1

viu
(i) = u,

m∑
i=1

vi = 1, vi, ui ∈ [0, 1], i = 1, ...,m}.(5)

The algorithm used to calculate the ordered fuzzy weighted average in the
FuzzME software was taken from [10], where fuzzification of the OWA operator
is described in detail. The used algorithm is an analogy to the one used for the
fuzzy weighted average.

3.3.3. Aggregation by the fuzzy expert system. The fuzzy expert system is used if
the relationship between the criteria (or the partial evaluations) and the overall
evaluation is complicated. Theoretically, it is possible to model, with an arbitrary
precision, any Borel measurable function by means of a fuzzy rule base (properties
of Mamdani and Sugeno fuzzy controllers, see e.g. [13]) In reality, the quality of
the approximation is limited by the expert’s knowledge of the relationship.

If the fuzzy rule base models the relation between values of criteria and the
fulfillment of the corresponding partial goal, then the evaluation function is of
the following form

If C1 is A1,1 and . . . and Cm is A1,m, then E is U1(6)

If C1 is A2,1 and . . . and Cm is A2,m, then E is U2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If C1 is An,1 and . . . and Cm is An,m, then E is Un

where for i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (Cj , T (Cj), Vj ,Mj) are linguistic scales
representing the criteria, Ai,j ∈ T (Cj) are their linguistic values, (E , T (E), [0, 1],Me)
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is a linguistic scale representing the evaluation of alternatives and Ui ∈ T (E) are
its linguistic values.

In the FuzzME software, rule bases are defined expertly. The user defines such
a rule base by assigning a linguistic evaluation to each possible combination of
linguistic values of criteria.

Figure 5. Rule base editor

For given values of criteria, a resulting fuzzy evaluation is calculated either
by the Mamdani fuzzy inference algorithm, by the Sugeno-WA or the Sugeno-
WOWA inference.

In the case of the Mamdani fuzzy inference, the degree hi of correspondence
between the given m-tuple of fuzzy values (A

′

1, A
′

2, . . . , A
′

m) of criteria and the
mathematical meaning of the left-hand side of the i -th rule is calculated for any
i = 1, . . . , n in the following way

(7) hi = min {hgt(A
′

1 ∩Ai,1), . . . , hgt(A
′

m ∩Ai,m)}.

Then for each of the rules, the output fuzzy value U
′

i , i = 1, . . . , n, corre-
sponding to the given input fuzzy values, is calculated as follows

(8) ∀y ∈ [0, 1] : U
′

i (y) = min {hi, Ui(y)}.

The final fuzzy evaluation of the alternative is given as the union of all the
fuzzy evaluations that were calculated for the particular rules in the previous
step, i.e.,

(9) U
′

=

n⋃
i=1

U
′

i .
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Generally, the result obtained by the Mamdani inference algorithm need not be
a fuzzy number. So, for further calculations within the fuzzy model, it must be
approximated by a fuzzy number.

The advantage of the generalized Sugeno inference algorithm (see [8]) is that
the result is always a fuzzy number. Two version of this algorithm were imple-
mented - Sugeno-WA and, more advanced, Sugeno-WOWA.

In its first step, the degrees of correspondence hi, i = 1, . . . , n, are calculated
in the same way as in the Mamdani fuzzy inference algorithm.

In Sugeno-WA algorithm, the resulting fuzzy evaluation U is then computed
as a weighted average of the fuzzy evaluations Ui, i = 1, 2, . . . , n, which model
the mathematical meanings of linguistic evaluations on the right-hand sides of
the rules, with the weights hi. This is done by the following formula

(10) U =

n∑
i=1

hi.Ui

n∑
i=1

hi

.

The expert chooses values on the right-hand sides of each rule from the lin-
guistic fuzzy scale (E , T (E), [0, 1],Me). We can see that the result can be also
obtained as a weighted average of the fuzzy numbers which model the meaning
of all values of this scale. Let E1, ...Ek be those fuzzy numbers, i.e.

(11) Ei = M(Ei), where Ei ∈ T (E), i ∈ {1, .., k}.
We can assume that those fuzzy numbers are numbered according their ordering
from the greatest to the lowest one, i.e., Ei > Ei+1 for i ∈ {1, ..., k − 1}

Let A1, ..., Ak be sets of indices such that Ai contains indices of all rules which
have Ei on their right-hand side, i.e.

(12) Ai = {j ∈ {1, .., n} | Uj = Ei}, i = 1, ..., k where Uj = M(Uj).
The weights w′1, ..., w

′
k ∈ <, which correspond to the values of the linguistic

scale E , are calculated, for every i=1,..k, as follows

(13) w′i =
∑
j∈Ai

hj

and for the further calculations they are normalized:

(14) wi =
w′i∑k
j=1 w

′
j

.

The resulting evaluation of Sugeno-WA inference algorithm can be then ex-
pressed as

(15) U =

k∑
i=1

wiEi.
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Sugeno-WOWA algorithm works in the similar way but, instead of weighted
average, weighted OWA operator was used. Weighted OWA operator is described
in [14]. This operator uses two sets of weights. Weights wi are the same as in the
case of Sugeno-WA. The second set of weights, pi, is defined by the expert. This
gives him/her possibility to specify how important is each value of the scale for the
resulting evaluation. Implementation of this inference system was motivated by
the real application of this software. A risk rate was calculated by a fuzzy expert
system. Expert set significantly greater weight to linguistic value ”high risk”
than to the value ”medium risk”. This causes that a single rule that estimated
the risk to be high is taken much more seriously than a rule which estimated it to
be just medium. So the evaluation algorithm behaves according to the expert’s
needs because it respects his/her preferences defined by the weights pi.

The resulting evaluation of Sugeno-WOWA inference algorithm is calculated
as follows

(16) U =

k∑
i=1

ωiEi,

where the weight ωi is defined as

(17) ωi = f(
∑
j≤i

wj)− f(
∑
j<i

wj),

the weights wi are the same as in Sugeno-WA algorithm and f is a nondecreasing
piecewise linear function that is determined by the following points

(18) {(0, 0)} ∪ {(i/k,
∑
j≤i

pj)}i=1,...,k.

In case that the weights pi are uniform (all scale values have the same weight),
the result will be the same as the result calculated by Sugeno-WA. The fact that
the values of the scale are ordered simplifies the previous formula. Definition of
weighted OWA for more general cases can be found in [14].

3.4. Overall fuzzy evaluations, the optimum alternative. The final result
of the consecutive aggregation of the partial fuzzy evaluations is an overall fuzzy
evaluation of the given alternative. The obtained overall fuzzy evaluations are
fuzzy numbers on [0, 1]. They express uncertain degrees of fulfillment of the main
goal by the particular alternatives.

The FuzzME software compares alternatives according to the centers of gravity
of their overall fuzzy evaluations. A center of gravity of a fuzzy number U on
[0, 1] that is not a real number, is defined as follows

(19) tU =

∫ 1

0
U(x).x dx∫ 1

0
U(x) dx

.
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If U = u and u ∈ <, then tU = u. In the FuzzME software, the optimum
alternative is the one whose overall fuzzy evaluation has the largest center of
gravity.

At present, the FuzzME software is aimed above all at solving multiple-criteria
evaluation problems. To ensure high performance in choosing the optimum alter-
native, it will be necessary to include in the software other methods of ordering
of the fuzzy evaluations in the future. Some approaches are proposed in [8] and
further research in this area is planned.

Figure 6. A list of alternatives ordered by centers of gravity method

3.5. Import and export of data. For fuzzy models of evaluation created in
the frame of the program FuzzME, the criteria values of alternatives can be either
set directly or imported e.g. from Excel. Similarly resulting evaluations can be
exported to the Excel for their further processing.

4. Example

The possibilities of this software can be demonstrated on a simple example. Let
us consider a company which is going to hire a new employee. There are several
candidates and the company naturally wants to select the best of them.

In this example, there are six candidates which are evaluated according to
fifteen criteria. Both qualitative and quantitative criteria were used.

For the most of the tree nodes, the fuzzy weighted average was sufficient for the
aggregation. One of the exceptions was aggregation of the candidate’s references.
In this example, it is assumed that the company will try to ask last three of the
candidate’s previous employers on their experiences with this candidate. The
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company is careful and wants the worst of these three evaluations to have the
greatest weight. But the other two evaluations should be also taken into account.
This can be easily solved by fuzzy OWA operator.

Figure 7. The goals tree used in this example

For the evaluation of candidate’s technical/professional knowledge a fuzzy ex-
pert system was used. This evaluation is obtained from evaluation of candidate’s
education level and his/her length of practice. Naturally, if the candidate has lots
of years of practice then the education level is irrelevant. On the other hand, if
the candidate has only small or no practice, the education level should be taken
into account. This relationship is too complicated for fuzzy weighted average or
fuzzy OWA, but can be easily modeled by a fuzzy rule base.

This simple example shows the advantage over other software products for
fuzzy evaluation and decision making. The user has freedom in choosing the
aggregation method and they can be arbitrarily combined in the same goals tree.

The FuzzME demo version with this example can be downloaded at
http://FuzzME.wz.cz/.

5. Conclusion

The FuzzME software makes it possible to create and use fuzzy models of mul-
tiple criteria evaluation in the user-friendly way. It has several positive features.
The essential one is the solid theoretical basis of the methods contained in the
program. The mathematical potential of the software is a result of many years
of research. The implemented methods were tested on real problems.
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In the FuzzME software, several new methods, algorithms and tools of fuzzy
modeling were implemented, e.g.: a structure of normalized fuzzy weights, fuzzy
weighted average and ordered fuzzy weighted average operations and algorithms
for their calculation and Sugeno-WOWA inference algorithm.

Well-elaborated theoretical basis of the FuzzME software provides a clear in-
terpretation of all steps of the evaluation process and brings understanding of
methodology to the user.
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[12] O. Pavlačka and J. Talašová. The fuzzy weighted average operation in decision making

models. Proceedings of the 24th International Conference Mathematical Methods in Eco-
nomics, 13th - 15th September 2006, Plzeň (Ed. L. Lukáš), pages 419–426, 2006.
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