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Abstract
It is common knowledge that the political voting systems suffer inconsistencies and paradoxes
such that Arrow has shown in his well-known Impossibility Theorem. Recently Balinski and
Laraki have introduced a new voting system called Majority Judgement (MJ) which tries to
solve some of these limitations. In MJ voters have to asses the candidates through linguistic
terms belonging to a common language. From this information, MJ assigns as the collective
assessment the lower median of the individual assessments and it considers a sequential tie-
breaking method for ranking the candidates. The present paper provides an extension of MJ
focused to reduce some of the drawbacks that have been detected in MJ by several authors.
The model assigns as the collective assessment a label that minimizes the distance to the
individual assessments. In addition, we propose a new tie-breaking method also based on
distances.
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1 Introduction

Social Choice Theory shows that there does not exist a completely acceptable voting
system for electing and ranking alternatives. The well-known Arrow Impossibility
Theorem [1] proves with mathematic certainty that no voting system simultaneously
fulfills certain desirable properties1.

Recently Balinski and Laraki [2, 4, 5] have proposed a voting system called Ma-
jority Judgement (MJ) which tries to avoid these unsatisfactory results and allows
the voters to assess the alternatives through linguistic labels, as Excellent, Very good,
Good, . . . , instead of rank order the alternatives. Among all the individual assessments
1Any voting rule that generates a collective weak order from every profile of weak orders, and satisfies
independence of irrelevant alternatives and unanimity is necessarily dictatorial, insofar as there are
at least three alternatives and three voters.
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given by the voters, MJ chooses the median as the collective assessment. Balinski and
Laraki also describe a tie-breaking process which compares the number of labels above
the collective assessment and those below of it.

These authors also have an experimental analysis of MJ [3] carried out in Or-
say during the 2007 French presidential election. In that paper the authors show
some interesting properties of MJ and they advocate that this voting system is easily
implemented and that it avoids the necessity for a second round of voting.

Desirable properties and advantages have been attributed to MJ against the clas-
sical Arrow framework of preferences’ aggregation. Among them are the possibility
that voters show more faithfully and properly their opinions than in the conven-
tional voting systems, anonymity, neutrality, independence of irrelevant alternatives,
etc. However, some authors (see Felsenthal and Machover [6], García-Lapresta and
Martínez-Panero [7] and Smith [9]) have shown several paradoxes and inconsistencies
of MJ.

In this paper we propose an extension of MJ which diminishes some of the MJ
inconveniences. The approach of the paper is distance-based, both for generating a
collective assessment of each alternative and in the tie-breaking process that provides
a weak order on the set of alternatives. As in MJ we consider that individuals assess
the alternatives through linguistic labels and we propose as the collective assessment
a label that minimizes the distance to the individual assessments. These distances
between linguistic labels are induced by a metric of the parameterized Minkowski
family. Depending on the specific metric we use, the discrepancies between the col-
lective and the individual assessments are weighted in a different manner, and the
corresponding outcome can be different.

The paper is organized as follows. In Section 2, the MJ voting system is for-
mally explained. Section 3 introduces our proposal, within a distance-based approach.
Specifically, the election of the collective assessment for each alternative and the tie-
breaking method are introduced. In Section 4 we include two illustrative examples
showing the influence of the metric used in the proposed method and its differences
with respect to MJ and Range Voting (Smith [9]). Finally, in Section 5 we collect
some conclusions.

2 Majority Judgement

We consider2 a finite set of voters V = {1, . . . , m}, with m ≥ 2, who evaluate a finite
set of alternatives X = {x1, . . . , xn}, with n ≥ 2. Each alternative is assessed by each
voter through a linguistic term belonging to an ordered finite scale L = {l1, . . . , lg},
with l1 < · · · < lg and granularity g ≥ 2. Each voter assesses the alternatives in an
independent way and these assessments are collected by a matrix

(
vi

j

)
, where vi

j ∈ L
is the assessment that the voter i gives to the alternative xj .

MJ chooses for each alternative the median of the individual assessment as the
collective assessment. To be precise, the single median when the number of voters is
odd and the lower median in the case that the number of voters is even. We denote
with l(xj) the collective assessment of the alternative xj . Given that several alter-
natives might share the same collective assessment, Balinski and Laraki [2] propose
a sequential tie-breaking process. This can be described through the following terms
(see García-Lapresta and Martínez-Panero [7]):

2The current notation is similar to the one introduced by García-Lapresta and Martínez-Panero [7].
This allows us to describe the MJ process, presented by Balinski and Laraki [2], in a more precise
way.
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N+(xj) = #{i ∈ V | vi
j > l(xj)} , N−(xj) = #{i ∈ V | vi

j < l(xj)}

and

t(xj) =


−1, if N+(xj) < N−(xj),

0, if N+(xj) = N−(xj),
1, if N+(xj) > N−(xj).

Taking into account the collective assessments and the previous indices, we define
a weak order3 � on X in the following way: xj � xk if and only if one of the
following conditions hold:

1. l(xj) > l(xk).

2. l(xj) = l(xk) and t(xj) > t(xk).

3. l(xj) = l(xk), t(xj) = t(xk) = 1 and N+(xj) > N+(xk).

4. l(xj) = l(xk), t(xj) = t(xk) = 1, N+(xj) = N+(xk) and
N−(xj) ≤ N−(xk).

5. l(xj) = l(xk), t(xj) = t(xk) = 0 and
m−N+(xj)−N−(xj) ≥ m−N+(xk)−N−(xk).

6. l(xj) = l(xk), t(xj) = t(xk) = −1 and N−(xj) < N−(xk).

7. l(xj) = l(xk), t(xj) = t(xk) = −1, N−(xj) = N−(xk) and
N+(xj) ≥ N+(xk).

The asymmetric and symmetric parts of � are defined in the usual way:

xj � xk ⇔ not xk � xj

xj ∼ xk ⇔ (xj � xk and xk � xj).

Next example of how MJ works is shown.

Example 2.1. Consider three alternatives x1, x2 and x3 that are evaluated by seven
voters through a set of six linguistic terms L = {l1, . . . , l6}, the same set used in MJ
[3], whose meaning is shown in Table 1. The assessments obtained for each alternative

l1 l2 l3 l4 l5 l6
To reject Poor Acceptable Good Very good Excellent

Table 1: Meaning of the linguistic terms

are collected and ranked from the lowest to the highest in Table 2. For ranking the
three alternatives, first we take the median of the individual assessments, that will
be the collective assessment for each one of the mentioned alternatives: l(x1) = l5,
l(x2) = l4 and l(x3) = l4. Given that x1 has the best collective assessment, it will
be the one ranked in first place. However, the alternatives x2 and x3 share the same
3A weak order (or complete preorder) is a complete and transitive binary relation.
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x1 l1 l1 l3 l5 l5 l5 l6
x2 l1 l4 l4 l4 l4 l5 l6
x3 l1 l3 l4 l4 l5 l5 l5

Table 2: Assessments of Example 2.1

collective assessment, we need to turn to the tie-breaking process, where we obtain
N+(x2) = 2, N−(x2) = 1 and t(x2) = 1; N+(x3) = 3, N−(x3) = 2 and t(x3) = 1.
Since both alternatives have the same t (t(x2) = t(x3) = 1), we should compare
their N+: N+(x2) = 2 < 3 = N+(x3). Therefore, the alternative x3 defeats the
alternative x2, and the final order is x1 � x3 � x2.

3 Distance-based method

In this section the alternative method to MJ that we propose through a distance-
based approach is introduced. The first step for ranking the alternatives is to assign
a collective assessment l(xj) ∈ L to each alternative xj ∈ X. For its calculation, the
vectors (v1

j , . . . , vm
j ) that collect all the individual assessments for each alternative

xj ∈ X are taken into account.
The proposal, that is detailed below, involves how to choose a l(xj) ∈ L that min-

imizes the distance between the vector of individual assessments (v1
j , . . . , vm

j ) and the
vector (l(xj), . . . , l(xj)) ∈ Lm. The election of that term is performed in an indepen-
dent way for each alternative. This guarantees the fulfillment of the independence of
irrelevant alternatives principle4.

Once a collective assessment l(xj) has been associated with each alternative
xj ∈ X , we rank the alternatives according to the ordering of L. Given the pos-
sible existence of ties, we also propose a sequential tie-breaking process based on the
difference between the distance of l(xj) to the assessments higher than l(xj) and
the distance of l(xj) to the assessments lower than l(xj).

3.1 Distances
A distance or metric on Rm is a mapping d : Rm × Rm −→ R that fulfills the
following conditions for all (a1, . . . , am), (b1, . . . , bm), (c1, . . . , cm) ∈ Rm:

1. d((a1, . . . , am), (b1, . . . , bm)) ≥ 0.

2. d((a1, . . . , am), (b1, . . . , bm)) = 0 ⇔ (a1, . . . , am) = (b1, . . . , bm).

3. d((a1, . . . , am), (b1, . . . , bm)) = d((b1, . . . , bm), (a1, . . . , am)).

4. d((a1, . . . , am), (b1, . . . , bm)) ≤
d((a1, . . . , am), (c1, . . . , cm)) + d((c1, . . . , cm), (b1, . . . , bm)).

Given a distance d : Rm × Rm −→ R, the distance on Lm induced by d is the
mapping d̄ : Lm × Lm −→ R defined by

d̄((la1 , . . . , lam
), ((lb1 , . . . , lbm

)) = d((a1, . . . , am), (b1, . . . , bm)).
4This principle says that the relative ranking between two alternatives would only depend on the
preference or assessments on these alternatives and must not be affected by other alternatives, that
must be irrelevant on that comparison.
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An important class of distances in Rm is constituted by the family of Minkowski
distances {dp | p ≥ 1}, which are defined by

dp((a1, . . . , am), (b1, . . . , bm)) =
(

m∑
i=1
|ai − bi|p

) 1
p

,

for all (a1, . . . , am), (b1, . . . , bm) ∈ Rm.
We choose this family due to the fact that it is parameterized and it includes from

the well-known Manhattan (p = 1) and Euclidean (p = 2) distances, to the limit case,
the Chebyshev distance (p = ∞). The possibility of choosing among different values
of p ∈ (1,∞) gives us a very flexible method, and we can choose the most appropriate
p according to the objectives we want to achieve with the election.

Given a Minkowski distance on Rm, we consider the induced distance on Lm which
works with the assessments vector through the subindexes of the corresponding labels:

d̄p((la1 , . . . , lam), (lb1 , . . . , lbm)) = dp((a1, . . . , am), (b1, . . . , bm)).

Remark 3.1. The ordinal scale of linguistic terms we use, L, is just a finite scale
whose consecutive terms are equidistant. Following Balinski and Laraki [2], each term
of the scale has associated a linguistic label. What matters is not the name of the
label but the position of the label in the ordinal scale. This is the reason we consider
the number of changes we need for going from a term to another one5. In this sense,
the distance between two labels’ vectors is based on the number of positions that we
need to cover to go from one to another, in each of its components. To move from
lai

to lbi
we need to cover |ai − bi| positions. For instance between l5 and l2 we

need to cover |5− 2| = 3 positions: from l5 to l4, from l4 to l3 and from l3 to l2.

3.2 Election of a collective assessment for each alternative
Our proposal is divided into several stages. First we assign a collective assessment
l(xj) ∈ L to each alternative xj ∈ X which minimizes the distance between the
vector of the individual assessments, (v1

j , . . . , vm
j ) ∈ Lm, and the vector of m replicas

of the desired collective assessment, (l(xj), . . . , l(xj)) ∈ Lm.
For this, first we establish the set L(xj) of all the labels lk ∈ L satisfying

d̄p((v1
j , . . . , vm

j ), (lk, . . . , lk)) ≤ d̄p((v1
j , . . . , vm

j ), (lh, . . . , lh)),
for each lh ∈ L, where (lh, . . . , lh) and (lk, . . . , lk) are the vectors of m replicas of lh
and lk, respectively. Thus, L(xj) consists of those labels that minimize the distance
to the vector of individual assessments. Notice that L(xj) = {lr, . . . , lr+s} is always
an interval, because it contains all the terms from lr to lr+s, where r ∈ {1, . . . , g}
and 0 ≤ s ≤ g − r. Two different cases are possible:

1. If s = 0, then L(xj) contains a single label, which will automatically be the
collective assessment l(xj) of the alternative xj .

2. If s > 0, then L(xj) has more than one label. In order to select the most
suitable label of L(xj), we now introduce L∗(xj), the set of all the labels lk ∈
L(xj) that fulfill

d̄p((lk, . . . , lk), (lr, . . . , lr+s))≤ d̄p((lh, . . . , lh), (lr, . . . , lr+s)),
5This is not exactly the same that identifying each linguistic label with a number.
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for all lh ∈ L(xj), where (lk, . . . , lk) and (lh, . . . , lh) are the vectors of s + 1
replicas of lk and lh, respectively.

(a) If the cardinality of L(xj) is odd, then L∗(xj) has a unique label, the
median term, that will be the collective assessment l(xj).

(b) If the cardinality of L(xj) is even, then L∗(xj) has two different labels,
the two median terms. In this case, similarly to the proposal of Balinski
and Laraki [2], we consider the lowest label in L∗(xj) as the collective
assessment l(xj).

It is worth pointing out two different cases when we are using induced Minkowski
distances.

1. If p = 1, we obtain the same collective assessments that those given by MJ,
the median6 of the individual assessments. However, the final results are not
necessarily the same that in MJ because we use a different tie-breaking process,
as is shown later.

2. If p = 2, each collective assessment is the closest label to the “mean” of the
individual assessments7, which is the one chosen by the Range Voting (RV)
method8 (see Smith [9]).

It is interesting to note that when we choose p ∈ (1, 2), we find situations where
the collective assessment is located between the median and the “mean”. This allows
us to avoid some of the problems associated with MJ and RV. See García-Lapresta
and Martínez-Panero [7] for a different proposal based on centered OWA operators
(Yager [10]).

3.3 Tie-breaking method
Usually there exist more alternatives than linguistic terms, so it is very common to
find several alternatives sharing the same collective assessment. But irrespectively of
the number of alternatives, it is clear that some of them may share the same collective
assessment, even when the individual assessments are very different. For these reasons
it is necessary to introduce a tie-breaking method that takes into account not only the
number of individual assessments above or below the obtained collective assessment
(as in MJ), but the positions of these individual assessments in the ordered scale
associated with L.

As mentioned above, we will calculate the difference between two distances: one
between l(xj) and the assessments higher than l(xj) and another one between l(xj)
and the assessments lower than the l(xj). Let v+

j and v−
j the vectors composed

by the assessments vi
j from

(
v1

j , . . . , vm
j

)
higher and lower than the term l(xj),

respectively. First we calculate the two following distances:

D+(xj) = d̄p

(
v+

j , (l(xj), . . . , l(xj))
)

,

D−(xj) = d̄p

(
v−

j , (l(xj), . . . , l(xj))
)

,

6It is more precise to speak about the interval of medians, because if the assessments’ vector has an
even number of components, then there are more than one median. See Monjardet [8].

7The chosen label is not exactly the arithmetic mean of the individual assessments, because we are
working with a discrete spectrum of linguistic terms and not in the continuous one of the set of real
numbers.

8RV works with a finite scale given by equidistant real numbers, and it ranks the alternatives ac-
cording to the arithmetic mean of the individual assessments.
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where the number of components of (l(xj), . . . , l(xj)) is the same that in v+
j and

in v−
j , respectively (obviously, the number of components of v+

j and v−
j can be

different).
Once these distances have been determined, a new index D(xj) ∈ R is calculated

for each alternative xj ∈ X: the difference between the two previous distances:

D(xj) = D+(xj)−D−(xj).

By means of this index, we provide a kind of compensation between the individual
assessments that are bigger and smaller than the collective assessment, taking into
account the position of each assessment in the ordered scale associated with L.

For introducing our tie-breaking process, we finally need the distance between the
individual assessments and the collective one:

E(xj) = d̄p

(
(v1

j , . . . , vm
j ), (l(xj), . . . , l(xj))

)
.

Notice that for each alternative xj ∈ X, E(xj) minimizes the distance between
the vector of individual assessments and the linguistic labels in L, such as has been
considered above in the definition of L(xj).

The use of the index E(·) is important in the tie-breaking process because if two
alternatives share the same couple (l(·), D(·)), the alternative with the lower E(·)
is the alternative whose individual assessments are more concentrated around the
collective assessment, i.e., the consensus is higher.

Summarizing, for ranking the alternatives we will consider the following triplet

T (xj) = (l(xj), D(xj), E(xj)) ∈ L×R× [0,∞)

for each alternative xj ∈ X.
The sequential process works in the following way:

1. We rank the alternatives through the collective assessments l(·). The alterna-
tives with higher collective assessments will be preferred to those with lower
collective assessments.

2. If several alternatives share the same collective assessment, then we break the
ties through the D(·) index. The alternatives with a higher D(·) will be pre-
ferred.

3. If there are still ties, we break them through the E(·) index, in such a way such
that the alternatives with a lower E(·) will be preferred.

Formally, the sequential process can be introduced by means of the lexicographic
weak order � on X defined by xj � xk if and only if

1. l(xj) ≥ l(xk) or
2. l(xj) = l(xk) and D(xj) > D(xk) or
3. l(xj) = l(xk), D(xj) = D(xk) and E(xj) ≤ E(xk).

Remark 3.2. Although it is possible that ties still exist, whenever two or more
alternatives share T (·), these cases are very unusual when considering metrics with
p > 1.9 For instance, consider seven voters that assess two alternatives x1 and x2
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x1 l2 l2 l2 l2 l4 l4 l6
x2 l2 l2 l2 l2 l3 l5 l6

Table 3: Individual assessments

by means of the set of linguistic terms given in Table 1. Table 3 includes these
assessments arranged from the lowest to the highest labels.

It is easy to see that for p = 1 we have T (x1) = T (x2) = (l2, 8, 8), then x1 ∼ x2
(notice that MJ and RV also provide a tie). However, if p > 1, the tie disappears.
So, we have x2 � x1, excepting for p ∈ (1.179, 1.203), where x1 � x2.

4 Two illustrative examples

This section focus on how the election of the parameter p is relevant in the final
ranking of the alternatives. We show this fact through two different examples. The
first one considers a case where the median of the individual assessments is the same
for all the alternatives. And the second one considers a situation where the mean of
the individual assessments’ subindexes is the same for all the alternatives. In both
examples we use the set of six linguistic terms L = {l1, . . . , l6} whose meaning is
shown in Table 1.

As mentioned above, the sequential process for ranking the alternatives is based
on the triplet T (xj) = (l(xj), D(xj), E(xj)) for each alternative xj ∈ X. How-
ever, by simplicity, in the following examples we only show the first two components,
(l(xj), D(xj)). In these examples we also obtain the outcomes provided by MJ and
RV.

Example 4.1. Table 4 includes the assessments given by six voters to four alterna-
tives x1, x2, x3 and x4 arranged from the lowest to the highest labels.

x1 l1 l2 l4 l4 l4 l6
x2 l1 l1 l3 l4 l6 l6
x3 l2 l2 l2 l4 l5 l6
x4 l1 l1 l4 l5 l5 l5

Table 4: Assessments in Example 4.1

Notice that the mean of the individual assessments’ subindexes is the same for
the four alternatives, 21

6 = 3.5. Since RV ranks the alternatives according to this
mean, it produces a tie x1 ∼ x2 ∼ x3 ∼ x4. However, it is clear that this outcome
might not seem reasonable, and that other rankings could be justified. Using MJ,
where l(x1) = l(x4) = l4 > l3 = l(x2) > l2 = l(x3) and, according to the MJ tie-
breaking process, we have t(x1) = −1 < 1 = t(x4). Thus, MJ produces the outcome
x4 � x1 � x2 � x3.

We now consider the distance-based procedure for seven values of p. In Table
5 we can see the influence of these values on (l(xj), D(xj)), for j = 1, 2, 3. The
corresponding rankings are included in Table 6.

For p = 1, we have T (x1) = (l4,−3, 7), T (x2) = (l3, 10, 11), T (x3) = (l2, 9, 9)
and T (x4) = (l4,−3, 9). Then, we obtain the ranking x1 � x4 � x2 � x3, a different
9The Manhattan metric (p = 1) produces more ties than the other metrics in the Minkowski family
because of the simplicity of its calculations.
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p = 1 p = 1.25 p = 1.5 p = 1.75 p = 2 p = 5 p = 10
x1 (l4, −3) (l4, −2.375) (l4, −2.008) (l4, −1.770) (l3, 1.228) (l3, 0.995) (l3, 0.000)

x2 (l3, 10) (l3, 2.264) (l3, 1.888) (l3, 1.669) (l3, 1.530) (l3, 1.150) (l3, 1.072)

x3 (l2, 9) (l3, 2.511) (l3, 2.254) (l3, 2.104) (l3, 2.010) (l4, −0.479) (l4, −0.232)

x4 (l4, −3) (l4, −2.815) (l4, −2.682) (l4, −2.585) (l3, 0.777) (l3, 0.199) (l3, 0.089)

Table 5: (l(xj), D(xj)) in Example 4.1

MJ p = 1 p = 1.25 p = 1.5 p = 1.75 p = 2 p = 5 p = 10
x4 x1 x1 x1 x1 x3 x3 x3
x1 x4 x4 x4 x4 x2 x2 x2
x2 x2 x3 x3 x3 x1 x1 x1
x3 x3 x2 x2 x2 x4 x4 x4

Table 6: Rankings in Example 4.1

outcome than obtained using MJ. For p = 1.25, p = 1.5 and p = 1.75, we obtain
x1 � x4 � x3 � x2; and for p = 2, p = 5 and p = 10, we have x3 � x2 � x1 � x4.

Example 4.2. Similarly to the previous example, Table 7 includes the assessments
given by seven voters to three alternatives x1, x2 and x3 arranged from the lowest to
the highest labels.

x1 l1 l1 l2 l3 l6 l6 l6
x2 l2 l3 l3 l3 l6 l6 l6
x3 l3 l3 l3 l3 l4 l4 l4

Table 7: Assessments in Example 4.2

Clearly, the individual assessments of the three alternatives share the same median,
l3. According to the MJ tie-breaking process, we have

t(x1) = 0 < 1 = t(x2) = t(x3)
N+(x1) = N+(x2) = N+(x3) = 3
N−(x3) = 0 < 1 = N−(x2) < 3 = N−(x1).

Thus, MJ produces the outcome x3 � x2 � x1.
This outcome does not seem logical, because x2 has a clear advantage over x3. On

the other hand, RV ranks order the alternatives as follows: x2 � x1 � x3, since the
mean of the individual assessments’ subindexes are 3.571, 4.143 and 3.429 for x1,
x2 and x3, respectively.

We now consider the distance-based procedure for seven values of p, the same
considered in the previous example. Table 8 shows the influence of these values on
(l(xj), D(xj)), for j = 1, 2, 3.

Notice that in this example the same ranking is obtained for all the considered
values of p: x2 � x1 � x3. This outcome coincides with RV, and it is more consistent
than that obtained by MJ.
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p = 1 p = 1.25 p = 1.5 p = 1.75 p = 2 p = 5 p = 10
x1 (l3, 4) (l3, 3.168) (l3, 2.702) (l4, −1.475) (l4, −1.332) (l4, −1.000) (l4, −0.986)

x2 (l3, 8) (l4, 0.975) (l4, 0.922) (l4, 0.868) (l4, 0.818) (l4, 0.455) (l4, 0.235)

x3 (l3, 3) (l3, 2.408) (l3, 2.080) (l3, 1.873) (l3, 1.732) (l3, 1.246) (l3, 1.116)

Table 8: (l(xj), D(xj)) in Example 4.2

5 Concluding remarks

In this paper we have presented an extension of the Majority Judgement voting system
developed by Balinski and Laraki [2, 3, 4, 5]. This extension is based on a distance
approach but it also uses linguistic labels to evaluate the alternatives. We choose as
the collective assessment for each alternative a label that minimizes the distance to
the individual assessments. It is important to note that our proposal coincides in this
aspect with Majority Judgement whenever the Manhattan metric is used.

We also provide a tie-breaking process through the distances between the individ-
ual assessments higher and lower than the collective one. This process is richer than
the one provided by Majority Judgement, which only counts the number of alterna-
tives above or below the collective assessment, irrespectively of what they are. We
also note that our tie-breaking process is essentially different to Majority Judgement
even when the Manhattan metric is considered.

It is important to note that using the distance-based approach we pay attention to
all the individual assessments that have not been chosen as the collective assessment.
With the election of a specific metric of the Minkowski family we are deciding how to
evaluate these other assessments. We may distinguish four cases:

1. If p = 1, the collective assessment is just the median label and no other individ-
ual assessment is relevant in this stage. However, in the tie-breaking process, all
the individual assessments are taken into account, each of them with the same
weight or importance.

2. If p = 2, the collective assessment is a kind of “mean” of the individual as-
sessments because it minimizes the Euclidean distance to the individual assess-
ments. In this stage all the voters have the same importance. However, in the
tie-breaking process we are giving more importance to the assessments that are
further to the collective assessment than to those labels that are closer to the
collective assessment.

3. If p ∈ (1, 2), we are moving between the two previous cases. The collective
assessment gives less importance to the median of the individual assessments and
more to the other assessments whenever p increases. In the tie-breaking process
higher values of p give more importance to extreme individual assessments and
the smaller p, the more egalitarian the procedure will be (with the individual
assessments).

4. If p ∈ (2,∞), the collective assessment depends on the extreme assessments
more than on the central ones, the higher p, the more intense this dependency
will be. If they are balanced in both sides, this has no effect in the final outcome.
But if one of the sides has more extreme opinions, the collective label will go
close to them. The tie-breaking process gives also more weight to the extreme
opinions.
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These aspects provide flexibility to our extension and it allows to devise a wide
class of voting systems that may avoid some of the drawbacks related to Majority
Judgement and Range Voting without losing their good features. This becomes spe-
cially interesting when the value of the parameter p in the Minkowski family belongs
to the open interval (1, 2), since p = 1 and p = 2 correspond to the Manhattan
and the Euclidean metrics, respectively, just the metrics used in Majority Judgement
and Range Voting. For instance, the election of p = 1.5 allows us to have a kind of
compromise between both methods.

As shown in the previous examples, when the value of parameter p increases,
the distance-based procedure focuses more and more on the extreme assessments.
However, if the individual assessments are well balanced on both sides, the outcome
is not very affected by the parameter p.

In further research we will analyze the properties of the presented extension of
Majority Judgement within the Social Choice framework.
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