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Abstract
Given the plane triangle ∆ = { [x, y] : 0 ≤ x, 0 ≤ y, x + y ≤ 4 } and the transformation
F : ∆ → ∆, [x, y] 7→ [x(4 − x − y), xy] we give a lower estimate of the number of interior
periodic orbits with period n ≤ 36.
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1 Introduction

We study periodic points of the map F : [x, y] 7→ [x(4 − x − y), xy] lying inside the
triangle

∆ = { [x, y] : 0 ≤ x, 0 ≤ y, x+ y ≤ 4 } .

The map F maps the triangle ∆ onto itself. This map has been studied in the
papers [8], [4],[5],[6] and is sometimes called Lotka–Volterra. Y. Avishai and D. Berend
in [1] (see also [2] and [3]) studied a discrete system related with the dynamics of the
map F : ∆ → ∆. The basic transformation considered in [1] is H[x, y] = [y, x2y −
2x2 + 2] defined on R2. The system (∆, F ) was obtained from (R2, H) employing
some conjugacy reductions. A. N. Sharkovskǐı in [7] stated some open problems on
the dynamics of the map F . It is easy to find three fixed points of the map F , namely
[0, 0], [3, 0] and [1, 2]. (Periodic points on the lower side of ∆ are well known, because
the restriction of F to the lower side is the logistic map f : x 7→ x(4 − x) which is
conjugate with the tent map.)
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Figure 1: Interior periodic points of the map F whose periods are ≤ 36. Such interior
periodic points are white. The black part of the triangle does not contain those points.

Until recently nothing has been known on the existence of interior periodic points
different from [1, 2]. Only in 2006, in [4], the interior point [1 −

√
2

2 , 1 +
√

2
2 ] with

period 4 was found. Trying to find other interior periodic points, we started to study
periodic points by numerical experiments and soon we found the point [1, 3+

√
5

2 ] with
period 6 and numerically also many other periodic points. We omit these numerical
experiments because they are not necessary for reading the present paper. In fact,
after a careful analysis of them we were able to prove an exact result, Theorem 4.3,
which was proved in [6]. It implies the existence of interior periodic points of all
periods n ≥ 4 inside ∆. The results of our numerical experiments are illustrated on
Fig. 1. It contains about 5.4 · 1010 periodic points with period n ≤ 36.

The present paper is a continuation of [6]. Our main result is Theorem 3.3 and
Table 1.

2 Notations and preliminary results

We denote by [x, y] a point in the plane, while (α, β) and 〈α, β〉 are open and closed
intervals on the real line. Throughout the paper we denote by F the map of the plane
R2 given by F [x, y] = [x(4− x− y), xy]. Let ∆ = { [x, y] : 0 ≤ x, 0 ≤ y, x+ y ≤ 4 }.
The sides of the triangle ∆ are denoted by a, b and c as it is shown in Fig. 2. It is
easy to see that F (∆) = ∆. Note that F [x, 0] = [f(x), 0], where

f : 〈0, 4〉 → 〈0, 4〉, f(x) = x(4− x)
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Figure 2: Notations concerning the triangle ∆.

is the logistic map. Note that any point x ∈ 〈0, 4〉 may be written in the form
x = 4 sin2 t with t ∈ 〈0, π2 〉 and in this case

f(x) = f(4 sin2 t) = 4 sin2 t(4− 4 sin2 t) = 16 sin2 t cos2 t (2.1)
= 4 sin2 2t = 4 sin2 (π − 2t) .

The logistic map f is conjugate with the tent map g : 〈0, 1〉 → 〈0, 1〉, g(t) =
1−|1−2t| via the conjugation h : 〈0, 1〉 → 〈0, 4〉, h(t) = 4 sin2(πt/2). Since any fixed
point of the map gn is of the form 2k

2n±1 , any lower fixed point of the map Fn is of the
form

[
4 sin2 kπ

2n±1 , 0
]
where n and k are integers such that 0 < n and 0 ≤ 2k < 2n±1.

It is easy to see that the Jacobi matrix of the map F at the point [x, y] has the form(
4− 2x− y −x

y x

)
.

Therefore the Jacobi matrix of the map F at the point [x, 0] has the form(
4− 2x −x

0 x

)
.

It means that the Jacobi matrix of the map Fn at the point [x0, 0] has the form( ∏n−1
i=0 (4− 2xi) µ

0
∏n−1
i=0 xi

)
,
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where xi = f i(x0). As we shall see, the value of µ is unimportant. Clearly, the Jacobi
matrix of the map Fn at the point [0, 0] has the form(

4n 0
0 0

)
.

(As we shall see it is an exception. For the other lower fixed points of the map Fn
we have the eigenvalue 2n instead of 4n). Let x0 > 0 and P = [x0, 0] ∈ ∆ be a fixed
point of the map Fn. So x0 = 4 sin2 kπ

2n±1 where k ≥ 1 and

xi = 4 sin2 2ikπ
2n ± 1 ,

4− 2xi = 4 cos 2i+1kπ

2n ± 1 ,

sin 2nkπ
2n ± 1 = ∓(−1)k sin kπ

2n ± 1 ,

cos 2nkπ
2n ± 1 = (−1)k cos kπ

2n ± 1 ,

sin 2nkπ
2n ± 1 = 2n sin kπ

2n ± 1

n−1∏
i=0

cos 2ikπ
2n ± 1 ,

n−1∏
i=0

cos 2ikπ
2n ± 1 = ∓(−1)k

2n ,

n−1∏
i=0

(4− 2xi) = 4n
n−1∏
i=0

cos 2i+1kπ

2n ± 1 = (−1)k4n
n−1∏
i=0

cos 2ikπ
2n ± 1 = ∓2n .

Hence the Jacobi matrix of the map Fn at the point P has the form(
λ1 µ
0 λ2

)
=
(
∓2n µ

0
∏n−1
i=0 xi

)
=
( ∓2n µ

0
∏n−1
i=0 4 sin2 2ikπ

2n±1

)
. (2.2)

So,

λ2 =
n−1∏
i=0

4 sin2 2ikπ
2n ± 1 .

For λ2 we have the possibilities

(i) 0 ≤ λ2 < 1, i.e. [x0, 0] is a saddle point, e.g. x0 = 4 sin2 π
17 ,

(ii) λ2 = 1, i.e. [x0, 0] is a non-hyperbolic point, e.g. x0 = 4 sin2 π
15 ,

(iii) 1 < λ2, i.e. [x0, 0] is a repulsive point, e.g. x0 = 4 sin2 3π
17 .

Remark 2.1. All the chosen points [x0, 0] in (i)-(iii) have period 4. Lower periodic
points with period n and 0 < λ2 < 1 appear for all n ≥ 4. Lower periodic points with
period n and λ2 = 1 appear for infinitely many n, e.g. n = 4 · 3i · 5j , where i ≥ 0,
j ≥ 0. Lower periodic points with period n and 1 < λ2 appear for all n ≥ 1.

3 Estimates of the number of lower saddle periodic points.

In connection with saddle points and the main result, Theorem 4.3, it is necessary to
have at least a sufficient condition for a fixed point of Fn to be saddle. Therefore we
include the following theorem.
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Theorem 3.1 ([6]). Let P =
[
4 sin2 kπ

2n±1 , 0
]
where n > 0 and k are integers such

that
1 ≤ k ≤

√
2(2n ± 1)

π · 2
√

2n+1/4
. (3.1)

Then P is a saddle fixed point of Fn.

Remark 3.2. Note that for 4 ≤ n ≤ 13 all points P =
[
4 sin2 kπ

2n±1 , 0
]
, where k

satisfies (3.1), have period n (and not less). If n = 14 and k = 127 or 129 then (3.1)
is satisfied (with the sign −) and the point P =

[
4 sin2 kπ

2n−1 , 0
]
has period 7.

Unfortunately, the previous theorem gives only sufficient condition for a saddle
point. So fix an integer n, the choice of signs ± and an integer k such that 1 ≤ k <
2n±1

2 . We want to decide whether the point P =
[
4 sin2 kπ

2n±1 , 0
]
is a saddle point of

the map Fn and whether its period is n (because it is a divisor of n in general). So
we need to decide whether λ2 < 1, λ2 = 1 or λ2 > 1, where

λ2 =
n−1∏
i=0

4 sin2 2ikπ
2n ± 1 .

Put k0 = k and

ki+1 =
{

2ki if 2ki < 2n±1
2 ,

2n ± 1− 2ki otherwise.

Then
√
λ2 =

∏n−1
i=0 2 sin kiπ

2n±1 . If ki = k for 0 < i < n − 1 then the period of the
point P =

[
4 sin2 kπ

2n±1 , 0
]
is less than n. If ki < k for 0 < i < n − 1 than the point

P belongs to the orbit of the point
[
4 sin2 kiπ

2n±1 , 0
]
and this point has been already

considered (we assume that we consider k from 1 to 2n±1
2 − 1

2 with the step 1). So, if
ki ≤ k the evaluation of

√
λ2 =

∏n−1
i=0 2 sin kiπ

2n±1 is not necessary and this evaluation
may be interrupted. To find the number of saddle periodic points of the map F with
period n it is sufficient to find the number of saddle periodic orbits and multiply this
number by n. For any lower saddle periodic orbit it is sufficient to find that point
which has the smallest x–coordinate.

Theorem 3.3. Consider integers n ≥ 1 and 1 ≤ k < 2n±1
2 for a fixed choice of ±.

Let

λ2 =
n−1∏
i=0

4 sin2 2ikπ
2n ± 1 < 1

and
4 sin2 kπ

2n ± 1 < 4 sin2 2ikπ
2n ± 1 for 1 ≤ i ≤ n− 1 .

Then k is odd and
k

2n ± 1 <
1
12 . (3.2)

Proof. If k = 2j, then 4 sin2 2n−1kπ
2n±1 = 4 sin2 jπ

2n±1 < 4 sin2 kπ
2n±1 . Put xi = 4 sin2 2ikπ

2n±1 .
Clearly, xi+1 = f(xi) and fn(x0) = x0. Assume that λ2 =

∏n−1
i=0 xi < 1, and
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xi > x0 for 0 < i < n. If k
2n±1 > 1

6 then x0 > 1, xi > x0 > 1 for 1 ≤ i ≤ n − 1
and λ2 > 1. So we obtain a contradiction. If k

2n±1 = 1
6 then x0 = 1 and xi = 3

for i > 0 and we have again a contradiction. We shall show that the assumption
1

12 <
k

2n±1 <
1
6 leads to a contradiction. Let I be the set of all integers i such that

0 ≤ i < n and xi < 1. Let i0 < i1 · · · < ij be all elements of I. Put also ij+1 = n.
Then λ2 =

∏j
s=0

∏is+1−1
i=is xi. Since λ2 < 1 then

∏is+1−1
i=is xi < 1 at least for one

s = 0, · · · , j. Since 2−
√

3 = 4 sin2 π
12 < x0 < 4 sin2 π

6 = 1 and x0 ≤ xis we have

2−
√

3 = 4 sin2 π

12 < xis < 4 sin2 π

6 = 1 ,

1 < f(xis) = xis+1 < 3 ,
f(xis+1) = xis+2 > 3 .

If is+1 = is + 3 then 2−
√

3 = 4 sin2 π
12 < xis+3 < 4 sin2 π

6 = 1. It is possible only for
xis+2 > 2+

√
3, because f is decreasing on 〈2, 4〉, xis+3 = f(xis+2) and f(2+

√
3) = 1.

We obtain xis · xis+1 · xis+2 > (2−
√

3) · 1 · (2−
√

3) = 1 what is a contradiction. If
is+1− is > 3 then the difference is+1− is is odd, xis+2j > 3 and 1 < xis+2j+1 < 3 for
2j < is+1 − is − 1. Therefore

∏is+1−1
i=is xi > (2 −

√
3) · 9 > 1 what is a contradiction.

So k
2n±1 ≤

1
12 . If k

2n±1 = 1
12 then x0 = 2−

√
3, x1 = 1 and xi = 3 for i ≥ 2 which is

impossible. We have k
2n±1 <

1
12 .

Remark 3.4. The previous theorem shows that it is not necessary to consider all
possible k but only odd k which satisfy (3.2). It shortens the computation of saddle
periodic orbits and points 12 times. In fact, with a little care but essentially in the
same way, for n ≥ 5 the inequality

k

2n ± 1 <
1
17

can be proved. (For n = 4 we have 3 periodic orbits. Only one of them is a saddle
orbit, see Remark 2.1.) Thus for n ≥ 5 the computation can be shortened 17 times.

We denote by sn the number of lower saddle periodic orbits and by pn = n ·sn the
number of lower saddle periodic points of the map F with period n. Table 1 contains
values sn and pn for 1 ≤ n ≤ 36.

4 Relationship between lower and interior periodic points

Let P = [x, y] ∈ ∆ be a periodic point of the map F and F i[x0, y0] = [xi, yi].
Then xi 6= 2, because otherwise we would have F [xi, yi] = [4 − 2yi, 2yi], F 2[xi, yi] =
[0, 8yi − 4y2

i ], F 3[xi, yi] = [0, 0], F j [xi, yi] = [0, 0] for j ≥ 3 and Fm[x0, y0] = [0, 0]
for all m ≥ i + 3 which is a contradiction. For any fixed point P of the map Fn we
define its itinerary as a sequence W = (wi)n−1

i=0 , where

wi =
{
L if xi < 2
R if xi > 2 .

More generally, any sequence W = (wi)n−1
i=0 of letters L and R will also be called an

itinerary. Such an itinerary is said to be aperiodic if for any proper divisor k of n
there is j < n− k such that wj 6= wj+k.
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n sn pn = n · sn n·sn

2n

1 1 1 0.5
2 0 0 0
3 0 0 0
4 1 4 0.250000
5 2 10 0.312500
6 3 18 0.281250
7 5 35 0.273438
8 11 88 0.343750
9 18 162 0.316406
10 37 370 0.361328
11 72 792 0.386719
12 122 1464 0.357422
13 223 2899 0.353882
14 418 5852 0.357178
15 793 11895 0.363007
16 1500 24000 0.366211
17 2903 49351 0.376518
18 5477 98586 0.376076
19 10412 197828 0.377327
20 19890 397800 0.379372
21 38090 799890 0.381417
22 72892 1603624 0.382334
23 140345 3227935 0.384800
24 270239 6485736 0.386580
25 520870 13021750 0.388078
26 1005368 26139568 0.389510
27 1945782 52536114 0.391425
28 3766954 105474712 0.392924
29 7298398 211653542 0.394235
30 14159124 424773720 0.395601
31 27492108 852255348 0.396862
32 53415336 1709290752 0.397975
33 103871727 3427766991 0.399045
34 202193966 6874594844 0.400154
35 393867993 13785379755 0.401207
36 767755134 27639184824 0.402203

Table 1: Number of saddle orbits and saddle periodic points with period n for 1 ≤
n ≤ 36.
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Remark 4.1. Itineraries are usually defined as infinite sequences. In this paper we
consider only itineraries of fixed points of the iterates Fn and so finite sequences are
sufficient.

Proposition 4.2 ([6]). For any itinerary W = (wi)n−1
i=0 there is a unique lower fixed

point P of the map Fn with itinerary W . The period of P is n if and only if W is
aperiodic.

Now we are ready to formulate the main result on periodic point of the map F .

Theorem 4.3 ([6]). Let P be a lower saddle periodic point of the map F . Then there
is an interior periodic point Q of F with the same itinerary and period.

Let FixInt(Fn) be the set of all interior fixed points of the map Fn and PerInt(F, n)
be the set of all interior n-periodic points of the map F .

Theorem 4.4 ([6]). For cardinalities of FixInt(Fn) and PerInt(F, n) we have the
estimates

(i) # FixInt(Fn) ≥ 2
√

2
π · 2

n−
√

2n+1/4 − 2

(ii) # PerInt(F, n) ≥ 2
√

2
π 2n−

√
2n+1/4 − 21+ n

2 + 1
(iii) # PerInt(F, n) ≥ (2− ε)n for 0 < ε < 1 and sufficiently large n.

Remark 4.5. The estimate given in (ii) is useless for n ≤ 12. In such a case it may
be used that # PerInt(F, n) ≥ 2

√
2

π 2n−
√

2n+1/4− 2. Moreover, for small n the number
of lower saddle n-periodic points of F may be easily found.

The points [4 sin2 π
2n±1 , 0] have period n. It follows from Theorem 3.1 that they

are saddle fixed points of Fn for n ≥ 4 and n ≥ 5 provided we choose the sign + and
−, respectively. So we obtain the following theorem.

Theorem 4.6 ([6]). For any n ≥ 4 there is an interior point Q of the map F with
period n.

The following theorem is also a consequence of Theorem 4.3.

Theorem 4.7. For 1 ≤ n ≤ 36 the third column of Table 1 gives a lower estimate of
# PerInt(F, n).

Note that these estimates, for 1 ≤ n ≤ 36, are much better than those from
Theorem 4.4.

5 Existence and nonexistence of periodic points with prescribed itineraries

Proposition 4.2 says that the lower periodic points may be described by their itineraries.
In this section we prove that for some itineraries interior periodic points need not ex-
ist. It is sufficient to consider itineraries W = (wi)n−1

i=0 with w0 = L and wn−1 = R,
see the proof of Theorem 4.3. We shall write such itineraries in the form W =
Lj1Rk1 . . . LjmRkm , where all ji and ki are positive integers and n = j1 + k1 + . . . +
jm + km.

Now we show that interior fixed points of the map Fn with itineraries containing
too many R’s do not exist.
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Theorem 5.1 ([6]). Let W = Lj1Rk1 · · ·LjmRkm be an itinerary such that ji > 0,
ki > 0 and

m∑
i=1

(ji + ki) = n. If

m∑
i=1

ki ≥
ln 2
ln 3

m∑
i=1

j2
i −

ln(4− 2
√

2)
ln 3

m∑
i=1

ji +m, (5.1)

then there is no interior fixed point of the map Fn with the itinerary W .

The following theorem can be sometimes more useful than the previous one.

Theorem 5.2 ([6]). Let W = Lj1Rk1 · · ·LjmRkm be an itinerary such that ji > 0,
ki > 0 and

m∑
i=1

(ji + ki) = n. If

m∑
i=1

ki ≥
m∑
i=1

j2
i −

ln(4− 2
√

2)
ln 2

m∑
i=1

ji , (5.2)

then there is no interior fixed point of the map Fn with the itinerary W .

On the other hand, the following theorem shows that if an itineraryW of length n
contains sufficiently many L’s then the map Fn has an interior fixed point with this
itinerary.

Theorem 5.3 ([6]). Let W = Lj1Rk1 · · ·LjmRkm be an itinerary such that ji > 0,
ki > 0 and

m∑
i=1

(ji + ki) = n. If

m∑
i=1

ki ≤
ln 2
ln 3

m∑
i=1

j2
i −

ln π2

2
ln 3

m∑
i=1

ji −
ln 32

3π2

ln 3 m, (5.3)

then there exists an interior fixed point of the map Fn with itinerary W .

6 Conclusion and future directions

Many problems concerning periodic points of the Lotka–Volterra map remain open.
On the base of our numerical experiments and Table 1 we formulate the following
conjectures.

Conjecture 6.1. If P ∈ ∆ is a lower repulsive (non-hyperbolic) fixed point of the
map Fn, then there is no interior fixed point of Fn with the same itinerary.

Conjecture 6.2. If P ∈ ∆ is a lower saddle fixed point of Fn, then there is a unique
interior fixed point of Fn with the same itinerary.

Conjecture 6.3.

lim inf
n→∞

# FixInt(Fn)
2n > 0 .

It turns out that the eigenvalue λ2 is related to some open problems in number
theory. In the near future we plan to publish corresponding results.
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