Initial Coefficient Bounds for a Comprehensive Subclass of Sakaguchi Type Functions

Şahsene Altınkaya
Department of Mathematics, Faculty of Arts and Science, Uludag University, Bursa, Turkey
sahsene@uludag.edu.tr

Sibel Yalçın
Department of Mathematics, Faculty of Arts and Science, Uludag University, Bursa, Turkey
syalcin@uludag.edu.tr

Abstract
In this paper, we introduce and investigate a new subclass of the function class Σ of bi-univalent functions defined in the open unit disk. Furthermore, we find estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in this new subclass.

Received 15 April 2015
Accepted in final form 4 November 2015
Communicated with Miroslav Havlicek.

Keywords Bi-univalent functions, Starlike functions with respect to symmetric points, Coefficient estimates, Sakaguchi functions.

1 Introduction and Definitions
Let A denote the class of analytic functions in the unit disk

$$U = \{ z \in \mathbb{C} : |z| < 1 \}$$

that have the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n. \quad (1.1)$$

Further, by S we shall denote the class of all functions in A which are univalent in U.

The Koebe one-quarter theorem [8] states that the image of U under every function f from S contains a disk of radius $\frac{1}{4}$. Thus every such univalent function has an inverse f^{-1} which satisfies

$$f^{-1}(f(z)) = z, \quad (z \in U)$$

and

$$f(f^{-1}(w)) = w, \quad \left(|w| < r_0(f), \quad r_0(f) \geq \frac{1}{4} \right),$$

where

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - (5a_2^3 - 5a_2 a_3 + a_4) w^4 + \cdots.$$
A function \(f(z) \in A \) is said to be bi-univalent in \(U \) if both \(f(z) \) and \(f^{-1}(z) \) are univalent in \(U \). Let \(\Sigma \) denote the class of bi-univalent functions defined in the unit disk \(U \).

If the functions \(f \) and \(g \) are analytic in \(U \), then \(f \) is said to be subordinate to \(g \), written as
\[
f(z) < g(z), \quad (z \in U)
\]
if there exists a Schwarz function \(w(z) \), analytic in \(U \), with
\[
w(0) = 0 \quad \text{and} \quad |w(z)| < 1 \quad (z \in U)
\]
such that
\[
f(z) = g(w(z)) \quad (z \in U).
\]

Lewin [15] studied the class of bi-univalent functions, obtaining the bound 1.51 for modulus of the second coefficient \(|a_2| \). Subsequently, Netanyahu [17] showed that \(\max |a_2| = \frac{4}{3} \) if \(f(z) \in \Sigma \). Brannan and Clunie [3] conjectured that \(|a_2| \leq \sqrt{2} \) for \(f \in \Sigma \). Brannan and Taha [4] introduced certain subclasses of the bi-univalent function class \(\Sigma \) similar to the familiar subclasses of univalent functions consisting of strongly starlike, starlike and convex functions. They introduced bi-starlike functions and obtained estimates on the initial coefficients. Bounds for the initial coefficients of several classes of functions were also investigated in [1, 3, 7, 9, 13, 14, 16, 19, 21, 22, 23].

Not much is known about the bounds on the general coefficient \(|a_n| \) for \(n \geq 4 \). In the literature, the only a few works determining the general coefficient bounds \(|a_n| \) for the analytic bi-univalent functions [2, 6, 10, 11, 12]. The coefficient estimate problem for each of \(|a_n| \) \(n \in \mathbb{N} \setminus \{1,2\} \); \(\mathbb{N} = \{1,2,3,...\} \) is still an open problem.

Motivated by the earlier work of Sakaguchi [20] on the class of starlike functions with respect to symmetric points denoted by \(S_{\Sigma} \) consisting of functions \(f \in A \) satisfy the condition \(\text{Re} \left(\frac{z f''(z)}{f'(z) - f(-z)} \right) > 0 \), \((z \in U) \), we introduce a new subclass of the function class \(\Sigma \) of bi-univalent functions, and find estimates on the coefficients \(|a_2| \) and \(|a_3| \) for functions in this new subclass.

Definition 1. Let \(h : U \rightarrow \mathbb{C} \), be a convex univalent function such that \(h(0) = 1 \) and \(h(\bar{z}) = \bar{h}(z) \), for \(z \in U \) and \(\text{Re}(h(z)) > 0 \). A function \(f \in \Sigma \) is said to be in the class \(S^{\lambda}_{\Sigma}(\beta, s, t, h) \) if the following conditions are satisfied:
\[
f(\Sigma), \quad e^{i\beta} \left[(s-t)z \right]^{1-\lambda} f'(z) \left[f(sz) - f(tz) \right]^{1-\lambda} < h(z) \cos \beta + i \sin \beta, \quad z \in U \tag{1.2}
\]
and
\[
e^{i\beta} \left[(s-t)w \right]^{1-\lambda} g'(w) \left[g(sw) - g(tw) \right]^{1-\lambda} < h(w) \cos \beta + i \sin \beta, \quad w \in U \tag{1.3}
\]
where \(g(w) = f^{-1}(w), \ s, t, \in \mathbb{C} \) with \(s \neq t, \ |t| \leq 1, \ \beta \in (-\frac{\pi}{2}, \frac{\pi}{2}) \) and \(\lambda > 0 \).

Remark 2. If we set \(h(z) = \frac{1 + Az}{1 + Bz}, \ -1 \leq B < A \leq 1 \), in the class \(S^{\lambda}_{\Sigma}(\beta, s, t, h) \), we have \(S^{\lambda}_{\Sigma}(\beta, s, t, \frac{1+Az}{1+Bz}) \) and defined as
\[
f(\Sigma), \quad e^{i\beta} \left[(s-t)z \right]^{1-\lambda} f'(z) \left[f(sz) - f(tz) \right]^{1-\lambda} < \frac{1+Az}{1+Bz} \cos \beta + i \sin \beta, \quad z \in U
\]
and
\[e^{i\beta} \frac{(s - t)w^{1-\lambda} g'(w)}{[g(sw) - g(tw)]^{1-\lambda}} < \frac{1 + Aw}{1 + Bw} \cos \beta + i \sin \beta, \quad w \in U \]
where \(g(w) = f^{-1}(w) \), \(s, t \in \mathbb{C} \) with \(s \neq t \), \(|t| \leq 1 \), \(\beta \in (-\frac{\pi}{2}, \frac{\pi}{2}) \) and \(\lambda \geq 0 \).

Remark 3. If we set \(h(z) = \frac{1 + (1 - 2\alpha)z}{1 - z} \), \(0 \leq \alpha < 1 \), in the class \(S^\lambda_{\Sigma}(\beta, s, t, h) \), we have \(S^\lambda_{\Sigma}(\beta, s, t, h) \) and defined as
\[
\begin{align*}
 f \in \Sigma, \quad \text{Re} \left\{ e^{i\beta} \frac{(s - t)z^{1-\lambda} f'(z)}{[f(sz) - f(tz)]^{1-\lambda}} \right\} > \alpha \cos \beta, \quad z \in U
\end{align*}
\]
and
\[
\begin{align*}
 \text{Re} \left\{ e^{i\beta} \frac{(s - t)w^{1-\lambda} g'(w)}{[g(sw) - g(tw)]^{1-\lambda}} \right\} > \alpha \cos \beta, \quad w \in U
\end{align*}
\]
where \(g(w) = f^{-1}(w) \), \(s, t \in \mathbb{C} \) with \(s \neq t \), \(|t| \leq 1 \), \(\beta \in (-\frac{\pi}{2}, \frac{\pi}{2}) \) and \(\lambda \geq 0 \).

Lemma 4. (see [13]) Let the function \(\phi(z) \) given by
\[
\phi(z) = \sum_{n=1}^{\infty} B_n z^n
\]
be convex in \(U \). Suppose also that the function \(h(z) \) given by
\[
h(z) = \sum_{n=1}^{\infty} h_n z^n
\]
is holomorphic in \(U \). If \(h(z) < \phi(z), \quad z \in U, \) then \(|h_n| \leq |B_1|, \quad n \in \mathbb{N} = \{1, 2, 3, \ldots\} \).

2 Coefficient Estimates

Theorem 5. Let \(f \) given by \([1.1]\) be in the class \(S^\lambda_{\Sigma}(\beta, s, t, h) \). Then
\[
|a_2| \leq \sqrt{\frac{2|B_1| \cos \beta}{2(\lambda - 1)(s+t)[2+(\lambda - 1)(s+t)] + 2[(\lambda - 1)(s^2+st+t^2) + 3] - \lambda(\lambda - 1)(s+t)^2}}, \quad (2.1)
\]
and
\[
|a_3| \leq \frac{2|B_1| \cos \beta}{2(\lambda - 1)(s+t)[2+(\lambda - 1)(s+t)] + 2[(\lambda - 1)(s^2+st+t^2) + 3] - \lambda(\lambda - 1)(s+t)^2}}. \quad (2.2)
\]

Proof. Let \(f \in S^\lambda_{\Sigma}(\beta, s, t, h) \), \(g \) be the analytic extension of \(f^{-1} \) to \(U \) and \(s, t \in \mathbb{C} \) with \(s \neq t \), \(|t| \leq 1 \) and \(\lambda \geq 0 \). It follows from \([1.2]\) and \([1.3]\) that there exists \(p, q \in P \) such that
\[
e^{i\beta} \frac{(s - t)z^{1-\lambda} f'(z)}{[f(sz) - f(tz)]^{1-\lambda}} = p(z) \cos \beta + i \sin \beta, \quad (z \in U) \quad (2.3)
\]
and
\[
e^{i\beta} \frac{(s - t)w^{1-\lambda} g'(w)}{[g(sw) - g(tw)]^{1-\lambda}} = q(w) \cos \beta + i \sin \beta, \quad (w \in U) \quad (2.4)
\]
where \(p(z) < h(z) \) and \(q(w) < h(w) \) have the forms
\[
p(z) = 1 + p_1 z + p_2 z^2 + \cdots
\]
and
\[q(w) = 1 + q_1 w + q_2 w^2 + \cdots, \]
respectively. It follows from (2.3) and (2.4), we deduce
\[
e^{i\beta} \left[(\lambda - 1) (s + t) + 2 \right] a_2 = p_1 \cos \beta, \tag{2.5} \]
\[
e^{i\beta} \left\{ [(\lambda - 1) (s^2 + t^2 + st) + 3] a_3 - \frac{\lambda(\lambda - 1)}{2}(s + t)^2 a_2^2 + (\lambda - 1) (s + t) [2 + (\lambda - 1)(s + t)] a_2 \right\} = p_2 \cos \beta, \tag{2.6} \]
and
\[
e^{-i\beta} \left[(\lambda - 1) (s + t) + 2 \right] a_2 = q_1 \cos \beta, \tag{2.7} \]
\[
e^{i\beta} \left\{ 2 \left[(\lambda - 1) (s^2 + t^2 + st) + 3 \right] - \frac{\lambda(\lambda - 1)}{2}(s + t)^2 + (\lambda - 1) (s + t) [2 + (\lambda - 1)(s + t)] \right\} a_2^2 \]
\[
- e^{i\beta} \left[(\lambda - 1) (s^2 + t^2 + st) + 3 \right] a_3 = q_2 \cos \beta. \tag{2.8} \]
From (2.5) and (2.7) we obtain
\[p_1 = -q_1. \]
By adding (2.6) to (2.8), we get
\[
e^{i\beta} \left\{ 2 \left[(\lambda - 1) (s^2 + t^2 + st) + 3 \right] - \frac{\lambda(\lambda - 1)}{2}(s + t)^2 + (\lambda - 1) (s + t) [2 + (\lambda - 1)(s + t)] \right\} a_2^2 \]
\[= (p_2 + q_2) \cos \beta. \tag{2.9} \]
Since \(p, q \in h(U) \), applying Lemma 4, we have
\[|p_m| = \left| \frac{p^{(m)}(0)}{m!} \right| \leq |B_1|, \quad m \in \mathbb{N} \tag{2.10} \]
and
\[|q_m| = \left| \frac{q^{(m)}(0)}{m!} \right| \leq |B_1|, \quad m \in \mathbb{N}. \tag{2.11} \]
Applying (2.10), (2.11) and Lemma 4 for the coefficients \(p_1, p_2, q_1 \) and \(q_2 \), we readily get
\[|a_2| \leq \sqrt{\frac{2|B_1| \cos \beta}{2(\lambda - 1)(s + t)(2 + (\lambda - 1)(s + t) + 2[(\lambda - 1)(s^2 + t^2 + st) + 3] - \lambda(\lambda - 1)(s + t)^2}}. \]
Subtracting (2.8) from (2.6) we have
\[
e^{i\beta} \left\{ 2 \left[(\lambda - 1) (s^2 + t^2 + st) + 3 \right] a_3 - 2 \left[(\lambda - 1) (s^2 + t^2 + st) + 3 \right] a_2^2 \right\} = (p_2 - q_2) \cos \beta, \tag{2.12} \]
or, equivalently
\[
a_3 = \frac{e^{-i\beta}(p_2 + q_2) \cos \beta}{2(\lambda - 1)(s + t)(2 + (\lambda - 1)(s + t) + 2[(\lambda - 1)(s^2 + t^2 + st) + 3] - \lambda(\lambda - 1)(s + t)^2)} + \frac{e^{-i\beta}(p_2 - q_2) \cos \beta}{2(\lambda - 1)(s^2 + t^2 + st) + 3}. \]
Applying (2.10), (2.11) and Lemma 4 once again for the coefficients \(p_1, p_2, q_1 \) and \(q_2 \), we readily get
\[|a_3| \leq \frac{2|B_1| \cos \beta}{|2(\lambda - 1)(s + t)(2 + (\lambda - 1)(s + t) + 2[(\lambda - 1)(s^2 + t^2 + st) + 3] - \lambda(\lambda - 1)(s + t)^2)|}. \]
This completes the proof of Theorem 5. \(\square \)
3 Corollaries and Consequences

Corollary 6. Let f given by (1.1) be in the class $S^\lambda_{\Sigma} \left(\beta, s, t, \frac{1+Az}{1+Bz} \right)$. Then

$$|a_2| \leq \sqrt{\frac{2(A-B) \cos \beta}{2(\lambda-1)(s+t)(2+\lambda-1)(s+t)+2(\lambda-1)(s^2+st+3)\left|1-\lambda(s+t)^2\right|}}$$

and

$$|a_3| \leq \frac{2(A-B) \cos \beta}{2(\lambda-1)(s+t)(2+\lambda-1)(s+t)+2(\lambda-1)(s^2+st+3)\left|1-\lambda(s+t)^2\right|},$$

where $-1 \leq B < A \leq 1$, $s, t \in \mathbb{C}$ with $s \neq t$, $|t| \leq 1$ and $\beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $\lambda \geq 0$.

Corollary 7. Let f given by (1.1) be in the class $S^\lambda_{\Sigma} (\beta, s, t, \alpha)$. Then

$$|a_2| \leq \sqrt{\frac{4(1-\alpha) \cos \beta}{2(\lambda-1)(s+t)(2+\lambda-1)(s+t)+2(\lambda-1)(s^2+st+3)\left|1-\lambda(s+t)^2\right|}},$$

and

$$|a_3| \leq \frac{4(1-\alpha) \cos \beta}{2(\lambda-1)(s+t)(2+\lambda-1)(s+t)+2(\lambda-1)(s^2+st+3)\left|1-\lambda(s+t)^2\right|},$$

where $0 \leq \alpha < 1$, $s, t \in \mathbb{C}$ with $s \neq t$, $|t| \leq 1$ and $\beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

If we get $\lambda = 0$ in Theorem 5,

Corollary 8. Let f given by (1.1) be in the class $S^0_{\Sigma} (\beta, s, t, \alpha)$. Then

$$|a_2| \leq \sqrt{\frac{|B_1| \cos \beta}{3-2s-2t+st}},$$

and

$$|a_3| \leq \frac{|B_1| \cos \beta}{3-2s-2t+st}.$$

If we get $\lambda = 0$ in Corollary 6,

Corollary 9. Let f given by (1.1) be in the class $S^0_{\Sigma} (\beta, s, t, \frac{1+Az}{1+Bz})$. Then

$$|a_2| \leq \sqrt{\frac{(A-B) \cos \beta}{3-2s-2t+st}}$$

and

$$|a_3| \leq \frac{(A-B) \cos \beta}{3-2s-2t+st},$$

where $-1 \leq B < A \leq 1$, $s, t \in \mathbb{C}$ with $s \neq t$, $|t| \leq 1$ and $\beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

If we get $\lambda = 0$ in Corollary 7,

Corollary 10. Let f given by (1.1) be in the class $S^0_{\Sigma} (\beta, s, t, \alpha)$. Then

$$|a_2| \leq \sqrt{\frac{2(1-\alpha) \cos \beta}{3-2s-2t+st}},$$

and

$$|a_3| \leq \frac{2(1-\alpha) \cos \beta}{3-2s-2t+st},$$

where $0 \leq \alpha < 1$, $s, t \in \mathbb{C}$ with $s \neq t$, $|t| \leq 1$ and $\beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
References

