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Abstract
It is proved by Malnič, Nedela and Škoviera [Regular maps with nilpotent automorphism groups, Euro-
pean J. Combin. 33 (2012), no. 8, 1974–1986] that regular maps with nilpotent automorphism groups
can be decomposed into a direct product of two regular maps, a regular map whose automorphism
group is a 2-group and a semistar of odd valency. This reduction theorem motivates the classification of
regular maps whose automorphism groups are 2-groups. In this paper, we classify regular maps whose
automorphism groups are 2−groups of maximal nilpotency class.
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1 Introduction

A map is a 2-cell embedding of a connected graph into a closed surface. A map on a
orientable surface is regular if its group of orientation preserving automorphisms acts
regularly on its darts. The best known examples of regular maps are the Platonic solids,
which together with the dihedra and hosohedra give a full list of regular maps on the
sphere. Thorough investigation was not carried out until in the 19th century the connec-
tion between modern topology, group theory, graph theory and the theory of complex
functions was developed [13, 6]. Modern foundations of the theory of maps on orientable
surfaces were built by Jones and Singerman [10], Gross and Tucker [7] and others. There
are three different approaches to the classification of regular maps on orientable surfaces:

(1) classification of regular maps with prescribed supporting surfaces;
(2) classification of regular maps with prescribed automorphism groups;
(3) classification of regular maps with prescribed underlying graphs.
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In the second direction, the classification of regular maps with automorphism group
isomorphic to the group PSL(2, q), where q is a power of some prime p, was in principle
done by Macbeath [14]. A finite group G is called a Hurwitz group if it is a finite nontrivial
quotient of the infinite group

〈x, y|x3 = y2 = (xy)7 = 1〉.

It is well-known that Hurwitz groups are corresponding to the automorphism groups of
some Riemann surface with highest symmetry [9]. It is also obvious that every Hurwitz
group gives rise to a regular map. Determination of the simple groups which are Hurwitz
groups is an important problem. In this context, the symmetric and alternating groups
[4], Suzuki groups [11], Ree groups [12], and various sporadic simple groups [21] have
been investigated. A survey can be found in [1, 3]. In present paper, we consider the
following problem:

Problem 1. Determine and classify regular maps whose automorphism groups are nilpo-
tent.

This problem was studied by Malnič, Nedela and Škoviera in [16], where the authors
have proved that each such map can be decomposed into a direct product of two regular
maps, a regular map whose automorphism group is a 2-group and a semistar of odd
valency. Therefore, the above problem is reduced into the following

Problem 2. Determine and classify regular maps whose automorphism groups are 2-
groups.

If the nilpotency class is small enough, Problem 2 was resolved [16, 5]. For conve-
nience, we define a regular 2-map to be a regular map whose automorphism group is a
2-group. If the automorphism group of a regular 2-map has class c, we will refer to the
map as a regular 2-map of class c. Regular 2-maps of class 1 and 2 have been classified
in the aforementioned paper [16]. Regular 2-maps of class 3 have been recently classified
by Du et al [5]. In present paper, we will classify regular 2-maps of maximal class.

2 Preliminaries

As mentioned before, a topological mapM is a 2-cell embedding i : X ↪→ S of a connected
graph X into a closed surface S such that each component of S− i(X) is homeomorphic
to an open disc in C. The vertices, edges ofM are inherited from the embedded graph
X, whereas the faces are the components of S − i(X). If the supporting surface S is
orientable, the map M is also called orientable, otherwise, M is called non-orientable.
As usual, we define a (combinatorial oriented) map to be a triple (D;R,L), where D is a
nonempty finite set whose elements are called darts, and R and L are two permutations
on D such that L2 = 1 and the group generated by R and L acts transitively on D. Here
the permutation R describes the local orientation of darts around the vertices ofM and
is called a rotation, whereas L inverts each pair of darts with the same underlying edge
of M. The group generated by R and L is called the monodromy group of M and is
denoted by Mon (M).

A homomorphism from a mapM1 = (D1;R1, L1) to a mapM2 = (D2;R2, L2) is a
mapping φ : D1 → D2 such that

φR1 = R2φ and φL1 = L2φ.

The mapping φ is necessarily surjective due to the transitivity of monodromy groups.
If φ is a bijection, then we say M1 is isomorphic to M2 and denote it by M1 ∼= M2.
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An isomorphism of a map M to itself is called an automorphism of M. The set of
all automorphisms of M forms the automorphism group of M under the composition
operation and is denoted by Aut (M).

It follows from a classical result in the theory of maps that the action of Aut (M)
on D is semi-regular (namely, the stabiliser of Aut (M) is trivial) [10]. If this action is
transitive and hence regular, thenM is called a regular map as well. Therefore, regular
maps exhibit highest possible symmetry.

In a regular mapM = (D;R,L) with G = Aut (M), we can identify D with G and
regard the actions of Aut (M) and Mon (M) on D as the right and left multiplication
by the elements of G, respectively. More precisely, if G = 〈x, y〉, y2 = 1, we denote
by (G, x, y) the regular map (D;R,L) defined by setting D = G, Rg = xg, Lg = yg
for any g ∈ G. For a map M = (D;R,L), there are two associated maps: the dual
M∗ = (D;RL,L) and the mirror map M−1 = (D;R−1, L) of M. A map M is called
self-dual ifM∼=M∗; a mapM is called reflexible ifM∼=M−1. Those maps which are
not reflexible are called chiral.

To answer Problem 2 for a given finite 2-group G, we have first to see whether G is
the automorphism group of a regular mapM, which is equivalent to decide whether G
is generated by two elements, say x and y, and y2 = 1. If this is the case, then such a
group G will be called admissible and the associated generating pair (x, y) will be called
admissible as well. Secondly, according to [18], for an admissible group G, two admissible
generating pairs (xi, yi) (i = 1, 2) of G are called equivalent if there is an automorphism
φ of G such that

xφ1 = x2 and yφ1 = y2. (2.1)

The isomorphism classes of regular mapsM with Aut (M) = G are therefore in a one-to-
one correspondence with the orbits of admissible generating pairs of G under the action
of Aut (G).

By definition, the automorphism groups of regular 2-maps of maximal class are 2-
groups of maximal class. The classification of 2-groups of maximal class is known as
Taussky’s Theorem in group theory. We rephrase it as follows.

Proposition 3. [20][Taussky’s Theorem] Let G be a finite 2−group of maximal nilpo-
tency class with |G| = 2n, n ≥ 3. Then, up to isomorphism, G belongs to one and only
one of the following three classes of groups:

1. generalized quaternion groups defined by

Q2n = 〈a, b | a2n−1
= 1, b2 = a2n−2

, b−1ab = a−1〉, n ≥ 3; (2.2)

2. dihedral groups defined by

D2n = 〈a, b | a2n−1
= b2 = 1, b−1ab = a−1〉, n ≥ 3; (2.3)

3. semidihedral groups defined by

SD2n = 〈a, b | a2n−1
=b2 =1, b−1ab=a−1+2n−2

〉, n ≥ 4. (2.4)
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3 Regular 2-maps of maximal class

In this section, we apply Taussky’s Theorem to give a classification of regular 2-maps of
maximal class. First, we define several families of regular maps. The semistar is defined
to be a map Sn = (Cn, x, y) with

Cn = 〈x, y|xn = y = 1〉. (3.1)

The cycle of length n is a map Cn = (D2n, x, y) with

D2n = 〈x, y|x2 = y2 = (xy)n = 1〉. (3.2)

Moreover, the regular embeddings of n-dipoles are the maps D(n, e) = (G, x, y) with

G = 〈x, y|xn = y2 = 1, y−1xy = xe〉, (3.3)

where e2 ≡ 1 (mod n) (Theorem 9.1 [17]). Note that D∗(n,−1) = Cn.
Moreover, by replacing each edge of a cycle Cn by m parallel edges incident to the

same vertices, we get a multicycle C(m)
n . The regular embeddings of multicycles C(2m)

2n
are maps C(2n, 2m, e, f) = (G, x, y) with

G = 〈x, y|x4m = y2 = 1, y−1x2y = x2e, (xy)2n = x2f 〉, (3.4)

where e2 ≡ 1 (mod 2m) and f ≡ (e + 1)n/4 (mod 2m) or f ≡ ((e + 1)n + 4m)/4
(mod 2m) (Theorem 2 [8]).

To present our classification of regular 2-maps of maximal class, we need to identify
admissible 2-groups from the groups given in Proposition 3.

Lemma 4. In Proposition 3, only the dihedral groups and semidihedral groups are ad-
missible. Moreover, the admissible generating pairs of the dihedral groups have form
(arbk, ajb), where either k = 0, r is odd, or k = 1, r− j is odd; the admissible generating
pairs of the semidihedral groups have form (arbk, ajb), where k ∈ {0, 1}, r is odd and j is
even. Two admissible pairs (arbk, ajb) and (ar′bk′ , aj′b) of D2n are equivalent if and only
if k = k′ and two admissible pairs (arbk, ajb) and (ar′bk′ , aj′b) of SD2n are equivalent if
and only if k = k′.

Proof. It is known that the generalised quaternion group Q2n has a unique involution
y = a2n−2 . Obviously, y is a central element. Since Q2n is non-abelian, Q2n has no ad-
missible generating pairs. Furthermore, for both D2n and SD2n , it is clear the generators
(a, b) given in Proposition 3 are admissible. To determine all admissible generating pairs
(x, y) of D2n , we see that the involutions of D2n are either a2n−2 or of the form ajb. But
a2n−2 ∈ Z(D2n) and D2n is non-abelian, which implies that a2n−2 can not be a generator
in any admissible generating pair. On the other hand, let y = ajb and x = arbk, where
0 ≤ j, r ≤ 2n−1 − 1 and 0 ≤ k ≤ 1. If k = 0, we show that 〈x, y〉 = D2n if and only if
(r, 2) = 1. In fact, if (r, 2) = 1, then 〈ar〉 = 〈a〉. Hence,

〈x, y〉 = 〈ar, ajb〉 = 〈a, ajb〉 = 〈a, b〉.

Consequently, D2n = 〈x, y〉. Conversely, assume D2n = 〈x, y〉, if r was an even number,
let m = o(ar), then m < o(a), we have

〈x, y〉 = 〈x, y | xm = y2 = 1, yxy = x−1〉 ∼= D2m,
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which implies that 〈x, y〉 is a proper subgroup of D2n , a contradiction. Similarly, if k = 1,
we show that 〈x, y〉 = D2n if and only if (r − j, 2) = 1. In fact, since

〈x, y〉 = 〈arb, ajb〉 = 〈ar−j , ajb〉,

by the preceding case we have 〈x, y〉 = D2n if and only if (r − j, 2) = 1.
As concerns the admissible pairs of the semidihedral groups SD2n , we see the involu-

tions of SD2n are either a2n−2 or of the form ajb, where j is even. The former is a central
element and hence can not be a generating involution in any admissible pair. Now let
y = ajb and x = arbk, where 0 ≤ r, j ≤ 2n−1 − 1, j is even and k ∈ {0, 1}. If k = 0, then
we show that 〈x, y〉 = SD2n if and only if r is odd. First assume r odd, then 〈a〉 = 〈ar〉.
We have

〈x, y〉 = 〈ar, ajb〉 = 〈a, ajb〉 = 〈a, b〉.

It follows that 〈x, y〉 = SD2n . Conversely, assume 〈x, y〉 = SD2n , if r was an even
number, let m = o(ar), then m < o(a). We have

〈x, y|xm = y2 = 1, yxy = x−1〉 ∼= D2m.

Therefore, |〈x, y〉| < |SD2n |, which implies that 〈x, y〉 is a proper subgroup of SD2n , a
contradiction. Similarly, if k = 1, we have

〈x, y〉 = 〈arb, ajb〉 = 〈araj(−1+2n−2), ajb〉 j even= 〈ar−j , ajb〉.

It follows the first case that 〈x, y〉 = SD2n if and only if r − j is odd.
Finally, we decide the equivalence relationship of aforementioned admissible pairs.

The admissible pair (x, y) of D2n has a defining relation

〈x, y|x2n−1
= y2 = (xy)2 = 1〉,

if x = ar, y = ajb, where r is odd, or

〈x, y|x2 = y2 = (xy)2n−1
= 1〉,

if x = arb, y = ajb, where r − j is odd. Therefore, two admissible pairs (arbk, ajb) and
(ar′bk′ , aj′b) of D2n are equivalent if and only if k = k′. Similarly, the admissible pair
(x, y) of SD2n has a defining relation

〈x, y|x2n−1
= y2 = (xy)4 = 1, [x, y] = x−2+2n−2

〉,

if x = ar, y = ajb, where r is odd, j is even, or

〈x, y|x4 = y2 = (xy)2n−1
= 1, [x, y] = (xy)2−2n−2

〉,

if x = arb, y = ajb, where r is odd, j is even. Therefore, two admissible pairs (arbk, ajb)
and (ar′bk′ , aj′b) of SD2n are equivalent if and only if k = k′, as claimed.

Now we are ready to formulate our classification theorem of regular 2-maps of maximal
class.

Theorem 5. Up to isomorphism, regular maps whose automorphism groups are non-
abelian 2-groups of maximal nilpotency class are one of the following maps:
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(1) a cycle C2n−1 or its dual, a dipole D(2n−1,−1), where n ≥ 3, both of genus 0;

(2) a dipole D(2n−1,−1 + 2n−2) or its dual C(2n−2, 2, 1, 1), the regular embedding of a
multicycle, where n ≥ 4, both of genus 2n−3.

Moreover, the above maps are all reflexible.

Proof. LetM be a regular 2-map of maximal class and G = Aut (M), let |G| = 2n.
Since G is non-abelian, n ≥ 3. By Taussky’s Theorem, G is isomorphic to one of the
groups in Proposition 3. By Lemma 4, the generalised quaternion group Q2n is not
admissible, and every admissible pair (x, y) of D2n either has a form x = ar, y = ajb,
where r is odd, or has a form x = arb, y = ajb, where r−j is odd. The former defines the
map D(2n−1,−1) and the latter defines the map C2n−1 , which is the dual of D(2n−1,−1).
Similarly, every admissible pair (x, y) of SD2n is of a form x = arbk, y = ajb, where r is
odd, j is even, k ∈ {0, 1}. If k = 0, then (SD2n , x, y) defines the map D(2n−1,−1+2n−2);
if k = 1, we have its dual map C(2n−2, 2, 1, 1), the regular embedding of a multicycle
C

(2)
2n−2 . It is clear that the maps are all reflexible, as claimed.
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