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1 Introduction and Preliminaries

The concept of 2-normed spaces was initially developed by Géhler [4] in the mid of 1960’s,
while that of n-normed spaces one can see in Misiak [11]. Since then, many others have
studied this concept and obtained various results, see Gunawan [5, 6] and Gunawan and
Mashadi [7]. Let n € N and X be a linear space over the field K, where K is field of real
or complex numbers of dimension d, where d > n > 2. A real valued function ||-,--- ||
on X" satisfying the following four conditions:

—_

cxr, xe, -y = 0 if and only if 21, 9, - , x, are linearly dependent in X;
2. ||z1, 22, -+, xy,|| is invariant under permutation;

3. |laxy, za,- -zl = |a| ||z1, 22, -, 24|| for any o € K, and

4. ||z + 2", me, x| <z, @2, T + |2, 22, - T

is called a n-norm on X, and the pair (X, ||-,--- ,-||) is called a n-normed space over the
field K.

For example, we may take X = R™ being equipped with the n-norm ||z, 22, -, Z,||E
= the volume of the n-dimensional parallelopiped spanned by the vectors x1,x3, -, T,
which may be given explicitly by the formula

21, @2, -+ s nllp = | det(xi;)],
Copyright © 2012 Matej Bel University
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where x; = (21, %2, -+ ,%in) € R for each ¢ = 1,2,--- ,n. Let (X,||-,---,-]|) be a
n-normed space of dimension d > n > 2 and {ay,as,- - ,a,} be linearly independent set
in X. Then the following function ||-,-- - ,||oc on X"~ ! defined by
||.701,:L’2,~ e afanOO = max{||x1,x2,~ e axn—lvaiH 1=12,--- ,Tl}

defines an (n — 1)-norm on X with respect to {a1,az2, -+ ,an}.
A sequence () in a n-normed space (X, ||, ,-||) is said to converge to some L € X if

lim ||zx — L, 21, -, 2n—1]| = 0 for every 21, - ,2z,_1 € X.

k—o0
A sequence (xy) in a n-normed space (X, ||-,--- ,||) is said to be Cauchy if

lim ||z — 2p, 21, -, 2n-1]] =0 for every z1,---,2,-1 € X.

k,p—o0

If every Cauchy sequence in X converges to some L € X, then X is said to be complete
with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.
An Orlicz function M is a function, which is continuous, non-decreasing and convex with
M(0) =0, M(z) >0 for z > 0 and M(x) — oo as © —> 0.

Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to define the following
sequence space. Let w be the space of all real or complex sequences x = (xy), then

eM:{xewéM(m)m}

p

which is called as an Orlicz sequence space. The space £); is a Banach space with the

norm
lz|| = inf{p >0: ZM(@) < 1}.
k=1 p

It is shown in [9] that every Orlicz sequence space £j; contains a subspace isomorphic to
¢y(p > 1). The Ag—condition is equivalent to M(Lz) < kLM (z) for all values of x > 0,
and for L > 1. A sequence M = (M) of Orlicz function is called a Musielak-Orlicz
function see [10, 13]. A sequence N = (NVy) is defined by

Ni(v) = sup{|v|ju — (M) :u >0}, k=1,2,---
is called the complementary function of a Musielak-Orlicz function M. For a given

Musielak-Orlicz function M, the Musielak-Orlicz sequence space tyq and its subspace
haq are defined as follows:

tam = {me:IM(cx) < oo for some c>0},

hM:{IEw:IM(cx)<oo for all c>0},

where Iy, is a convex modular defined by

Im(z) = ZMk(Z‘k),JZ = (x) € tm.
k=1
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We consider ¢ty equipped with the Luxemburg norm

I|z]] _mf{k >0 IM<k) < 1}

or equipped with the Orlicz norm

I|z]|° = inf{%(l +IM(km)> k> o}.

By w we denote the space of all real or complex valued sequences. If x € w, then
we simply write * = (z) instead of x = (z%)52,. Also, we will use the conventions
that e = (1,1,---). Any vector subspace of w is called a sequence space. We will write
lso, ¢ and c¢q for the sequence spaces of all bounded, convergent, and null sequences,
respectively. Further, by [,,(1 < p < 00), we denote the sequence space of all p-absolutely

oo
convergent series, that is, I, = {x = (z) € w: Z |xk|P < oo} for 1 < p < oo.
k=0
Throughout the article, w(X), loo(X), and I,(X) denote, respectively, the spaces of all,
bounded, and p—absolutely summable sequences with the elements in X, where (X, ¢) is a
seminormed space. By 8 = (0,0, - - - ), we denote the zero element in X. Py denotes the set
of all subsets of N, that do not contain more than s elements. With (¢;), we will denote
a non-decreasing sequence of positive real numbers such that (s — 1)ps—1 < (s — 1)ps
and ps — 0o,as s — oco. The class of all the sequences (p5) satisfying this property is
denoted by .
In paper [12], the notion of A-convergent and bounded sequences is introduced as follows:
let A = (Ag) be a strictly increasing sequence of positive reals tending to infinity, that is

0<Xd <A <---, A —00 as k — oo.

We say that a sequence © = (x) € w is A\-convergent to the number [ € C, called as the
A-limit of x, if A, (z) = 1 as n — oo, where

1 n
:)\—Z /\k,)\k 1Ik, n € N.

" k=0

In particular, we say that x is a A-null sequence if A,(z) — 0 as n — oo. Further,
we say that x is A-bounded if sup|A,(z)] < oco. Here and in the sequel, we will use
the convention that any term with a negative subscript is equal to naught, for example,
A-1 =0 and z_; = 0. Now, it is well known in [12] that if lirrln Zn, = a in the ordinary

sense of convergence, then

n

lim (% Sk~ A)lak —al) =0

k=0
This implies that

n

1jvrln|An( r)—al = lim ‘— Z()\k = Ae—1)(zk — a)’ =0,
k=0

which yields that lim A, (z) = a and hence z is A-convergent to a. We therefore deduce

that the ordinary convergence implies the A-convergence to the same limit. The notion
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of difference sequence spaces was introduced by Kizmaz [3], who studied the difference
sequence spaces I (A), ¢(A) and ¢,(A). The notion was further generalized by Et and
Colak [3] by introducing the spaces lo(A™), ¢(A™) and c¢,(A™).

Let m, n be non-negative integers, then for Z a given sequence space, we have

Z(Ay) ={x=(ap) ew: (AL xr) € Z}

for Z = ¢,co and lo, where A%z = (A% x)) = (A% Loy — A% lopy,,) and A% 2y = 4,
for all k£ € N, which is equivalent to the following binomial representation

A%xk = ZO(—l)v ( Z ) Lh+muv-
Taking m = 1, we get the spaces loo(A™), c¢(A™) and ¢,(A™) studied by Et and Colak
[3]. Taking m =n = 1, we get the spaces l(A), ¢(A) and ¢,(A) introduced and studied
by Kizmaz [8]. For more details about sequence spaces see [2, 14, 15, 16] and references
therein.

The space m(¢) introduced and studied by Sargent [17] is defined as follows:

1
m(@) = {z = () € s el = s — > |ul < oo},
keo

s>1,0€Ps ¢s

Let M be an Orlicz function, then Tripathy and Mahanta [18] defined and studied the
following sequence space:

1
m(M,p) = {m = (x) €s: sup —ZM(M) < 00, for some p > 0}.
s>1,0€Ps Ps keo P

Recently, Altun and Bilgin [1] defined and studied the following sequence spaces:

1 A;
m(M,A,p,p) = {x =(zy)E€s: sup — ZM(M)”’” < oo, for some p > O}.
s>1,0€Ps Ps keo 4

We define the following sequence spaces which we shall discuss in the second section of
the present paper:

m (M0 q. A AL p |- 1) =
1 AR AT P
{x: (1) € w: lim — Z Mk(q(“kimmk,zl,--- ,zn_1||)) * =0, for some p>0}.
k Ps k€o,0€ Py P
If we take My (x) = x, we get
m<g07qu7A:lnap7||'7"' aH)
1 A AT P
= {z: (xg) € w: liin— Z (q(Hkimxk,zl,'u ,zn_lH)) ' =0, for some p>0}.
Ps k€o,0€P; p

If we take p = (px) = 1, we get
m(M7@aQ7A7A?n7||'7"' aH)

- - 1 AkAﬁL:Bk -
= {x = (ap) €Ew: hlgnkezep Mk(q<|\T,z17--- 7,zv7171||)) =0, for some p > 0}.
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The following inequality will be used throughout the paper. If 0 < pr, < suppy = H,
K = max(1,2771) then

|lax, + 0[P < K{]ag|* + [br|P*} (1.1)

for all k and ay, b € C. Also |a|P* < max(1,|a|?) for all a € C.
In this paper we study some topological properties and inclusion relation between

spaces m(/\/l7 o, g, N, A o]y ||) which we have defined above and the spaces
m(M, A, o, A" . p,]|., -+ ,.||) which we shall discuss in the third section of the paper.

2 Sequence spaces defined by Musielak-Orlicz function
In this section we study some toplogical properties and inclusion relation between the

spaces m(MvgpvquaA?nvpa ||a e 7||>

Theorem 1. Let M = (My) be Musielak-Orlicz function and p = (p) be a sequence
of strictly positive real number, the sequence space m(/\/l, O, q, A, A ] ,H) is a

linear space over the set of complex number C.

Proof. Let x = (zx) and y = (yx) € m<M7<p,q7A,A’n‘1,p, ., 7||) and a, 8 € C. Then
there exist positive real numbers p; and ps such that

AkA” Tk Pk
1 ( < AT mTR , Sttty Zp— )) =
1I£n E M, z1 Z 1|| 0

* keo,oePs P1
and )
. k Pk
kS ()
Ps k€o,0€Ps
Define ps = max(2|alp1,2|5|p2). Since ||.,...,.|| is a n-norm on X and M}, are non-

decreasing and convex function so by using inequality (1.1), we have

limki Z Mk(q(HAkA%(axk+Byk)7217“~ 7Zn71||))pk

k€o,0c€Ps ps
1 JIVWANG
< lim — Z Mk[(q(Hkmi(axk)azlv ;Zn71‘|>>
koPs k€o,0€P; P3
AL A Pk
n ( (H’fi(ﬁyk) 21, ,Zn—1||>)}
1 A AT Pk
< Kim— Y oo FER s )))
Ps k€o,0€Ps
) 1 1 A Am Pk
+ Khin— Z oY ( (|| b Yk 217"',Zn71||))
Ps k€o,0€Ps
= 0
Thus, we have ax + By € m(M,cp,q,A,AZl,p,||.,-~ ,H) Hence

m(/\/h<p,q7A,A’n‘1,p7 ., 7||) is a linear space. O
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Theorem 2. For any Musielak Orlicz function M = (My) and a bounded sequence
p = (pk) of strictly positive real numbers m(/\/l7 N WA N | ,H) is a topological

linear space paranormed by

, e (1 AR A%z, PR\ 7
g(a:):lnf{pM :(hm— Mk(q( —— = 21, , Zn—1 )) ) §1,r=1,2,3,---},
m- > == I

k€o,0€Ps

where M = max(1,sup py < 00).
k

Proof. Clearly g(x) >0 for x = (z1) € m(M,cp,q,A,A’,;wp, [|., - ,||)
Since My (0) = 0, we get g(0) = 0. Again, if g(x) = 0, then

g(z) :inf{p% : (liini Z ( (HA”“A mTk 2, 7Zn71|‘))pk)% < 1} —0.

Ps keo,oc€Ps

This implies that for a given € > 0, there exist some p.(0 < p. < €) such that

(liini 3 ( (||AkA mTh Zl,...7zn,1||))pk)ﬁ <1.

Ps k€o,0€Ps
Thus
. 1 AkAm PRy 27
(hd 5 (25 )
Ps k€o,0€Ps €
1 ARAT Pk 21
< <h}1317 Z Mk‘(Q(HMaZla"'azn—lH)) )M
Ps k€o,0€ Py Pe

< 1

Suppose that x # 0 for each k£ € N. this implies that AyA7 x # 0 for each k € N. Let

€ — 0, then H%,zh ey Zn_1|| = oo. Tt follows that
A Ay P\ 71
(hm— Z Mk< ( k €m k,zl,~--,zn,1\|>) )M — 00
k€o,c€P;

Which is a contradiction. Therefore A, A,z = 0 for each k and thus z; = 0 for each
k € N. Let p; > 0 and py > 0 be such that

A AT L
(hm— S (g1 ,Zn_lu))pk)”’ <1
k€o,0€ P P

and

R (s — LD

Ps k€o,c€ Py

Let p = p1 + p2. Then by Minkowski’s inequality, we have
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(et Y wo( 2287 )Y

k€o,0€P; p
1 ARAT PR 37
< (hmi Z Mk(q(‘|w’zhm7zn71‘|>) )M
k Qs p1+ p2
k€o,0€P;
1 ARA 3 ARA® PrY A7
S (hmi Z Mk(L”u,zl7“'7'zn—1” + L||k7yk7zl7“'7zn—l“)) )
k Qs p1+ p2 p1 pP1+ p2 P2
k€o,0€Ps
1 AR AT P\ A7
< (L)(hmi Z Mk(q(HM,zh--- ,Zn—lH)) )M
P +p2 Foes k€o,0€Pg P
1 AR AL i\ 37
( £ )(hmi Z Mk(q<“ g myk?’Zl’"' 72”*1“)) )M
1 +p2 ko®s k€o,c€P, P2
< 1.

Since p’s are non-negative, so we have

) Pz 1 ARAT (zr + PEN 77
o = (L 3 (a2 ) <)
SICEU,UEPS
B 1 AR AT PR\ 7
< inf{p: (im0 M (a(IF0EE ) ) T <1
SkGJ,UEPS
pr n PEN\ F
et {of s (i L3 (g2 L)) )T <)
gDskecr,UEF‘s p2

Therefore, g(z +y) < g(x) + g(y)
Finally, we prove that the scalar multiplication is continuous. Let p be any complex
number. By definition,

g(uz) = inf{ppﬁr : (lilgni Z Mk(q(HM,Zh”' ,Zn—1||)>pk)ﬁ < 1}.

Ps k€o,0€P; p
Then
. e (1 BAR AT T Pk 7
o(ur) = mf {0« (tim = 37 M(a(IFFTE e zal)) T

where ¢t = Wp‘. Since |p|Pr < max(1, |u|supp,), we have

=

r n P —=
g(ur) = max(1, |l swppe)int {05 (1m = 37 (g (IRERR s ))) ) <)

t ’

So, the fact that scalar multiplication is continuous follows from the above inequality.
This completes the proof of the theorem. O

Theorem 3. If M = (M) be any Musielak Orlicz function. Then
m<M7¢*7Q7AaA%7pa Ha B ||) C m(M,(p**,q,A,A:Ln,p, ||7 T H)

*

Ps
* ok
S

if and only if sup < 00.
s>1
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Proof. Let x € m(M,gp*,q,A,A’,ﬁl,p, |, ,||) and N = sup Ps < 00. Then we get
s>1 P5F
AkA Tk Pk
S"é* Z ( (|| s 21yt 7Zn—1||))
n€o,0€Ps
A Al P
S Z Mk( ( b mxk,zlv'” azn71|‘>) '
S>1 4103 st n€o,0€ Py p
1 A Al P
= NT Z Mk( ( k mk s R1y """ 7z’n71||)) '
Ps n€o,0c€P; P
= 0.
Thus z € m(./\/l, o g, A, AT D ,H) Conversely, suppose that
m(M7§0*aq7A7A?nap7||~v"' vH) C m(Mv(p**quAaAZmpaH'a'“ 7||)
and x € m<M790*,q,A,A’,§L7p, ., 7||) Then there exists a p > 0 such that
1 A A" Pk
= 2 Mo ) <
Ps n€o,0€Ps P

*

for every € > 0. Suppose that sup %* = 00, then there exists a sequence of numbers
s>1 Ps

*

05
(s4) such that lim —2 = co. Hence, we have
j—ro00 (ps*

Loy (oM L))

ésupﬁ 1 Z Mk( ( AkA T e 727171”));%:00.
j P

i1 95" (p‘sJ n€o,oc€P;
Therefore, x & m(./\/l,<p**7q,A AT o, ,.H), which is a contradiction. This com-
pletes the proof of the theorem. O

Corollary 4. If M = (My) be any Musielak Orlicz function. Then

m(M,@*7q7AaAfnap7 ||a e 7”) = m(Mvw**7QaAaA:Lnap7 ||a R ||>
. . v ] P
if and only if sup <00,  sup —- > .
s>1 Ps s>1 Ps
Proof. Tt is easy to prove so we omit. O

Theorem 5. For Musielak-Orlicz functions M = (M), M’ = (M],) and M" = (M]/)
which satisfy Ao-condition and q, q1, g2 are seminorms. Then the following relation
holds:
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() m(M', 0. q, A AL |- ll) € m(Mo Mg, A AL -l

(i) m (M, 0.0, A, Ay [+ oI ) (M7 000, A
m(M 4 M. q M A )

(i) m (M., a0, A AL [ ) (M 9o, A AT p Lo+ L )m
< (Mopsar+ a2 A ALl ).

Proof. The proof of theorem along the same lines as the proof of the Theorem 2.5 of [1].
O

Corollary 6. If M = (M) be any Musielak Orlicz function which satisfy As- condition.
Then m(M7g07q7AaA7n7p7 H7 e 7||> C m(M7SD7QuA>Anm7p7 ||7 o 7”)

Theorem 7. If M = (My) be any Musielak Orlicz function. Then the sequence space
(Ma 2 qvAv Am,pv ||7 ) ||) is solid.

Proof. Let x € m(M,gp,mA,Aﬁl,p, .- ,H) Then there exists p > 0 such that
AkAn Tk Pk
hm— Z Mk( ( —n - ,z1,~~~,zn_1|\>> <€,
kEo’JEP P1

for every € > 0. Let (o) be a sequence of scalars with |ag| < 1 for all n € N. Then, we
have

3 Mk(q(”W’zl’m ’Zn71‘|)>pk

k€o,0€Ps
1 A AT x Pk
s Z |ak|Mk( (H d u y Ryt vZn71||)>
Ps k€o,0€P;
1 A A x Pk
< — Y mi(a(NFEEEE )
Ps k€o,0€P;
which proves that m(./\/l7 O, N, A D]y 7||) is solid space. O
Corollary 8. If M = (My) be any Musielak Orlicz function. The sequence space
m(M,go,q,A,Aﬁl,p, |, ,||) is monotone.
Proof. Tt is obvious. O

3 Generalized sequence spaces

Let A = (a;) be an infinite matrix of complex numbers. Then, we have

Az) = (As(x)) if Ay( Zazkxk
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converges for each ¢. For more details see [1].
In this section we introduce the following sequence spaces which are actually the

generalizations of sequence spaces defined by Altun and Bilgin [I]. Thus we have the
spaces:
MM Ao Al ) = {o = @) €si sup ST (IS 2y 2]

s>1,0€Ps Ps koo P

< oo, for some p > 0}.
If My(z) =z, we have
1 AkAn Tk Pk

m(A, o Anp e )= {or= @) €s: s 3T (IR )

s>1,0€Ps Ps e P

< oo, for some p > 0}.

In this section of the present paper we shall also study some topological properties
and inclusion relations between the spaces m(M, A, ¢, A . p, ||, ,.||)-

Theorem 9. For Musielak-Orlicz functions M = (My). Then the sequence space
m(M, A, o, A" ol ,.]|) is a linear space over the set of complex number C.

Proof. Let x = (z1) and y = (yg) € m(M, A, o, A% p,||.,---,.]|) and o, 8 € C. Then

there exist positive real numbers p; and ps such that

AkA Tk Pk
sup ZMk(Hi zl,~-~,zn,1||> < 00
s>1,0€Ps Ps f1

keo
and LA
kA Yk P
su M( M2 21, Zne ) < o0.
s>1 o’IéP SOS Z H 14 ! " 1H
Define p3 = max(2|a|p1,2|5|p2). Since ||.,...,.|| is a n-norm on X and (M}) are non-

decreasing and convex function so by using inequality (1.1), we have

sup ZM (”Ak (amk+ﬂyk) P ,Zn_1||>pk

s>1,0€P; Ps

k€o
AT k Pk
< sup ZMk[( #,21,---,zn_1ll)+(llw 21,-~-,Zn_1||)]
s>1,0€Ps Ps keo P3
1 1 AR AT 1 P
< K s 3 oM (1S 2 ]))
s>1,0€Ps Ps keo 2Pk P1
1 1 AR A” 1y P
+ K sup *ZTMk@(HimyyZh“' 7Zn71‘|))
s>1,0€P, Ps keo 2Pk P2
< oQ.
Thus, we have az+8y € m(M, A, ¢, AT p, ||, -+ ,.||). Hence m(M, A, ¢, AT p, ||, ,.|])
is a linear space. O
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Theorem 10. For any Musielak Orlicz function M = (M) and a bounded sequence
p = (pr) of strictly positive real numbers, the space m(M,gp,A,A”m,p, |, ,||) s a

topological linear space paranormed by

1 AR AT xp PEN 37

g(x):inf{p%:( sup 72Mk(”7mazla"'azn—l||) )I§1,7‘=1a2,3,"'
p

s>1,0€Ps Ps ke

where M = max(1,sup py < 00).
k

Proof. Clearly g(x) >0 for x = (z) € m(M,tp,A A ]y ,||) Since M (0) =0,
we get g(0) = 0. Again, if g(z) = 0, then

. 1 AL AR Py
() :inf{pﬁ : ( sup — S :Mk(Hi’“ mlk ,Zn_1||) k)M < 1} —0.
s>1,0€Ps Ps P

This implies that for a given € > 0, there exist some p.(0 < p. < €) such that

AR AT N
( sup ZM’“(”M 2, 7zn_1||) k>M <1

s>1,0€P, Ps

Thus
1
AL A" PN\ 1
(SupsZLaEPs iZkea Mk(” . mﬂfk yR1y "t >Zn71||) )

L

< ( sup ZM,C(@%...,Z”_1||)%)M

s>1,0€P, Ps keo €
< 1

)

Suppose that xj # 0 for each k € N. this implies that Ap A} xx # 0 for each k € N. Let

e — 0, then ||M 21y ey Zn—1]] = 00. It follows that

AkA Tk PN 37
( sup ZMk<||7>Zla"'7znle) ) — 00
s>1,0€Ps Ps keo

Which is a contradiction. Therefore, Ay A7,z = 0 for each k and thus x; = 0 for each
k € N. Let p; > 0 and py > 0 be such that

( sup ZMk(HM Zl,...,ZWlH)m)ﬁgl

s>1,0€P; Ps

and

AkAm k Pk 37
( sup ZM (H P L z1,~--,zn,1\|) )M <1.

s>1,0€Ps 909

Let p = p1 + p2. Then by Minkowski’s inequality, we have
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1
1 ApAl x PN\ 1
(SupsZLGGPs EZkea Mk(”%,zlw“ ,Zn—1||) >
1 ApAT PR\ 77
S ( sup 72Mk<||w,217“',2n_1”) )
s>1,0€P; Ps P p1+ p2
1 ArAg AR AT Pr &
< ( sw —ZMk( P |2 | 2 S ) )
s>1,0eP, Ps p1 + p2 p1 p1+ p2 P2
A Al PR\ 77
( o )( ZMk(Q< k u y 21yt 7Zn—l||>> )
p1+ p2 s>1 o'EPg Ps o pP1
A AT Pr\ o
( P2 )( ZMk(q< ArAm Yk 217”'7%_1”)) )M
P1 + P2 s>1 o'EPg Ps P2
< 1.

Since p’s are non-negative, so we have

. Pr 1 A A:,Ln e + Pk +
g(gj-i,-y) = lnf{pM . ( sup 72Mk(”M’zl’... ;anlu) )M < 1}
s>1,06P, Ps |2 p
pr AL A? PN 7
S lnf{le : ( sup ZM]C( u y Rl 7Zn—1||) k>M S 1}
s>1,0€Ps Ps keo P1
2r 1 AR AT P\ 77
N mf{pQM : ( sup 72Mk<”k7myk,zl,... ,zn71||> k)M < 1}.
s>1,0€Ps Ps ieo P2

Therefore, g(z +y) < g(z) + g(y)
Finally, we prove that the scalar multiplication is continuous. Let p be any complex
number. By definition,

pr 1 A A" Pk a7
glue) =inf {p¥ + ( sup ST M (PSR ) ) T <
s>1,0€Ps Ps ke P

Then

1

g(uz) :inf{(|u|t)pﬁ . ( sup ZM <||Ak (Mmk)721,... ,zn_1||>p’“>ﬁ},

s>1,0€Ps 905

where ¢t = Wp‘. Since |p

Pr < max(1, |u|supp,), we have

- Pr\ A7
() = max(1, [l suppr) inf { (657 (sup ZM(HM,zl,---,zn_ln) N <)

s>1,0€Ps Ps

So, the fact that scalar multiplication is continuous follows from the above inequality.
This completes the proof of the theorem. O

Theorem 11. If M = (M) be any Musielak Orlicz function. Then

m(-/\/lvgp*aAaAgwpv”'v'” 7”) C m(M,(p**,A,AZ,p,H.,-” )

. , 2

if and only if sup —
s>1

S

—

< 00.
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Proof. The proof is trivial so we omit it. O

Corollary 12. If M = (My) be any Musielak Orlicz function. Then

m<M7<P*,AaATJmP, Hv e 7||) = m(M,ﬁ,O**,A, Apra ||a ) H)
: : s 2
if and only if sup —— < 0o,  sup —— > 0.
s>1 Ps s>1 Ps
Proof. 1t is easy to prove so we omit. O

Theorem 13. For Musielak-Orlicz functions M = (M), M' = (M},) and M" = (M}))
which satisfy Ag-condition. Then the following relation holds:

(Z) m(MlvcvaaAprvn'v"' v||) - m(MOM’,gD,A,A%,p,||.,~~ 7”)

(i) m (M, 0, A, AL [+ 1) A (M7, A AL - )
Cm@W+Mﬂ%AA%nwwwﬂ)

Proof. The proof is along the same lines as the proof of the Theorem 2.5 of [1]. O

Corollary 14. If M = (M) be any Musielak Orlicz function which satisfy As- condi-
tion. Then m(M7<p7q,A,A’,§wp, [, 7||) C m(/\/l,%A, A /N | B ||>

Theorem 15. If M = (My) be any Musielak Orlicz function. Then the sequence space
m<M7 ®, A7 A%»Zﬁ ||7 Tty H) s solid.

Proof. Let x € m(M,cp,A,Afn,p, ., ,||> Then there exists p > 0 such that

1
sup — Mk<
s>1,0€Ps Ps ];r ||

AR AT xp Pk
m
,Zl,"',Zn_:[H) <€,

for every € > 0. Let (ay) be a sequence of scalars with |ag| < 1 for all k& € N. Then, we
have

1 AR AT (apog Pk
sup 72Mk(|‘¢721,"'72n71”)
s>1,0€P, Ps keo P
1 AkAn Tk Pk
< s S (e M (I )
s>1,0€Ps Ps keo 4
1 AkAn T Pk
< sup 72Mk(||7mazlv""zn*1||> )
s>1,0€Ps Ps keo P
which proves that m(./\/l7 o, A, A ol ,H) is solid space. O

Corollary 16. If M = (M) be any Musielak Orlicz function. Then the sequence space
m<M7¢aA7Agzap7 .- ,H) is monotone.

Proof. Tt is obvious. O
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