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Abstract
In this paper we establish certain multivalued coincidence point results of a family of multivalued map-
pings with a singlevalued mapping under the assumptions of certain almost contractive type inequalities.
Our results are derived in metric spaces with a partial ordering. The corresponding singled valued cases
are shown to extend a number of existing results. We have given one illustrative example. The method-
ology applied here is a blending of order theoretic and analytic methodologies.
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1 Introduction

In the fixed point theory of setvalued maps two types of distances are generally used.
One is the Hausdorff distance. Nadler [22] had proved a multivalued version of the
Banach’s contraction mapping principle by using the Hausdorff metric. There are many
other fixed point results using this Hausdorff metric, some instances of these works are
in [9, 17, 29, 30, 31]. The another distance is the δ - distance. This is not metric like
the Hausdorff distance, but shares most of the properties of a metric. It has been used
in many problem on fixed point theory like those in [1, 2, 19, 33].

In recent times, fixed point theory has developed rapidly in partially ordered metric
spaces; that is, metric spaces endowed with a partial ordering. References [10, 15, 23,
25, 27] are some recent instances of these works. A speciality of these problems is that
they use both analytic and order theoretic methods. It is also one of the main reasons
why they are considered interesting.

Khan et al. [21] initiated the use of a control function in metric fixed point theory
which they called Altering distance function. Several works on fixed point theory like
those noted in [12, 16, 26, 28] have utilized this control function.
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The concept of almost contractions were introduced by Berinde [5, 6]. It was shown
in [5] that any strict contraction, the Kannan [20] and Zamfirescu [34] mappings, as well
as a large class of quasi-contractions, are all almost contractions. Almost contractions
and its generalizations were further considered in several works like [7, 11, 24].

The purpose of this paper is to establish some coincidence point results of a family
of multivalued mappings with a single valued mapping under the assumptions of certain
almost contractive type inequalities in partially ordered metric spaces. We have also
utilized δ-compatible pairs in our theorems. In another theorem we have replaced the
continuities of the functions with an order condition. We also give here the corresponding
singlevalued versions of the theorems which generalize a number of existing works. An
illustrative example for the multivalued case is given.

2 Mathematical Preliminaries

In the following we give some technical definitions which are used in our theorems.
Let (X, d) be a metric space. We denote the class of nonempty and bounded subsets of
X by B(X). For A, B ∈ B(X), functions D(A, B) and δ(A, B) are defined as follows:

D(A, B) = inf {d(a, b) : a ∈ A, b ∈ B}

and
δ(A, B) = sup {d(a, b) : a ∈ A, b ∈ B}.

If A = {a}, then we write D(A, B) = D(a, B) and δ(A, B) = δ(a, B). Also, in
addition, if B = {b}, then D(A, B) = d(a, b) and δ(A, B) = d(a, b). Obviously,
D(A, B) ≤ δ(A, B). For all A, B, C ∈ B(X), the definition of δ(A, B) yields the
following:

δ(A, B) = δ(B, A),

δ(A, B) ≤ δ(A, C) + δ(C, B),

δ(A, B) = 0 iff A = B = {a},

δ(A, A) = diam A. [13]

There are several works which have utilized δ - distance [2, 4, 13, 14, 19, 33].

Definition 1. ([13]) A sequence {An} of subsets of metric space (X, d) is said to be
convergent to subset A of X if

(i) given a ∈ A, there is a sequence {an} in X such that an ∈ An, for n = 1, 2, 3, ...,
and {an} converges to a.

(ii) given ε > 0, there exists a positive integer N such that An ⊆ Aε, for all n > N ,
where Aε is the union of all open sphere with centers in A and radius ε.

Lemma 2. ([13, 14]) If {An} and {Bn} are sequences in B(X), where (X, d) is a
complete metric space and {An} → A and {Bn} → B where A,B ∈ B(X) then

δ(An, Bn)→ δ(A, B) as n→∞.

Lemma 3. ([14]) If {An} is a sequence of bounded subsets of a complete metric space
(X, d) and if lim

n→∞
δ(An, {y}) = 0, for some y ∈ X, then {An} → {y} as n −→∞.
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Definition 4. ([14]) A set-valued mapping T : X −→ B(X), where (X, d) is a metric
space, is continuous at a point x ∈ X if {xn} is a sequence in X converging to x, then
the sequence {Txn} in B(X) converges to Tx. T is said to be continuous in X if it is
continuous at each point x ∈ X.

Lemma 5. ([14]) If {An} is a sequence of nonempty subsets of X and z ∈ X such that

lim
n→∞

an = z,

where z is independent of the particular choice of each an ∈ An. If a self map g of X is
continuous, {gz} is the limit of the sequence {gAn}.

Definition 6. ([18]) Two self maps g and T of a metric space (X, d) are said to be
compatible mappings if lim

n→∞
d(gTxn, T gxn) = 0 whenever {xn} is a sequence in X such

that lim
n→∞

gxn = lim
n→∞

Txn = t, for some t ∈ X.

Definition 7. ([19]) The mappings g : X −→ X and T : X −→ B(X), where (X, d) is
a metric space, are δ- compatible if lim

n→∞
δ(Tgxn, gTxn) = 0 whenever {xn} is a sequence

in X such that gTxn ∈ B(X) and Txn → {t}, gxn → t, for some t in X.

Definition 8. Let (X, d) be a metric space and g : X −→ X and T : X −→ B(X).
Then u ∈ X is called a coincidence point of g and T if {gu} = Tu.

Definition 9. ([4]) Let A and B be two nonempty subsets of a partially ordered set
(X, �). The relation between A and B is denoted and defined as follows:

A ≺1 B, if for every a ∈ A there exists b ∈ B such that a � b.

Definition 10. ([21]) A function ψ : [0,∞)→ [0,∞) is called an altering distance func-
tion if the following properties are satisfied:

(i) ψ is monotone increasing and continuous,

(ii) ψ(t) = 0 if and only if t = 0.

3 Main Results

Lemma 11. Let (X, d) be a metric space and let {xn} be a sequence in X such that

lim
n→∞

d(xn+1, xn) = 0. (3.1)

If {xn} is not a Cauchy sequence in (X, d), then there exists ε > 0 and two sequences
{m(k)} and {n(k)} of positive integers such that n(k) > m(k) > k and the following four
sequences tend to ε when k −→∞ :

d(xm(k), xn(k)), d(xm(k), xn(k)+1), d(xn(k), xm(k)+1), d(xm(k)+1, xn(k)+1). (3.2)

Proof. Suppose that {xn} is a sequence in (X, d) satisfying (3.1) which is not Cauchy.
Then there exists ε > 0 and two sequences {m(k)} and {n(k)} of positive integers such
that for all positive integers k,

n(k) > m(k) > k, d(xm(k), xn(k)−1) < ε, d(xm(k), xn(k)) ≥ ε.
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Now,

ε ≤ d(xm(k), xn(k)) ≤ d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k)) < d(xn(k), xn(k)−1) + ε.

Letting k −→∞ in the above inequality and using (3.1), we have

lim
k→∞

d(xm(k), xn(k)) = ε. (3.3)

Again,
d(xm(k), xn(k)) ≤ d(xm(k), xn(k)+1) + d(xn(k)+1, xn(k))

and
d(xm(k), xn(k)+1) ≤ d(xm(k), xn(k)) + d(xn(k), xn(k)+1).

Letting k −→∞ in the above inequalities and using (3.1) and (3.3), we have

lim
k→∞

d(xm(k), xn(k)+1) = ε. (3.4)

That the remaining two sequences in (3.2) tend to ε can be proved in a similar way.

Theorem 12. Let θ : [0, ∞) −→ [0, 1) be a continuous function and ψ be an altering dis-
tance function. Let (X, �) be a partially ordered set and suppose that there exists a metric
d on X such that (X, d) is a complete metric space. Let {Tα : X −→ B(X) : α ∈ Λ}
be a family of multivalued mappings. Let g : X −→ X be a mapping such that g(X) is
closed in X. Suppose that there exists α0 ∈ Λ such that

(i) Tα0 and g are continuous,

(ii) Tα0x ⊆ g(X) and gTα0x ∈ B(X), for every x ∈ X,

(iii) there exists x0 ∈ X such that {gx0} ≺1 Tα0x0,

(iv) for x, y ∈ X, gx � gy implies Tα0x ≺1 Tα0y,

(v) the pair (g, Tα0) is δ - compatible,

(vi) ψ(δ(Tα0x, Tαy))

≤ θ(d(gx, gy)) max {ψ(d(gx, gy)), ψ(D(gx, Tα0x)), ψ(D(gy, Tαy)),√
ψ(D(gx, Tαy)) . ψ(D(gy, Tα0x)) }

+ L min {ψ(D(gx, Tα0x)), ψ(D(gy, Tαy)), ψ(D(gx, Tαy)), ψ(D(gy, Tα0x))},

where x, y ∈ X such that gx and gy are comparable and L ≥ 0.

Then g and {Tα : α ∈ Λ} have a coincidence point.

Proof. First we establish that any coincidence point of g and Tα0 is a coincidence point
of g and {Tα : α ∈ Λ} and conversely. Suppose that z ∈ X be a coincidence point of g
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and Tα0 . Then {gz} = Tα0z. From (vi) and using the properties of ψ, we have

ψ(δ(gz, Tαz)) = ψ(δ(Tα0z, Tαz))
≤ θ(d(gz, gz)) max {ψ(d(gz, gz)), ψ(D(gz, Tα0z)), ψ(D(gz, Tαz)),√

ψ(D(gz, Tαz)) . ψ(D(gz, Tα0z)) }
+L min {ψ(D(gz, Tα0z)), ψ(D(gz, Tαz)), ψ(D(gz, Tαz)), ψ(D(gz, Tα0z))}

= θ(d(gz, gz)) max {ψ(d(gz, gz)), ψ(d(gz, gz)), ψ(D(gz, Tαz)),√
ψ(D(gz, Tαz)) . ψ(d(gz, gz)) }

+ L min {ψ(d(gz, gz)), ψ(D(gz, Tαz)), ψ(D(gz, Tαz)), ψ(d(gz, gz))}
= θ(d(gz, gz))ψ(D(gz, Tαz))

< ψ(D(gz, Tαz)), (since θ(t) < 1, for all t ∈ [0, ∞)).

Again using the monotone property of ψ, we have

δ(gz, Tαz) < D(gz, Tαz) ≤ δ(gz, Tαz),

which implies that δ(gz, Tαz) = 0, that is, {gz} = Tαz, for all α ∈ Λ. Hence z is a
coincidence point of g and {Tα : α ∈ Λ}. Converse part is trivial.

Now it is sufficient to prove that g and Tα0 have a coincidence point. Let x0 ∈ X
be such that {gx0} ≺1 Tα0x0. Then there exists u ∈ Tα0x0 such that gx0 � u. Since
Tα0x0 ⊆ g(X) and u ∈ Tα0x0, there exists x1 ∈ X such that gx1 = u. So gx0 � gx1.
Then by the assumption (iv), Tα0x0 ≺1 Tα0x1. Since u = gx1 ∈ Tα0x0, there exists
v ∈ Tα0x1 such that gx1 � v. As Tα0x1 ⊆ g(X) and v ∈ Tα0x1, there exists x2 ∈ X such
that gx2 = v. So gx1 � gx2. Continuing this process we construct a sequence {xn} in
X such that

gxn+1 ∈ Tα0xn, for all n ≥ 0, (3.5)
and

gx0 � gx1 � gx2 � ..... � gxn � gxn+1.... (3.6)
Let τn = d(gxn, gxn+1).
Since gxn � gxn+1, putting α = α0, x = xn and y = xn+1 in (vi) and using the properties
of ψ, we have

ψ(τn+1) ≤ ψ(δ(Tα0xn, Tα0xn+1))
≤ θ(τn) max {ψ(τn), ψ(D(gxn, Tα0xn)), ψ(D(gxn+1, Tα0xn+1)),√

ψ(D(gxn, Tα0xn+1)). ψ(D(gxn+1, Tα0xn)) }
+ L min {ψ(D(gxn, Tα0xn)), ψ(D(gxn+1, Tα0xn+1)),

ψ(D(gxn, Tα0xn+1)), ψ(D(gxn+1, Tα0xn))}
≤ θ(τn) max {ψ(τn), ψ(d(gxn, gxn+1)), ψ(d(gxn+1, gxn+2)),√

ψ(d(gxn, gxn+2)). ψ(d(gxn+1, gxn+1)) }
+ L min {ψ(d(gxn, gxn+1)), ψ(d(gxn+1, gxn+2)),

ψ(d(gxn, gxn+2)), ψ(d(gxn+1, gxn+1))}
= θ(τn) max {ψ(τn), ψ(τn+1)}. (3.7)

Suppose that, max {ψ(τn), ψ(τn+1)} = ψ(τn+1). Then from (3.7), it follows that

ψ(τn+1) ≤ θ(τn) ψ(τn+1) < ψ(τn+1), (since θ(τn) < 1),
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which is a contradiction. Hence

ψ(τn+1) ≤ θ(τn) ψ(τn) < ψ(τn), (since θ(τn) < 1).

By the monotone property of ψ, it follows that

τn+1 < τn, for all n ≥ 0,

that is, {τn} is a monotone decreasing sequence of nonnegative real numbers. Hence
there exists a τ ≥ 0 such that

τn −→ τ as n −→∞.

Taking n −→∞ in (3.7), using the continuities of θ and ψ, we have

ψ(τ) ≤ θ(τ) ψ(τ) < ψ(τ), (since θ(τ) < 1),

which is a contradiction unless τ = 0. Thus we have

lim
n→∞

τn = lim
n→∞

d(gxn, gxn+1) = 0. (3.8)

Next we show that {gxn} is a Cauchy sequence. If {gxn} is not a Cauchy sequence, then
following Lemma 11, there exists ε > 0 and two sequences {m(k)} and {n(k)} of positive
integers such that for all positive integers k, n(k) > m(k) > k and

lim
k→∞

d(gxm(k), gxn(k)) = ε, (3.9)

lim
k→∞

d(gxm(k), gxn(k)+1) = ε, (3.10)

lim
k→∞

d(gxn(k), gxm(k)+1) = ε, (3.11)

and
lim
k→∞

d(gxm(k)+1, gxn(k)+1) = ε. (3.12)

For each positive integer k, gxm(k) and gxn(k) are comparable. Then putting α = α0,
x = xm(k) and y = xn(k) in (vi) and using the monotone property of ψ, we have

ψ(d(gxm(k)+1, gxn(k)+1)) ≤ ψ(δ(Tα0xm(k), Tα0xn(k)))
≤ θ(d(gxm(k), gxn(k))) max {ψ(d(gxm(k), gxn(k))), ψ(D(gxm(k), Tα0xm(k))),

ψ(D(gxn(k), Tα0xn(k))),√
ψ(D(gxm(k), Tα0xn(k))). ψ(D(gxn(k), Tα0xm(k))) }

+ L min {ψ(D(gxm(k), Tα0xm(k))), ψ(D(gxn(k), Tα0xn(k))),
ψ(D(gxm(k), Tα0xn(k))), ψ(D(gxn(k), Tα0xm(k)))}

≤ θ(d(gxm(k), gxn(k))) max {ψ(d(gxm(k), gxn(k))), ψ(d(gxm(k), gxm(k)+1)),
ψ(d(gxn(k), gxn(k)+1)),√

ψ(d(gxm(k), gxn(k)+1)). ψ(d(gxn(k), gxm(k)+1)) }

+ L min {ψ(d(gxm(k), gxm(k)+1)), ψ(d(gxn(k), gxn(k)+1)),
ψ(d(gxm(k), gxn(k)+1)), ψ(d(gxn(k), gxm(k)+1))}.
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Letting k −→∞ in the above inequality, using (3.8), (3.9), (3.10), (3.11) and (3.12) and
using the properties of θ and ψ, we have

ψ(ε) ≤ θ(ε) ψ(ε) < ψ(ε), (since θ(ε) < 1),

which is a contradiction. Hence {gxn} is a Cauchy sequence in g(X). Since X is complete
and g(X) is closed in X, there exists u ∈ g(X) such that

gxn −→ u as n −→∞.

Since u ∈ g(X), there exists z ∈ X such that u = gz. Then

gxn −→ u = gz as n −→∞. (3.13)

Since {τn} is monotone decreasing, from (3.7), we have

ψ(τn+1) ≤ ψ(δ(Tα0xn, Tα0xn+1)) ≤ θ(τn)ψ(τn).

As θ(τn) < 1, it follows that

ψ(τn+1) ≤ ψ(δ(Tα0xn, Tα0xn+1)) < ψ(τn),

which, by the monotone property of ψ, implies that

τn+1 ≤ δ(Tα0xn, Tα0xn+1) < τn.

Taking n→∞ in the above inequality, and using (3.8), we have

lim
n→∞

δ(Tα0xn+1, Tα0xn) = 0. (3.14)

Now,

δ(Tα0xn, {u}) ≤ δ(Tα0xn, gxn) + δ(gxn, {u}) ≤ δ(Tα0xn, Tα0xn−1) + d(gxn, u).

Taking n→∞ in the above inequality, and using (3.13) and (3.14), we have

lim
n→∞

δ(Tα0xn, {u}) = 0,

which, by Lemma 3, implies that

Tα0xn −→ {u} as n −→∞. (3.15)

Since the pair (g, Tα0) is δ - compatible, from (3.13) and (3.15), we have

lim
n→∞

δ(Tα0gxn, gTα0xn) = 0.

As g and Tα0 are continuous, it follows by Lemma 5 that δ(Tα0u, gu) = 0, that is,
Tα0u = {gu}. Hence u ∈ g(X) ⊆ X is a coincidence point of g and Tα0 . By what we
have already proved, u is a coincidence point of g and {Tα : α ∈ Λ}.

In our next theorem we relax the continuity assumption on Tα0 and g by imposing
an order condition. We also relax the δ - compatibility assumption of the pairs (g, Tα0)
and the condition that gTα0x ∈ B(X), for every x ∈ X.
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Theorem 13. Let θ : [0, ∞) −→ [0, 1) be a continuous function and ψ be an altering
distance function. Let (X, �) be a partially ordered set and suppose that there exists a
metric d on X such that (X, d) is a complete metric space. Assume that if xn −→ x is
a nondecreasing sequence in X, then xn � x, for all n. Let {Tα : X −→ B(X) : α ∈ Λ}
be a family of multivalued mappings. Let g : X −→ X be a mapping such that g(X) is
closed in X. Suppose that there exists α0 ∈ Λ such that

(i) Tα0x ⊆ g(X), for every x ∈ X,

(ii) there exists x0 ∈ X such that {gx0} ≺1 Tα0x0,

(iii) for x, y ∈ X, gx � gy implies Tα0x ≺1 Tα0y,

(iv) ψ(δ(Tα0x, Tαy))

≤ θ(d(gx, gy)) max {ψ(d(gx, gy)), ψ(D(gx, Tα0x)), ψ(D(gy, Tαy)),√
ψ(D(gx, Tαy)) . ψ(D(gy, Tα0x)) }

+L min {ψ(D(gx, Tα0x)), ψ(D(gy, Tαy)), ψ(D(gx, Tαy)), ψ(D(gy, Tα0x))},

where x, y ∈ X such that gx and gy are comparable and L ≥ 0.

Then g and {Tα : α ∈ Λ} have a coincidence point.

Proof. We take the same sequence {gxn} as in the proof of Theorem 12. Then we have
gxn+1 ∈ Tα0xn, for all n ≥ 0, {gxn} is monotonic nondecreasing and gxn −→ gz as
n −→∞. Then by the order condition of the metric space, we have gxn � gz, for all n.
Using the monotone property of ψ and the condition (iv), we have

ψ(δ(gxn+1, Tαz)) ≤ ψ(δ(Tα0xn, Tαz))
≤ θ(d(gxn, gz)) max {ψ(d(gxn, gz)), ψ(D(gxn, Tα0xn)), ψ(D(gz, Tαz)),√

ψ(D(gxn, Tαz)). ψ(D(gz, Tα0xn)) }
+ L min {ψ(D(gxn, Tα0xn)), ψ(D(gz, Tαz)), ψ(D(gxn, Tαz)), ψ(D(gz, Tα0xn))}

≤ θ(d(gxn, gz)) max {ψ(d(gxn, gz)), ψ(d(gxn, gxn+1)), ψ(D(gz, Tαz)),√
ψ(D(gxn, Tαz)). ψ(d(gz, gxn+1)) }

+ L min {ψ(d(gxn, gxn+1)), ψ(D(gz, Tαz)), ψ(D(gxn, Tαz)), ψ(d(gz, gxn+1))}.

Letting n −→∞ in the above inequality and using the properties of θ and ψ, we have

ψ(δ(gz, Tαz)) ≤ θ(0)ψ(D(gz, Tαz)) ≤ θ(0)ψ(δ(gz, Tαz)) < ψ(δ(gz, Tαz)) (since θ(0) < 1),

which implies that δ(gz, Tαz) = 0, that is, {gz} = Tαz, for all α ∈ Λ. Hence z is a
coincidence point of g and {Tα : α ∈ Λ}.

Considering {Tα : X −→ B(X) : α ∈ Λ} = {T} in Theorem 12, we have the following
corollary.

Corollary 14. Let θ : [0, ∞) −→ [0, 1) be a continuous function and ψ be an altering
distance function. Let (X, �) be a partially ordered set and suppose that there exists a
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metric d on X such that (X, d) is a complete metric space. Let T : X −→ B(X) be a
multivalued mapping and g : X −→ X a mapping such that

(i) T and g are continuous,

(ii) Tx ⊆ g(X) and gTx ∈ B(X), for every x ∈ X, and g(X) is closed in X,

(iii) there exists x0 ∈ X such that {gx0} ≺1 Tx0,

(iv) for x, y ∈ X, gx � gy implies Tx ≺1 Ty,

(v) the pair (g, T ) is δ - compatible,

(vi) ψ(δ(Tx, Ty))

≤ θ(d(gx, gy)) max {ψ(d(gx, gy)), ψ(D(gx, Tx)), ψ(D(gy, Ty)),√
ψ(D(gx, Ty)) . ψ(D(gy, Tx)) }

+ L min {ψ(D(gx, Tx)), ψ(D(gy, Ty)), ψ(D(gx, Ty)), ψ(D(gy, Tx))},

where x, y ∈ X such that gx and gy are comparable and L ≥ 0.

Then g and T have a coincidence point.

Considering {Tα : X −→ B(X) : α ∈ Λ} = {T} in Theorem 13, we have the following
corollary.

Corollary 15. Let θ : [0, ∞) −→ [0, 1) be a continuous function and ψ be an altering
distance function. Let (X, �) be a partially ordered set and suppose that there exists a
metric d on X such that (X, d) is a complete metric space. Assume that if xn −→ x
is a nondecreasing sequence in X, then xn � x, for all n. Let T : X −→ B(X) be a
multivalued mapping and g : X −→ X a mapping such that

(i) Tx ⊆ g(X), for every x ∈ X, and g(X) is closed in X,

(ii) there exists x0 ∈ X such that {gx0} ≺1 Tx0,

(iii) for x, y ∈ X, gx � gy implies Tx ≺1 Ty,

(iv) ψ(δ(Tx, Ty))

≤ θ(d(gx, gy)) max {ψ(d(gx, gy)), ψ(D(gx, Tx)), ψ(D(gy, Ty)),√
ψ(D(gx, Ty)) . ψ(D(gy, Tx)) }

+ L min {ψ(D(gx, Tx)), ψ(D(gy, Ty)), ψ(D(gx, Ty)), ψ(D(gy, Tx))},

where x, y ∈ X such that gx and gy are comparable and L ≥ 0.

Then g and T have a coincidence point.
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The following theorems are single valued cases of the Theorems 12 and 13 respectively.
Here we treat T as a multivalued mapping in which case Tx is a singleton set for every
x ∈ X.

Theorem 16. Let θ : [0, ∞) −→ [0, 1) be a continuous function and ψ be an altering
distance function. Let (X, �) be a partially ordered set and suppose that there exists a
metric d on X such that (X, d) is a complete metric space. Let {Tα : X −→ X : α ∈ Λ}
be a family of mappings. Let g : X −→ X be a mapping such that g(X) is closed in X.
Suppose that there exists α0 ∈ Λ such that

(i) Tα0 and g are continuous,

(ii) Tα0(X) ⊆ g(X),

(iii) there exists x0 ∈ X such that gx0 � Tα0x0,

(iv) for x, y ∈ X, gx � gy implies Tα0x � Tα0y,

(v) the pair (g, Tα0) is compatible,

(vi) ψ(d(Tα0x, Tαy))

≤ θ(d(gx, gy)) max {ψ(d(gx, gy)), ψ(d(gx, Tα0x)), ψ(d(gy, Tαy)),√
ψ(d(gx, Tαy)) . ψ(d(gy, Tα0x)) }

+ L min {ψ(d(gx, Tα0x)), ψ(d(gy, Tαy)), ψ(d(gx, Tαy)), ψ(d(gy, Tα0x))},

where x, y ∈ X such that gx and gy are comparable and L ≥ 0.

Then g and {Tα : α ∈ Λ} have a coincidence point.

Theorem 17. Let θ : [0, ∞) −→ [0, 1) be a continuous function and ψ be an altering
distance function. Let (X, �) be a partially ordered set and suppose that there exists a
metric d on X such that (X, d) is a complete metric space. Assume that if xn −→ x is
a nondecreasing sequence in X, then xn � x, for all n. Let {Tα : X −→ X : α ∈ Λ}
be a family of mappings. Let g : X −→ X be a mapping such that g(X) is closed in X.
Suppose that there exists α0 ∈ Λ such that

(i) Tα0(X) ⊆ g(X),

(ii) there exists x0 ∈ X such that gx0 � Tα0x0,

(iii) for x, y ∈ X, gx � gy implies Tα0x � Tα0y,

(iv) ψ(d(Tα0x, Tαy))

≤ θ(d(gx, gy)) max {ψ(d(gx, gy)), ψ(d(gx, Tα0x)), ψ(d(gy, Tαy)),√
ψ(d(gx, Tαy)) . ψ(d(gy, Tα0x)) }
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+ L min {ψ(d(gx, Tα0x)), ψ(d(gy, Tαy)), ψ(d(gx, Tαy)), ψ(d(gy, Tα0x))},

where x, y ∈ X such that gx and gy are comparable and L ≥ 0.

Then g and {Tα : α ∈ Λ} have a coincidence point.

Corollary 18. Let p, q, r, s be four continuous functions from [0, ∞) into [0, 1) which
satisfy the property p(t) + q(t) + r(t) + s(t) < 1, for all t ∈ [0, ∞) and ψ be an altering
distance function. Let (X, �) be a partially ordered set and suppose that there exists
a metric d on X such that (X, d) is a complete metric space. Let T : X −→ X and
g : X −→ X be two mappings such that

(i) T and g are continuous,

(ii) T (X) ⊆ g(X) and g(X) is closed in X,

(iii) there exists x0 ∈ X such that gx0 � Tx0,

(iv) for x, y ∈ X, gx � gy implies Tx � Ty,

(v) the pair (g, T ) is compatible,

(vi) ψ(d(Tx, Ty))

≤ p(d(gx, gy))ψ(d(gx, gy)) + q(d(gx, gy))ψ(d(gx, Tx)) + r(d(gx, gy))ψ(d(gy, Ty))

+s(d(gx, gy))
√
ψ(d(gx, Ty)) . ψ(d(gy, Tx)),

where x, y ∈ X such that gx and gy are comparable.

Then g and T have a coincidence point.

Proof. Starting with the inequality (vi), we have

ψ(d(Tx, Ty)) ≤ p(d(gx, gy))ψ(d(gx, gy)) + q(d(gx, gy))ψ(d(gx, Tx))

+ r(d(gx, gy))ψ(d(gy, Ty)) + s(d(gx, gy))
√
ψ(d(gx, Ty)) . ψ(d(gy, Tx)),

≤ θ(d(gx, gy)) max{ψ(d(gx, gy)), ψ(d(gx, Tx)), ψ(d(gy, Ty))√
ψ(d(gx, Ty)) . ψ(d(gy, Tx)) },

where θ(d(gx, gy)) = p(d(gx, gy)) + q(d(gx, gy)) + r(d(gx, gy)) + s(d(gx, gy)),
which is a special case of the inequality (vi) of Theorem 16 obtained by considering
{Tα : X −→ X : α ∈ Λ} = {T} and L = 0.

Corollary 19. Let p, q, r, s be four continuous functions from [0, ∞) into [0, 1) which
satisfy the property p(t) + q(t) + r(t) + s(t) < 1, for all t ∈ [0, ∞) and ψ be an altering
distance function. Let (X, �) be a partially ordered set and suppose that there exists a
metric d on X such that (X, d) is a complete metric space. Assume that if xn −→ x is a
nondecreasing sequence in X, then xn � x, for all n. Let T : X −→ X and g : X −→ X
be two mappings such that
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(i) T (X) ⊆ g(X) and g(X) is closed in X,

(ii) there exists x0 ∈ X such that gx0 � Tx0,

(iii) for x, y ∈ X, gx � gy implies Tx � Ty,

(iv) ψ(d(Tx, Ty))

≤ p(d(gx, gy))ψ(d(gx, gy)) + q(d(gx, gy))ψ(d(gx, Tx)) + r(d(gx, gy))ψ(d(gy, Ty))

+s(d(gx, gy))
√
ψ(d(gx, Ty)) . ψ(d(gy, Tx)),

where x, y ∈ X such that gx and gy are comparable.

Then g and T have a coincidence point.

Proof. Like the proof of the Corollary 18, we can show that the inequality (iv) is a special
case of the inequality (iv) of Theorem 17 obtained by considering {Tα : X −→ X : α ∈
Λ} = {T} and L = 0.

Example 20. Let X = [1, ∞) with usual order � be a partially ordered set.
Let d : X ×X −→ R be given as

d(x, y) = |x− y|, for x, y ∈ X.

Then (X, d) is a complete metric space with the required properties mentioned in The-
orems 12 and 13.
Let g : X → X be defined as follows:

gx = x2, for x ∈ X.

Then g has the properties mentioned in Theorems 12 and 13.
Let Λ = {1, 2, 3, ...}. Let the family of mappings {Tα : X → B(X) : α ∈ Λ} be defined
as follows:

T1x = {1}, for x ∈ X and for α ≥ 2, Tαx =
{ {1}, if 1 ≤ x ≤ 4,
{1, 2 α

α+ 1}, if x > 4.

For any sequence {xn} in X, T1xn → {t}, gxn → t, for some t in X implies t = 1. Then
clearly, the pair (g, T1) is δ - compatible. Also, g and T1 satisfy required conditions
mentioned in Theorems 12 and 13.
Let ψ : [0, ∞) −→ [0, ∞) be defined as follows:

ψ(t) = t2, for t ∈ [0, ∞).

Then ψ has the properties mentioned in Theorems 12 and 13.
Let θ : [0, ∞) −→ [0, 1) be defined as follows:

θ(t) = 1
2 , for all t ∈ [0, ∞).

Then θ satisfies the required properties mentioned in Theorems 12 and 13.
The condition (vi) of Theorem 12 and the condition (iv) of Theorem 13 are satisfied for
any L ≥ 0. Hence all the condition of Theorems 12 and 13 are satisfied and it is seen
that 1 is a coincidence point of g and {Tα : α ∈ Λ}.
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Note In the above example if one takes g : X → X to be function as follows:

gx =
{ x

2 , if 1 ≤ x ≤ 4,
200, if x > 4.

Then the above example is still applicable to Theorem 13 but not applicable to Theorem
12 because g is not continuous and hence does not satisfy required properties mentioned
in Theorem 12.

Remark 21. Theorems 16 and 17 are generalizations of ordered versions of theorem
3.1 in [8] which generalizes the Banach contraction principle [3], theorem 2 of Khan et
al [21], the theorem of Skof [32], and the theorem of Kannan [20]. Also, Theorems 16
and 17 generalize the ordered versions of the main result of Berinde [5].
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Annals of the Allexandru Ioan Cuza University-Mathematics, 2012 (In Press).
[32] F. Skof, Teorema di punti fisso per applicazioni negli spazi metrici, Atti. Accad. Sci. Torino.

111 ( 1977), 323–329.
[33] J. Yin and T. Guo, Some fixed point results for a class of g-monotone increasing multi-

valued mappings, Arab J. Math. Sci. 19 (2013), 35–47.
[34] T. Zamfirescu, Fixed point theorems in metric spaces, Arch. Mat. (Basel) 23 (1972), 292–

298.


	Introduction
	Mathematical Preliminaries 
	 Main Results 

