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Abstract
The purpose of the present paper is to investigate some characterization for generalized Bessel functions
of first kind to be in various subclasses of analytic functions. We also consider an integral operator
related to the generalized Bessel function.
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1 Introduction

Let A denote the class of functions f of the form

f(z) = z +
∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and satisfy the
normalization condition f(0) = f ′(0) − 1 = 0. Further, we denote by S the subclass of
A consisting of functions of the form 1.1 which are also univalent in U and T be the
subclass of S consisting of functions of the form

f(z) = z −
∞∑
n=2
|an|zn. (1.2)

Let T (λ, α) be the subclass of T consisting of functions which satisfy the condition

Re

{
zf ′(z)

λzf ′(z) + (1− λ)f(z)

}
> α, (1.3)

for some α(0 ≤ α < 1), λ(0 ≤ λ < 1) and for all z ∈ U .
Copyright c© 2013 Matej Bel University
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Also, we let C(λ, α) denote the subclass of T consisting of functions which satisfy the
condition

Re

{
f ′(z) + zf ′′(z)
f ′(z) + λzf ′′(z)

}
> α, (1.4)

for some α(0 ≤ α < 1), λ(0 ≤ λ < 1) and for all z ∈ U .
From 1.3 and 1.4 it is easy to verify that

f(z) ∈ C(λ, α)⇔ zf ′(z) ∈ T (λ, α).

The classes T (λ, α) and C(λ, α) were extensively studied by Altintas and Owa [1] and
certain conditions for hypergeometric functions for these classes were studied by Mostafa
[11].

It is worthy to note that T (0, α) ≡ T ∗(α), the class of starlike functions of order
α(0 ≤ α < 1) and C(0, α) ≡ C(α), the class of convex functions of order α(0 ≤ α < 1)
(see [13]).

We recall that the generalized Bessel function of the first kind w = wp,b,c is defined
as the particular solution of the second-order linear homogenous differential equation

z2ω′′(z) + bzω′(z) +
[
cz2 − p2 + (1− b)p

]
ω(z) = 0, (1.5)

where b, p, c ∈ C, which is a natural generalization of Bessel’s equation. This function
has the familiar representation

ω(z) = ωp,b,c(z) =
∞∑
n=0

(−1)ncn

n!Γ(p+ n+ b+1
2 )

(z
2

)2n+p
, z ∈ C. (1.6)

The differential equation 1.5 permits the study of Bessel function, modified Bessel
function, spherical Bessel function and modified spherical Bessel functions all together.
Solutions of 1.5 are referred to as the generalized Bessel function of order p. The par-
ticular solution given by 1.6 is called the generalized Bessel function of the first kind of
order p. Although the series defined above is convergent everywhere, the function ωp,b,c is
generally not univalent in U . It is worth mentioning that, in particular, when b = c = 1,
we reobtain the Bessel function ωp,1,1 = Jp, and for c = −1, b = 1 the function ωp,1,−1
becomes the modified Bessel function Ip. Now, consider the function up,b,c defined by
the transformation

up,b,c(z) = 2pΓ
(
p+ b+ 1

2

)
z−p/2ωp,b,c(z1/2).

By using the well-known Pochhammer (or Appell) symbol, defined in terms of the Euler
Gamma function for a 6= 0,−1,−2, ... by

(a)n = Γ(a+ n)
Γ(a) =

{
1, if n = 0

a(a+ 1)...(a+ n− 1) if n = 1, 2, 3, ..., ,

we obtain for the function up,b,c the following representation

up,b,c(z) =
∞∑
n=0

(−c/4)n(
p+ (b+1)

2

)
n

zn

n! , (1.7)

where p + (b + 1)/2 6= 0,−1,−2, .... This function is analytic on C and satisfies the
second-order linear differential equation

4z2u′′(z) + 2 (2p+ b+ 1) zu′(z) + czu(z) = 0.
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The convolution (or Hadamard product) of two series f(z) =
∑∞
n=0 anz

n and g(z) =∑∞
n=0 bnz

n is defined as the power series

(f ∗ g)(z) =
∞∑
n=0

anbnz
n.

Now, we considered a linear operator I(k, c) : A→ A defined by

I(k, c)f = zup,b,c(z) ∗ f(z)

= z +
∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!anz
n,

where k = p + b+1
2 . The generalized Bessel function is a recent topic of study in Geo-

metric Function Theory (e.g. see the work of [2], [3], [4], [5] and [10]). Motivated by
results on connections between various subclasses of analytic univalent functions by using
hypergeometric functions (see [6], [7], [9], [12], [14], [15]) and by work of Baricz [2]-[5],
we obtain sufficient condition for function z(2− up(z)) belonging to the classes T (λ, α),
C(λ, α) and connections between Rτ (A,B) and C(λ, α). Finally, we give a condition for
an integral operator G(k, c, z) belonging to the class C(λ, α).

For convenience throughout in the sequel, we use the following notations:

up,b,c = up, k = p+ b+ 1
2 .

2 Main Results

To establish our main results, we shall require the following lemmas due to Dixit and Pal
[8], Altintas and Owa [1] and Baricz [4].

Lemma 1. ([8]) If f ∈ Rτ (A,B) is of the form 1.1 then

|an| ≤
(A−B)|τ |

n
, (n ∈ N \ {1}). (2.1)

The bounds given in 2.1 is sharp.

Lemma 2. ([1]) A function f(z) defined by 1.2 is in the class T (λ, α), if and only if
∞∑
n=2

[n− λαn− α+ λα] |an| ≤ 1− α.

Lemma 3. ([1]) A function f(z) defined by 1.2 is in the class C(λ, α), if and only if
∞∑
n=2

n [n− λαn− α+ λα] |an| ≤ 1− α.

Lemma 4. ([4]) If b, p, c ∈ C and k 6= 0,−1,−2, ... then the function up satisfies the
recursive relation 4ku′p(z) = −cup+1(z) for all z ∈ C.

Theorem 5. If c < 0, k > 0(k 6= 0,−1,−2, ...), then z(2 − up(z)) is in T (λ, α) if and
only if

(1− αλ)u′p(1) + (1− α)up(1) ≤ 2(1− α), (2.2)
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Proof. Since

z (2− up(z)) = z −
∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!z
n,

according to Lemma 2, we must show that

∞∑
n=2

[n(1− λα)− α(1− λ)] (−c/4)n−1

(k)n−1(n− 1)! ≤ 1− α.

Now

∞∑
n=2

[n(1− αλ)− α(1− λ)] (−c/4)n−1

(k)n−1(n− 1)!

=
∞∑
n=0

[(n+ 2)(1− αλ)− α(1− λ)] (−c/4)n+1

(k)n+1(n+ 1)!

= (1− αλ)
∞∑
n=0

(−c/4)n+1

(k)n+1n! + (1− α)
∞∑
n=0

(−c/4)n+1

(k)n+1(n+ 1)!

= (1− αλ)u′p(1) + (1− α) [up(1)− 1] .

But this last expression is bounded above by 1 − α if and only if 2.2 holds. Thus the
proof of Theorem 5 is established.

Remark 6. In particular when c = −1 and b = 1, the condition 2.2 becomes

2p−2Γ(p+ 1) [(1− αλ)Ip+1(1) + 2(1− α)Ip(1)] ≤ 1− α, (2.3)

which is a necessary and sufficient condition for z
(
2− ζp(z1/2)

)
to be in T (λ, α), where

ζp(z1/2) = 2pΓ(p+ 1)z−p/2Ip(z1/2). (2.4)

Theorem 7. If c < 0, k > 0(k 6= 0,−1,−2, ...), then z (2− up(z)) is in C(λ, α) if and
only if

(1− αλ)u′′p(1) + (3− 2αλ− α)u′p(1) + (1− α)up(1) ≤ 2(1− α), (2.5)

Proof. Since

z (2− up(z)) = z −
∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!z
n,

according to Lemma 3, we must show that

∞∑
n=2

n [n(1− λα)− α(1− λ)] (−c/4)n−1

(k)n−1(n− 1)! ≤ 1− α.



Acta Univ. M. Belii, ser. Math. 21 (2013), 55–61 59

Now
∞∑

n=2

n [n(1− αλ)− α(1− λ)] (−c/4)n−1

(k)n−1(n− 1)!

=
∞∑

n=2

{(1− αλ)(n− 1)(n− 2) + (3− 2αλ− α)(n− 1) + (1− α)} (−c/4)n−1

(k)n−1(n− 1)!

=(1− αλ)
∞∑

n=2

(−c/4)n−1

(k)n−1(n− 3)! + (3− 2αλ− α)
∞∑

n=2

(−c/4)n−1

(k)n−1(n− 2)! + (1− α)
∞∑

n=2

(−c/4)n−1

(k)n−1(n− 1)!

=(1− αλ)
∞∑

n=0

(−c/4)n+1

(k)n+1(n− 1)! + (3− 2αλ− α)
∞∑

n=0

(−c/4)n+1

(k)n+1n! + (1− α)
∞∑

n=0

(−c/4)n+1

(k)n+1(n+ 1)!

=(1− αλ) (−c/4)2

k(k + 1)

∞∑
n=0

(−c/4)n−1

(k + 2)n−1(n− 1)! + (3− 2αλ− α) (−c/4)
k

∞∑
n=0

(−c/4)n

(k + 1)nn! + (1− α) {up(1)− 1}

=(1− αλ) (−c/4)2

k(k + 1)up+2(1) + (3− 2αλ− α) (−c/4)
k

up+1(1) + (1− α) {up(1)− 1}

=(1− αλ)u′′p(1) + (3− 2αλ− α)u′p(1) + (1− α) {up(1)− 1}

But this last expression is bounded above by 1−α if and only if 2.5 holds. This completes
the proof of Theorem 7.

Theorem 8. Let c < 0, k > 0(k 6= 0,−1,−2, ...). If f ∈ Rτ (A,B) and the inequality

(A−B)|τ |
[
(1− αλ)u′p(1) + (1− α) {up(1)− 1}

]
≤ 1− α, (2.6)

is satisfied then I(k, c)f ∈ C(λ, α).
Proof. By Lemma 3, it suffices to show that

P1 =
∞∑
n=2

n [n− λαn− α+ λα] |an| ≤ 1− α.

Since f ∈ Rτ (A,B) then by Lemma 1 we have

|an| ≤
(A−B)|τ |

n
.

Hence

P1 ≤(A−B)|τ |
∞∑
n=2

[n(1− αλ)− α(1− λ)] (−c/4)n−1

(k)n−1(n− 1)!

=(A−B)|τ |
∞∑
n=0

[(n+ 2)(1− αλ)− α(1− λ)] (−c/4)n+1

(k)n+1(n+ 1)!

= (A−B)|τ |
[

(1− αλ)
∞∑
n=0

(−c/4)n+1

(k)n+1n! + (1− α)
∞∑
n=0

(−c/4)n+1

(k)n+1(n+ 1)!

]

= (A−B)|τ |
[

(1− αλ) (−c/4)
k

∞∑
n=0

(−c/4)n

(k + 1)nn! + (1− α) {up(1)− 1}
]

= (A−B)|τ |
[
(1− αλ) (−c/4)

k
up+1(1) + (1− α) {up(1)− 1}

]
= (A−B)|τ |

[
(1− αλ)u′p(1) + (1− α) {up(1)− 1}

]
.
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But this last expression is bounded above by 1− α if and only if 2.6 holds.

3 An Integral Operator

In the following theorem, we obtain similar results in connection with a particular integral
operator G(k, c, z) as follows

G(k, c, z) =
∫ z

0
(2− up(t)) dt (3.1)

Theorem 9. If c < 0, k > 0(k 6= 0,−1,−2, ...), then G(k, c, z) defined by 3.1 is in
C(λ, α) if and only if

(1− αλ)u′p(1) + (1− α) [up(1)− 1] ≤ (1− α). (3.2)

Proof. Since

G(k, c, z) = z −
∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!
zn

n

= z −
∞∑
n=2

(−c/4)n−1

(k)n−1

zn

n!

by Lemma 3, we need only to show that
∞∑
n=2

n [n(1− λα)− α(1− λ)] (−c/4)n−1

(k)n−1n! ≤ 1− α.

Now
∞∑
n=2

n [n(1− λα)− α(1− λ)] (−c/4)n−1

(k)n−1n!

=
∞∑
n=2

[n(1− λα)− α(1− λ)] (−c/4)n−1

(k)n−1(n− 1)!

=
∞∑
n=0

[(n+ 2)(1− λα)− α(1− λ)] (−c/4)n+1

(k)n+1(n+ 1)!

=(1− αλ)
∞∑
n=0

(−c/4)n+1

(k)n+1n! + (1− α)
∞∑
n=0

(−c/4)n+1

(k)n+1(n+ 1)!

=(1− αλ)u′p(1) + (1− α) [up(1)− 1, ]

which is bounded above by 1− α, if and only if 3.2 holds.

Remark 10. If we put c = −1 and b = 1 in Theorem 7-9 we obtain analogues results of
2.3.
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