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1 Motivation

Nowadays, there is a growing interest in the combinatorial properties of convex sets,
usually, in compact convex sets. A large part of the papers belonging to this field go
back to Erdős and Szekeres [15]; see, for example, Dobbins, Holmsen, and Hubard [12] and
[13], Pach and Tóth [24] and [25], and their references. Recently, besides combinatorists
and geometers, algebraists are also interested in compact convex sets; see, for example,
Adaricheva [1], Adaricheva and Bolat [2], Adaricheva and Nation [4], Czédli [8], [9], and
[10], Czédli and Kincses [11], and Richter and Rogers [26]. The interest of algebraists
is explained by the fact that antimatroids, introduced by Korte and Lovász [17] and
[18], and the dual concept of abstract convex geometries, introduced by Edelman and
Jamison [14], have close connections to lattice theory. These connections are surveyed
in Adaricheva and Czédli [3], Adaricheva and Nation [4], Czédli [7], and Monjardet [21].
Finally, there are other types of combinatorial investigations of convex sets; the most
recent is, perhaps, Novick [23].

One of the most important concepts related to planar convex sets is that of supporting
lines. Most of the papers mentioned above rely, explicitly or implicitly, on the properties
of these lines. We guess that not only the experts of advanced analysis of convex sets and
functions are interested in the above papers; at least, this is surely true in case of the first
author of the present paper. However, it is quite difficult to explain to or understand
by all the interested readers in a short, easy-to-follow, but rigorous way that why one of
the most useful property of compact convex sets holds. This property, which seems to
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be absent in the literature, will be formulated in Theorem 1. This theorem is the “note”
occurring in the title.

This motivates the aim of this short paper: even if Theorem 1 could be proved in a
shorter way by using advanced tools of Analysis and even if it states what is expected
by geometric intuition, we are going to give a rigorous proof for it. Actually, we give
two different proofs. We believe that if other statements for planar compact convex sets
like (2.6) deserve proofs that are easy to reference, then so does this theorem. Note
that Czédli [10] exemplifies why the present paper is expected to be useful in further
research: while the first version, arXiv:1611.09331v1, of [10] spends a dozen of pages
on properties of supporting lines, its second version needs only few lines and a reference
to the present paper. Also, we exemplify the use of Theorem 1 by an easy corollary,
which is a well known but we have not found a rigorous proof for it.

2 A short survey

A compact subset of the plane R2 is a topologically closed bounded subset. The boundary
of H will be denoted by ∂H. A subset H of R2 is convex, if for any two points X,Y ∈ R2,
the closed line segment [X,Y ] is a subset of H. In this section, H will stand for a compact
convex set. Even if this is not always repeated, we always assume that a convex set is
nonempty. Each line ` gives rise to two closed halfplanes; their intersection is `. Usually,
unless otherwise is stated explicitly, we assume that ` is a directed line; then we can
speak of the left and right halfplanes determined by `. Points or sets in the left halfplane
are on the left of `; being on the right is defined analogously. If H is on the left of ` such
that H∩` = ∅, then H is strictly on the left of `. The direction of a directed line ` will be
denoted by dir(`) ∈ [−π, π). It is understood modulo 2π, whence we could also consider
dir(`) an element of [0, 2π). Furthermore, denoting the unit circle {〈x, y〉 : x2 + y2 = 1}
by Cunit, we will often say that dir(`) ∈ Cunit. Following the convention of Yaglom and
Boltyanskǐı [31], if H is on the left of ` and ` ∩H 6= ∅, then ` is a supporting line of H.
Clearly, for a supporting line ` of H, ` ∩H = ` ∩ ∂H 6= ∅. We know from Yaglom and
Boltyanskǐı [31, page 8] that parallel to each line `, a compact convex set with nonempty
interior has exactly two supporting lines. Hence, without any stipulation on the interior,

for every α ∈ Cunit, a compact convex set has
exactly one supporting line of direction α. (2.1)

Note at this point that, by definition, a curve is the range Range(g) of a continuous
function g from an interval I of positive length to Rn for some n ∈ {2, 3, 4, . . . }. If
x1 6= x2 ⇒ g(x1) 6= g(x2) except possibly for the endpoints of I, then Range(g) is a
simple curve. A Jordan curve is a homeomorphic planar image of a circle of nonzero
radius, that is, a Jordan curve is a simple closed curve in the plane. A curve is rectifiable if
the lengths of its inscribed polygons form a bounded subset of R. The following statement
is known, say, from Latecki, Rosenfeld, and Silverman [19, Thm. 32] and Topogonov [30,
page 15]; see also [32].

For a compact convex H ⊆ R2 with nonempty
interior, ∂H is a rectifiable Jordan curve. (2.2)

For P ∈ ∂H, there are two possibilities; see, for example, Yaglom and Boltyanskǐı
[31, page 12]. First, if there is exactly one supporting line through P ,

then P is a regular point of ∂H and the curve ∂H is smooth at P . (2.3)

Second, if there are at least two distinct supporting lines `1 and `2 through P , then P is
a corner of ∂H (or of H). In both cases, a supporting line ` containing P is called the
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last semitangent of H through P if for every small positive ε, there is an ε′ ∈ (0, ε) such
that the line obtained from ` by rotating it around P forward (that is, counterclockwise)
by ε′ degree is not a supporting line. The first semitangent is defined similarly. The first
and the last semitangents coincide iff P ∈ ∂H is a regular point. For P ∈ ∂H,

`−P and `+
P will denote the first semitangent and the last

semitangent through P , respectively. When they coincide,
`P := `−P = `+

P will stand for the tangent line through P .
(2.4)

Let us emphasize that no matter if P ∈ ∂H is a regular point or a vertex,

there exists a supporting line through P ; in particular, both
`−P and `+

P exist and they are uniquely determined. (2.5)

Besides Yaglom and Boltyanskǐı [31], this folkloric fact is also included, say, in Boyd and
Vanderberghe [6, page 51]. We note but will not use the fact that every line separating
P and the interior of H is a supporting line through P . As an illustration for (2.5), some
supporting lines of H are given in Figure 1. If `i is the supporting line denoted by i
in the figure, then `1 = `P1 is a tangent line, `−P2

= `2 is the first semitangent through
P2, and `+

P2
= `4 is the last semitangent through the same point. We know from, say,

Borwein and Vanderwerff [5, 2.2.15 in page 42], Yaglom and Boltyanskǐı [31, page 110],
or even from [32], that the boundary ∂H of a compact convex set H ⊆ R2 can have ℵ0
many corners. This possibility, which is not so easy to imagine, also justifies that we are
going to give a rigorous proof for our theorem. Next, restricting ourselves to the compact
case and to the plane, we recall the strict separation theorem as follows.

If H1, H2 ⊆ R2 are disjoint compact convex set, then
there exists a directed line ` such that H1 is strictly
on the left and H2 is strictly on the right of `.

(2.6)

This result follows, for example, from Subsection 2.5.1 in Boyd and Vandenberghe [6]
plus the fact that the distance dist(H1, H2) of H1 and H2 is positive in this case.

Figure 1. Supporting lines

3 A note and its corollary

Given a compact convex set H, visual intuition tells us that any supporting line can be
continuously transformed to any other supporting line. We think of this transformation
as a slow, continuous progression in time. For example, in Figure 1, `i+1 comes, after
some time, later than `i, for i ∈ 1, . . . , 11. While continuity makes a well-known math-
ematical sense, a comment on slowness is appropriate here. By slowness we shall mean
rectifiability, because this is what guarantees that running the process with a constant
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speed, it will terminate. Therefore, since rectifiability is an adjective of curves, we are
going to associate a simple closed rectifiable curve with H such that the progression is
described by moving along this curve forward. The only problem with this initial idea is
that, say, `11 cannot follow `10, because they are the same supporting lines. Therefore,
we consider pointed supporting lines. A pointed supporting line of H is a pair 〈P, `〉 such
that P ∈ ∂H and ` is a supporting line of H through P . The transition from `i to `i+1
will be called slide-turning. Of course, the 〈Pi, `i〉, for i ∈ {1, . . . , 12}, represent only
twelve snapshots of a continuous progression. In order to capture the progression math-
ematically, note that each pointed supporting line 〈P, `〉 of H is determined uniquely by
the point 〈P,dir(`)〉 ∈ R4. To be more precise, define the following cylinder

Cyl := R2 × Cunit = {〈x, y, z, t〉 ∈ R4 : z2 + t2 = 1} ⊆ R4. (3.1)

As the crucial concept of this section, the slide curve of H is

Sli(H) := {〈P,dir(`)〉 : 〈P, `〉 is a pointed supporting line of H}; (3.2)

it is a subset of Cyl. Although Sli(H) looks only a set at present, it will soon turn out
that it is a curve. Actually, the main result of the paper says the following.

Theorem 1. For every nonempty compact convex set H ⊆ R2, Sli(H) is a rectifiable
simple closed curve.

In order to exemplify the usefulness of this theorem, we state a corollary. Although
it is well known, we have not found a rigorous proof for it.

Corollary 2. If H1, H2 ⊆ R2 are disjoint compact convex sets with nonempty interiors,
then they have exactly four non-directed supporting lines in common.

The stipulation on the interior above can be relaxed but then we have to speak of
directed supporting lines.

Figure 2. Reducing the problem to functions

4 Proofs

First proof of Theorem 1. We can assume that the interior of H is nonempty, because
otherwise H is a line segment, possibly a singleton segment, and the statement trivially
holds. In order to reduce the task to functions rather than convex sets, let P0 be an
arbitrary point of ∂H. Pick a point O in the interior of H, and choose a coordinate
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system such that both P0 and O are on the y-axis and O is above P0; see on the left of
Figure 2. For a positive u, let C1 and C2 be the circles of radii u and 2u around O; we
can assume that u is so small that C2 is in the interior of H. Let A be the intersection
of ∂H and the closed strip S between the two vertical tangent lines of C1. In the figure,
A is the thick arc of ∂H between P1 and P2. Let

SliA(H) := {〈P,dir(`)〉 : P ∈ A, 〈P,dir(`)〉 ∈ Sli(H)},
and similarly for future other arcs of ∂H. (4.1)

Since the distance of O and the complement set of H is positive, we can assume that
u is so small that the grey-filled rectangle containing A in the figure is strictly below
C2. (We have some freedom to choose the upper and lower edges of this rectangle.)
Let α1, α2 ∈ Cunit be the directions of the external common supporting lines of C2 and
this rectangle, see the figure. Note that if we consider Cunit the interval [−π, π), then
α1 = −α2. The presence of C2 within H guarantees the second half of the following
observation:

0 < α2 < π and for every supporting line ` of H
that contains a point of A, −α2 ≤ dir(`) ≤ α2.

(4.2)

We claim that

A is the graph of a convex function f : [−u, u]→ R. (4.3)

By the convexity of H and (2.2), every vertical line in the strip S intersects A. Suppose,
for a contradiction, that U is not the graph of a function. Then a vertical line in S
intersects A in at least two distinct points, X1 and X2. Let, say, X2 be above X1; see
on the right of the figure. Then X2 is in the interior of the convex hull of {X1} ∪ C2,
whereby it is in the interior rather than on the boundary of H. This contradiction shows
that f is a function. It is convex, since so is H. This proves (4.3). Clearly, the same
consideration shows that

each ray starting from O intersects ∂H exactly once. (4.4)

For a real-valued function f : R → R and x0 in the interior of its domain, the left
derivative limx→x0−(f(x)−f(x0))/(x−x0) and the right derivative of f at x0 are denoted
by f ′−(x0) and f ′+(x0), respectively. By a theorem of Stolz [29], see also Niculescu and
Persson [22, Theorem 1.3.3], if f is convex in the open interval (−u, u), then

for all x, x1, x2 ∈ (−u, u), both f ′−(x) and f ′+(x) exist,
f ′−(x) ≤ f ′+(x), and x1 < x2 implies that f ′+(x1) ≤ f ′−(x2). (4.5)

Recall that a function g from a subset of Rk to Rn is Lipschitz (or f is a Lipschitz function
or f is Lipschitzian) if there exists a positive constant L such that dist(g(x), g(x′)) ≤
L · dist(x, x′) holds for all x and x′ in the domain of g. Since f is convex, we know from
Rockafellar [27, Theorems 10.1, 10.4, and 24.1] that

in (−u, u), f is Lipschitz, f ′− is continuous from
the left, and f ′+ is continuous from the right. (4.6)

Note that if a function is Lipschitz in an interval, then it is uniformly continuous there.
From now on, we consider f only in the open interval (−u, u) and we fix a positive
v ∈ (0, u), For x0 ∈ (−u, u), the subdifferential is defined as the interval

f (sub)(x0) = {d ∈ R : ∀x ∈ (−u, u), f(x) ≥ f(x0) + d(x− x0)}
= [f ′−(x0), f ′+(x0)];

(4.7)
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see Niculescu and Persson [22, Section 1.5]. As a consequence of (4.5), the subdifferential
is a dissipative set-valued function, that is,

for x1, x2 ∈ (−u, u), if x1 < x2, d1 ∈ f (sub)(x1),
and d2 ∈ f (sub)(x2), then d1 ≤ d2.

(4.8)

Consider the set

D := {〈x, d〉 : x ∈ [−v, v] and d ∈ f (sub)(x)} ⊆ R2 (4.9)

with the (strict) lexicographic ordering

〈x1, d1〉 <lex 〈x2, d2〉
def⇐⇒ (x1 < x2, or x1 = x2 and d1 < d2). (4.10)

We define a function
t : D → R by t(x, d) = x+ d. (4.11)

Note that t(x, d) is a short form of t(〈x, d〉). Recall that the Manhattan distance of
〈x1, d1〉 and 〈x2, d2〉 in R2 is defined as dM(〈x1, d1〉, 〈x2, d2〉) := |x1 − x2|+ |d1 − d2|. It
has the usual properties of a distance function. It follows from (4.5) that, for 〈x1, d1〉
and 〈x2, d2〉 in D (rather than in R2),

if 〈x1, d1〉 ≤lex 〈x2, d2〉, then dM(〈x1, d1〉, 〈x2, d2〉) = t(x2, d2)− t(x1, d1); (4.12)

that is, for points of D, the Manhattan distance is derived from the function t. Let
dist(〈x1, d1〉, 〈x2, d2〉) stand for the Euclidean distance ((x1 − x2)2 + (d1 − d2)2))1/2; in
R4, it is understood analogously. For the sake of a later reference, we note in advance
that for x(i), d(i) ∈ R2, the Manhattan distance in R4 is understood as

dM(〈x(1), d(1)〉, 〈x(2), d(2)〉) := dist(x(1), x(2)) + dist(d(1), d(2)). (4.13)

It is well known and easy to see that, for all 〈x1, d1〉, 〈x1, d1〉 in R2, and even in R4 if
x1, x2, d1, d2 ∈ R2,

dist(〈x1, d1〉, 〈x2, d2〉) ≤ dM(〈x1, d1〉, 〈x2, d2〉) ≤ 2 · dist(〈x1, d1〉, 〈x2, d2〉). (4.14)

It follows from (4.12) and the second half of (4.14) that t is a Lipschitz function (with
Lipschitz constant 2). Since dM(−,−) is a distance function, (4.12) yields that t is
injective. Actually, it is bijective as a D → Range(t) function. Thus, it has an inverse
function, t−1 : Range(t) → D, which is also bijective. In order to see that the function
t−1 is also a Lipschitz function, let yi = t(xi, di) = xi + di ∈ Range(t), for i ∈ {1, 2}.
Since dist(−,−) is a symmetric function, we can assume that 〈x1, d1〉 ≤lex 〈x2, d2〉. We
can also assume that d1 ≤ d2; either because x1 = x2 and then we can interchange the
subscripts 1 and 2, or because x1 < x2 and (4.8) applies. With these assumptions, let us
compute:

dist(y1, y2) = |y2 − y1| = |x2 + d2 − (x1 + d1)| = |x2 − x1 + d2 − d1|
= x2 − x1 + d2 − d1 = |x1 − x2|+ |d1 − d2| = dM(〈x1, d1〉, 〈x2, d2〉).

Hence, using the second part of (4.14), it follows that the function t−1 is Lipschitz (with
Lipschitz constant 2). So, we can summarize that

t : D → Range(t) and t−1 : Range(t) → D are reciprocal bijections
and both of them are Lipschitz; in short, t is bi-Lipschitzian. (4.15)
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Next, let w1 = t(−v, f ′−(−v)) and w2 = t(v, f ′+(v)). We claim that

Range(t) = [w1, w2]. (4.16)

In order to see the easier inclusion, assume that 〈x, d〉 ∈ D. Using (4.8) and (4.10),
we obtain that 〈−v, f ′−(−v)〉 ≤lex 〈x, d〉 ≤lex 〈v, f ′+(v)〉. Thus, since (4.12) yields that
t is order-preserving, we conclude that w1 ≤ t(x, d) ≤ w2, that is, Range(t) ⊆ [w1, w2].
In order to show the converse inclusion, assume that s ∈ [w1, w2]. We need to find an
〈x0, d0〉 ∈ D such that s = t(x0, d0), that is, s = x0 + d0. Define

x− := sup {x : there is a d such that 〈x, d〉 ∈ D and x+ d ≤ s},
x+ := inf {x : there is a d such that 〈x, d〉 ∈ D and x+ d ≥ s}. (4.17)

Since t(−v, f ′−(−v)) = w1 ≤ s ≤ w2 = t(v, f ′+(v)), the sets occurring in (4.17) are
nonempty. Hence, both x− and x+ exist and we have that x−, x+ ∈ [−v, v]. Suppose,
for a contradiction, that x+ < x−. Then x− = 3ε + x+ for a positive ε. By (4.17),
which defines x− and x+, we can pick 〈x†, d†〉, 〈x‡, d‡〉 ∈ D such that x† ∈ (−ε+x−, x−],
t(x†, d†) = x† + d† ≤ s, x‡ ∈ [x+, ε + x+), and t(x‡, d‡) = x‡ + d‡ ≥ s. In particular,
x†+ d† ≤ x‡+ d‡. However, since x‡ < x†, the dissipative property from (4.8) gives that
d‡ ≤ d†, whereby x†+d† ≥ x†+d‡ > x‡+d‡, contradicting x†+d† ≤ x‡+d‡. This proves
that x− ≤ x+. Next, suppose for a contradiction that x− < x+. Let x∗ := (x− + x+)/2,
and pick a d∗ ∈ f (sub)(x∗). Since x∗ + d∗ ≤ s would contradict the definition of x−,
we have that x∗ + d∗ > s, which contradicts the definition of x+. This excludes the
case x− < x+. So we have that x− = x+, and we let x0 := x− = x+. Clearly, for
all x and the corresponding d in the upper line of (4.17), x + f ′−(x) ≤ x + d ≤ s.
Hence, the left continuity formulated in (4.6) gives that t(x0, f

′
−(x0)) = x0 + f ′−(x0) =

x− + f ′−(x−) ≤ s. Similarly, t(x0, f
′
+(x0)) = x0 + f ′+(x0) = x+ + f ′+(x+) ≥ s. So

x0 + f ′−(x0) ≤ s ≤ x0 + f ′+(x0), whereby (4.7) gives a d0 ∈ [f ′−(x0), f ′+(x0)] such that
s = x0 + d0 = t(x0, d0). This proves (4.16).

It is well known (and evident) that, with self-explanatory domains,

the composition of two bi-Lipschitzian functions is bi-
Lipschitzian. Thus, a bi-Lipschitzian function maps a
rectifiable simple curve to a rectifiable simple curve.

(4.18)

Before utilizing (4.18), we need some preparations. Let Q1 = 〈−v, f(−v)〉 and Q2 =
〈v, f(v)〉; they are points on the arc A before and after P0, respectively. Let B be the
sub-arc of A (and of ∂H) from Q1 to Q2, and note that P0 is in the interior of B.
Let f∗ : [−v, v] → B be the function defined by f∗(x) := 〈x, f(x)〉. Using (4.6) and
the relation between the Euclidean and the Manhattan distance functions, see (4.14), it
follows that f∗ is Lipschitz. This fact implies trivially that f∗ is bi-Lipschitzian. So is
the arctangent function on [−v, v]. Therefore, it follows in a straightforward way from
(4.14) that the Cartesian (or categorical) product function

〈f∗, arctan〉 : D → SliB(H), defined by 〈x, d〉 7→ 〈f∗(x), arctan(d)〉,
where SliB(H) is defined in (4.1), is bi-Lipschitzian. (4.19)

The line segment [w1, w2] is clearly a simple rectifiable curve. So isD by (4.11), (4.15),
(4.16), and (4.18). Hence, (4.18) and (4.19) yield that SliB(H) is a simple rectifiable
curve. Finally, since P0 ∈ ∂H was arbitrary and since the endpoints of B can be omitted
from B, we obtain that ∂H can be covered by a set {Bi : i ∈ I} of open arcs such that the
SliBi

(H) ⊆ Cyl are simple rectifiable curves. Clearly, the SliBi
(H) cover Sli(H). Since
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∂H is compact, we can assume that I is finite. Therefore, Sli(H) is covered by finitely
many open simple rectifiable curves. Furthermore, (4.4) yields that each of these open
curves overlaps with its neighbors. Thus, we conclude the validity of Theorem 1.

In the following proof, the argument leading to (4.20) can be extracted from the more
general approach of Kneser [16] and Stachó [28]. For the planar case and for the reader’s
convenience, it is more convenient to prove (4.20) directly.

Second proof of Theorem 1. Define H+1 := {P ∈ R2 : dist(P,H)) ≤ 1}. First, we prove
that H+1 is a compact convex set. Let Q be a limit point of H+1 and suppose, for a
contradiction, that Q /∈ H+1. This means that dist(Q,H) = 1 + 3ε for a positive ε ∈ R.
Take a sequence (Pn : n ∈ N) of points in H+1 such that limn→∞ Pn = P . For each
n ∈ N , pick a point Qn ∈ H such that dist(Pn, Qn) ≤ 1. Since H is compact, the
sequence (Qn : n ∈ N) has a convergent subsequence. Deleting members if necessary, we
can assume that (Qn : n ∈ N) itself converges to a point Q of H. Take a sufficiently
large n ∈ N such that dist(P, Pn) < ε and dist(Qn, Q) < ε. Then 1 + 3ε = dist(P,Q) ≤
dist(P, Pn) + dist(Pn, Qn) + dist(Qn, Q) ≤ ε + 1 + ε = 1 + 2ε is a contradiction. Hence,
H+1 is closed, whereby it is obviously compact. In order to show that it is convex, let
X,Y ∈ H+1 and let λ ∈ (0, 1); we need to show that Z := (1 − λ)X + λY ∈ H+1.
The containments X ∈ H+1 and Y ∈ H+1 are witnessed by some X0, Y0 ∈ H such that
dist(X,X0) ≤ 1 and dist(Y, Y0) ≤ 1. Since H is convex, Z0 := (1 − λ)X0 + λY0 ∈ H.
The vectors ~a := X −X0 and ~b := Y −Y0 are of length at most 1, and it suffices to show
that so is ~c := Z − Z0. Since (~a,~b) ≤ ||~a|| · ||~b|| ≤ 1, we have that

(~c,~c) = ((1− λ)~a+ λ~b, (1− λ)~a+ λ~b)

= (1− λ)2(~a,~a) + λ2(~b,~b) + 2λ(1− λ)(~a,~b)
≤ (1− λ)2 + λ2 + 2λ(1− λ) = 1.

Hence, dist(Z,Z0) = ||~c|| ≤ 1, and H+1 is convex. Thus, (2.2) gives that

∂H+1 is rectifiable Jordan curve. (4.20)

Figure 3. Illustration for the second proof

Clearly, ∂H+1 = {X : dist(X,H) = 1} = {X : dist(X, ∂H) = 1}. Define the
following relation

ρ := {〈P, P ∗〉 ∈ ∂H+1 × ∂H : dist(P, P ∗) = 1}
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between ∂H+1 and ∂H; see Figure 3. Let 〈P, P ∗〉 ∈ ρ as in the figure. The coordinate
system is chosen so that P and P ∗ determine a vertical line and P is above P ∗. Through
P ∗ and P , let `1 and `2 be the lines of direction π; they are perpendicular to [P ∗, P ].
We claim that

`1 is a supporting line of H. (4.21)

Suppose to the contrary that `1 is not a supporting line and pick a point R ∈ H strictly
on the right of `1; see the figure. Since P ∈ ∂H+1, dist(P,H) = 1, whereby R cannot
be inside the dotted circle of radius 1 around P . However, since this circle touches `1 at
P ∗, the line segment [P ∗, R], which is a subset of H by convexity, has a point inside the
dotted circle. This contradicts dist(P,H) = 1 and proves (4.21). From (4.21), it follows
that if 〈P,Q〉 ∈ ρ, then Q = P ∗. Hence,

f : ∂H+1 → Sli(H), defined by f(P ) = 〈P ∗,dir(`∗)〉 ∈ Sli(H) ⇐⇒
〈P, P ∗〉 ∈ ρ, `∗ is a supporting line, and `∗ is perpendicular to [P, P ∗]

is a mapping. Trivially,

g : Sli(H)→ ∂H+1, defined by g(〈P ∗,dir(`∗)〉) = P ⇐⇒
dir([P ∗, P ]) = dir(`∗)− π/2 and dist(P, P ∗) = 1, (4.22)

is also a mapping. Moreover f and g are reciprocal bijections. Recall from Luuk-
kainen [20, Definition 2.14] that a function τ : X → Y is Lipschitz in the small if there
are δ > 0 and L ≥ 0 such that dist(τ(x1), τ(x2)) ≤ L · dist(x1, x2) for all x1, x2 ∈ X
with dist(x1, x2) ≤ δ. We know from [20, 2.15] that every bounded function with this
property is Lipschitz. We are going to show that f and g are Lipschitz in the small,
witnessed by δ = 1/5 and L = 9, because then g = f−1, (4.18), and (4.20) will imply the
theorem. (Note that δ = 1/5 and L = 9 are convenient but none of them is optimal.)

First, we deal with f . Assume that Q1 ∈ ∂H+1 such that γ := dist(P,Q1) < δ = 1/5;
see Figure 3. The angle ε := ∠(PP ∗Q1), which is the length of the circular arc from P
to Q1, is close to γ in the sense that

both ε/γ and γ/ε are in the interval (99/100, 101/100); (4.23)

this is shown by easy trigonometry since both sin(1/5)/(1/5) and (1/5/) sin(1/5) are
in the open interval on the right of (4.23). Let C and C1 be the circles of radius 1
around P ∗ and Q1, respectively. Since dist(Q1, H) = 1, Q1 is not in the interior of
(the disk determined by) C. Also, since `1 is a supporting line of H, we have that `2
is a supporting line of H+1 and Q1 cannot be strictly on the right (that is, above) `2.
So either Q1 is on the circle C, or it is above C but not above `2 (but then we write
Q2 instead of Q1 in the figure). Denote f(Q1) by 〈Q∗1,dir(`∗1)〉. Clearly, Q∗1 is on the
thick arc of C1 from P ∗ to R1, as indicated in the figure. The length of this arc is
2ε, whence dist(P ∗, Q∗1) ≤ 2ε. Since `∗1 is perpendicular to [Q1, Q

∗
1] and Q∗1 is on the

thick arc of C1, we have that dist(dir(`∗),dir(`∗1)) ≤ ε ≤ 2ε. So the Manhattan distance
dM(〈P ∗,dir(`∗)〉, 〈Q∗1,dir(`∗1)〉), see (4.13), is at most 4ε. Hence, (4.14) and (4.23) yield
that dist(f(P ), f(Q1) ≤ 9 · dist(P,Q1). The other case, represented by Q2, follows
from the fact that dist(P ∗, Q∗2) and dist(dir(`∗),dir(`∗2)) are smaller than the respective
distances in the previous case. This shows that f is Lipschitz in the small.

Next, we deal with g. Assume that 〈P ∗,dir(`∗)〉 and 〈P ∗1 ,dir(`∗1)〉 are in Sli(H)
and their distance, γ, is less than δ. With the auxiliary point 〈P ∗,dir(`∗1)〉 ∈ R4,
which need not be in Sli(H), we have that dist(〈P ∗,dir(`∗)〉, 〈P ∗,dir(`∗1)〉) ≤ γ and
dist(〈P ∗,dir(`∗1)〉, 〈P ∗1 ,dir(`∗1)〉) ≤ γ. Although the auxiliary point is not in the domain
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of g in general, we can extend the domain of g to this point by (4.22). Since the secants of
the unit circles are shorter than the corresponding circular arcs, whose lengths equal the
corresponding central angles, it follows that dist(g(〈P ∗,dir(`∗)〉), g(〈P ∗,dir(`∗1)〉)) ≤ γ.
Since parallel shifts are distance-preserving, dist(g(〈P ∗,dir(`∗1)〉), g(〈P ∗1 ,dir(`∗1)〉)) = γ.
Hence, the triangle inequality yields that dist(g(〈P ∗,dir(`∗)〉), g(〈P ∗1 ,dir(`∗1)〉)) ≤ 2γ ≤
9δ. Thus, g is also Lipschitz in the small, as required. This completes the second proof
of Theorem 1.

Figure 4. Illustration for Corollary 2

Proof of Corollary 2. By (2.6), we have a directed line, the dotted one in Figure 4, such
that H1 is strictly in the left and H2 is strictly on the right of this line. By (2.1), we can
take a 〈P0,dir(`0)〉 ∈ Sli(H1) such that `0 and the dotted line have the same direction.
For 0 < L ∈ R, let

L · Cunit denote the circle {〈x, y〉 : x2 + y2 = (L/(2π))2} of perimeter L.

Since Sli(H1) is a rectifiable simple closed curve by Theorem 1, we can let L be its
perimeter. Let

{h(t) : t ∈ L · Cunit} be a parameterization of Sli(H1) (4.24)

such that 〈P0,dir(`0)〉 = h(t0). We think of the parameter t as the time measured in
seconds. While the time t is slowly passing, 〈P (t),dir(`(t))〉 is slowly and continuously
moving forward along Sli(H1), and the directed supporting line 〈P (t), `(t)〉 is slide-turning
forward, slowly and continuously. Since H2 is compact, the distance dist(`(t), H2) is
always witnessed by a pair of points in `(t) × H2, and this distance is a continuous
function of t. At t = t0, this distance is positive and H2 is on the right of `0 = `(t0).
Slide-turn this pointed supporting line around H1 forward during L seconds; that is,
make a full turn around Sli(H1). By continuity, in the chronological order listed below,
there are

1. a last t = t1 such that H2 is still on the right of `(t) (this t1 exists, because it is
the first value of t where dist(`(t), H2) = 0),

2. a first t = t2 such that H2 is on the left of `(t),

3. a last t = t3 such that H2 is still on the left of `(t),

4. a first t = t4 such that H2 is on the right of `(t).

In Figure 4, h(ti) = 〈P (ti),dir(`(ti))〉 is represented by 〈Pi, `i〉. Clearly, `1, . . . , `4 is the
list of all common supporting lines and these lines are pairwise disjoint.
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