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Abstract
We consider the partial theta function θ(q, z) :=

∑∞
j=0 q

j(j+1)/2zj , where (q, z) ∈ C2, |q| < 1. We show
that for any 0 < δ0 < δ < 1, there exists n0 ∈ N such that for any q with δ0 ≤ |q| ≤ δ and for any
n ≥ n0 the function θ has exactly n zeros with modulus < |q|−n−1/2 counted with multiplicity.
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1 Introduction

We consider the bivariate series θ(q, z) :=
∑∞
j=0 q

j(j+1)/2zj , where (q, z) ∈ C2, |q| < 1.
This series defines a partial theta function. The terminology is explained by the fact that
the Jacobi theta function is defined by the series

∑∞
j=−∞ qj

2
zj and the following equality

holds true: θ(q2, z/q) =
∑∞
j=0 q

j2
zj . The word “partial” is justified by the summation

in θ ranging from 0 to ∞ and not from −∞ to ∞. In what follows we consider z as a
variable and q as a parameter. For each fixed value of the parameter q the function θ is
an entire function in the variable z.

The function θ finds applications in various domains, such as statistical physics and
combinatorics (see [17]), Ramanujan type q-series (see [18]), the theory of (mock) mod-
ular forms (see [3]), asymptotic analysis (see [2]), and also in problems concerning real
polynomials in one variable with all roots real (such polynomials are called hyperbolic,
see [4], [5], [15], [14], [6], [13] and [7]). Other facts about θ can be found in [1].

The zeros of θ depend on the parameter q. For some values of q (called spectral)
confluence of zeros occurs, so it would be correct to regard the zeros as multivalued
functions of q; about the spectrum of θ see [13], [11] and [12].

We denote by Dρ the open disk in the q-space centered at 0 and of radius ρ, by Cρ
the corresponding circumference, and by Aδ0,δ the closed annulus {q ∈ C | δ0 ≤ |q| ≤ δ}.

In the present paper we prove the following theorem:

Theorem 1. For any couple of numbers (δ0, δ) such that 0 < δ0 < δ < 1, there exists
n0 ∈ N such that for any q ∈ Aδ0,δ and for any n ≥ n0 the function θ has exactly n zeros
in D|q|−n−1/2 counted with multiplicity.
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Remark 2. 1. The proof of the theorem is based on a comparison between θ and the
function

u(q, z) :=
∞∏
ν=1

(1 + qνz) (1.1)

We use the equality

u =
∞∑
j=0

qj(j+1)/2zj/(q; q)j , (1.2)

where (q; q)j := (1− q)(1− q2) · · · (1− qj) is the q-Pochhammer symbol; it follows
directly from Problem I-50 of [16] (see pages 9 and 186 of [16]). The analog of the
above theorem for the deformed exponential function

∑∞
j=0 q

j(j+1)/2zj/j! is proved
in a non-published text by A. E. Eremenko using a different method.

2. For q close to 0 the zeros of θ are of the form −q−`(1 + o(1)), ` ∈ N, see more
details about this in [8], [9] and [10].

2 Proofs

Proof of Theorem 1. It is shown in [8] that for 0 < |q| ≤ 0.108 the zeros of θ can be
expanded in convergent Laurent series. Recall that the function u (defined by (1.1))
satisfies equality (1.2), i.e. the zeros of u are the numbers −q−`, ` ∈ N. We show that
for n ∈ N sufficiently large the functions u and θ have one and the same number of zeros
in the open disk D|q|−n−1/2 . To this end we show that for the restrictions u0 and θ0 of
u and θ to the circumference C|q|−n−1/2 one has |u0 − θ0/(q; q)n| < |u0| after which we
apply the Rouché theorem.

For 0 < |q| ≤ 0.108 one can establish a bijection between the zeros of θ and u, because
their `th zeros are of the form −q−`(1 + o(1)) and the moduli of the zeros increase with
`, see part 2 of Remark 2.

Set Pk(|q|) :=
∏k
`=0(1− |q|`+1/2), k ∈ N ∪∞. For |u0| one obtains the estimation

|u0| ≥ |q|−n
2/2Pn−1(|q|)P∞(|q|) > |q|−n

2/2(P∞(|q|))2 ≥ |q|−n
2/2(P∞(δ))2 . (2.1)

Indeed, for |z| = |q|−n−1/2 one can set z := |q|−n−1/2ω, |ω| = 1. For 1 ≤ ν ≤ n (resp.
for ν > n), the factor (1 + qνz) in (1.1) is of the form (1− |q|−`−1/2ω`), where ` = n− ν
and |ω`| = 1 (resp. of the form (1−|q|`+1/2ω∗` ), where ` = ν−n− 1 and |ω∗` | = 1). Thus

u(q, |q|−n−1/2ω−n−1/2) =
n−1∏
`=0

(1− |q|−`−1/2ω`)
∞∏
`=0

(1− |q|`+1/2ω∗` ) .

The first of the factors in the right-hand side can be represented in the form |q|−n2/2ω̃
∏n−1
`=0 (1−

|q|`+1/2ω∗∗` ) with |ω̃| = |ω∗∗` | = 1. Therefore

u(q, |q|−n−1/2ω−n−1/2) = |q|−n
2/2ω̃

n−1∏
`=0

(1− |q|`+1/2ω∗∗` )
∞∏
`=0

(1− |q|`+1/2ω∗` ) .

The modulus of the right-hand side is minimal for ω∗` = ω∗∗` = 1 in which case one
obtains the leftmost inequality in (2.1).

Consider the monomial βj := αjz
j in the series u − θ/(q; q)n. Hence for j = n it

vanishes and for j > n one has
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αj = qj(j+1)/2(1/(q; q)j − 1/(q; q)n) = qj(j+1)/2Uj,n , where

Uj,n := (1−
∏j
`=n+1(1− q`))/(q; q)j ,

so for |z| = |q|−n−1/2 one has |βj | = |q|−n2/2+(j−n)2/2|Uj,n|. One can observe that
Uj,n = qn+1 +O(qn+2). Set

Uj,n :=
∑

ν≥n+1
uj,n;νq

ν and U := ((
∞∏
`=1

(1 + q`))− 1)/(q; q)∞ =
∞∑
ν=1

uνq
ν .

The Taylor series of U converges for |q| < 1 because the infinite products defining U
converge. Clearly uj,n;ν ∈ Z, uν ∈ N (because all coefficients of the series 1/(q; q)j and
1/(q; q)∞ are positive integers) and uj,n;n+1 = u1 = 1.

The following lemma explains in what sense the series U majorizes the series Uj,n.

Lemma 3. One has |uj,n;n+ν | ≤ uν , ν ∈ N.

Before proving Lemma 3 (the proof is given at the end of the paper) we continue the
proof of Theorem 1.

Set R(|q|) :=
∑
j>n |q|(j−n)2/2. The following inequality results immediately from the

lemma:

Z1 :=
∑
j>n

|βj | ≤ |q|−n
2/2|q|nU(|q|)R(|q|) ≤ |q|−n

2/2δnU(δ)R(δ) . (2.2)

The first condition which we impose on the choice of n is the following inequality to be
fulfilled:

δnU(δ)R(δ) < (P∞(δ))2/4 . (2.3)

For j < n and |z| = |q|−n−1/2 one has |βj | = |q|−n
2/2+(j−n)2/2|Ũj,n|, where

Ũj,n := (
n∏

`=j+1
(1− q`)− 1)/(q; q)n . (2.4)

Hence |Ũj,n| ≤ T (|q|) := (
∏∞
`=1(1 + |q|`) + 1)/(|q|; |q|)∞ and

|βj | ≤ |q|−n
2/2|q|(j−n)2/2T (δ) (2.5)

Choose m ∈ N such that T (δ)
∑∞
s=m δ

s2/2 ≤ (P∞(δ))2/4. Inequality (2.5) implies that

Z2 :=
n−m∑
j=0
|βj | ≤ |q|−n

2/2(P∞(δ))2/4 (2.6)

Notice that for n < m the above sum is empty and the inequality trivially holds true.
The finite sum

Z3 :=
n−1∑

j=n−m+1
|βj | (2.7)
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is of the form |q|−n2/2O(|q|n). Indeed, consider formula (2.4). There exists M > 0
depending only on δ0 and δ such that

0 < |1/(q; q)n| ≤ 1/(|q|; |q|)n < 1/(|q|; |q|)∞ ≤M for δ0 ≤ |q| ≤ δ .

Thus

|Ũj,n| ≤M(
n∏

`=j+1
(1 + |q|`)− 1) .

The index j can take only the values n − m + 1, . . ., n − 1. In the last product each
monomial |q|` can be represented in the form |q|n|q|`−n, where `−n = 2−m, . . ., 0. The
modulus of each factor |q|`−n is not larger than 1/δmax(0,m−2)

0 . Therefore

|Ũj,n| ≤M((1 + |q|n/δmax(0,m−2)
0 )m−1 − 1) = O(|q|n) .

The sum Z3 (see (2.7)) can be made less than |q|−n2/2(P∞(δ))2/4 by choosing n large
enough. Thus inequalities (2.1), (2.2) and (2.6) yield

|u0 − θ0/(q; q)n| ≤ Z1 + Z2 + Z3 ≤ (3/4)|q|−n
2/2(P∞(δ))2 < |q|−n

2/2(P∞(δ))2 ≤ |u0|

which proves the theorem.

Proof of Lemma 3. We first compare the coefficients of the series
r∏
`=p

(1 + q`)− 1 =
∑
ν≥p

γ1
νq
ν and

r∏
`=p

(1− q`)− 1 =
∑
ν≥p

γ2
νq
ν , p ≤ r .

They are obtained respectively as a sum of the non-negative coefficients of monomials
and as a linear combination of the same coefficients some of which are taken with the +
and the rest with the − sign. Therefore γ1

ν ≥ |γ2
ν |, ν ≥ p. This means that |uj,n;ν | ≤

vj,n;ν ≤ v∞,n;ν , where

Vj,n := (
j∏

`=n+1
(1 + q`)− 1)/(q; q)j =

∑
ν≥n+1

vj,n;νq
ν , V∞,0 = U and v∞,0;ν = uν .

To prove the lemma it suffices to show that

v∞,n;n+ν ≤ v∞,0;ν . (2.8)
Consider the series Sr :=

∏∞
`=r+1(1 + q`) − 1 =

∑
ν≥r+1 sr;νq

ν for r = 0 and r = n.
Compare the coefficients s0;ν and sn;n+ν . The coefficient s0;ν is equal to the number
of ways in which ν can be represented as a sum of distinct natural numbers forming
an increasing sequence whereas sn;n+ν is the number of ways in which n + ν can be
represented as a sum of distinct natural numbers ≥ n+1 forming an increasing sequence.
Clearly sn;n+ν ≤ s0;ν . This implies inequality (2.8) and the lemma, because one has
V∞,r = Sr/(q; q)∞ and the coefficients of the series 1/(q; q)∞ are all positive.
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