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Abstract
The paper aims at contributing to a better understanding of the Dinitz Problem by dealing with the
number of “good choices" of representatives on a board of n × n cells. We conjecture that the number of
good choices on an arbitrary board of order n is at least the number of good choices on a homogeneous
board of order n, that is, at least the number `(n) of Latin squares of order n. The first steps towards
this conjecture are provided by proving that there are at least two good choices on an arbitrary board
of order 3. This is slightly improving the result of Pavel Hrnčiar from 1991.
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1 Introduction

A simple-sounding problem introduced by Jeff Dinitz in 1978 asks whether on a board
of n × n cells with n numbers in each cell one can choose a representative from every
cell such that the selected numbers in each row and in each column are distinct (see e.g.
[1, Chapter 28]). For arbitrary n the problem had been unsolved until Fred Galvin [2]
presented his brilliant proof in 1995. But already in 1991 Pavel Hrnčiar gave a positive
answer to the Dinitz Problem in the special case for n = 3. He showed that it is always
possible to find one “good choice" of representatives on a board of 3 × 3 cells. The aim
of our work is to present a conjecture on the number of “good choices" of representatives
on the board of n × n cells (Section 3) and to prove that there are always at least two
“good choices" of representatives on the board of 3× 3 cells (Section 5).

The major part of our work deals with the concept of a kernel of a directed graph
(Section 4). It is a subset of vertices satisfying two special conditions and it is amaz-
ingly connected to “good choices" on a board via so-called square graphs corresponding
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to boards. We show that every nondiscrete induced subgraph of the square graph cor-
responding to some board of 3× 3 cells possesses at least two different kernels for some
possible edge orientations.

We also introduce a new concept of so-called tame choices on a diagonal of a square
graph, which is also connected to the existence of “good choices" of representatives (Sec-
tion 5). In Section 6 we present various conjectures and counterexamples that arose in
the process of our investigation.

2 Preliminaries

2.1 Dinitz Problem
For n ≥ 1 consider n2 cells arranged in an (n× n)-square, let us call it a board of order
n, and let (i, j) denote the cell in row i and column j. Suppose that for every cell (i, j)
we are given a set C(i, j) of n colours.

By a choice we mean that for each cell (i, j), exactly one colour is picked up from the
set C(i, j). Let a good choice be every choice in which the colours in each row and each
column are distinct.

Is it then always possible to find a good choice for any board?
This simple-sounding colouring problem was raised by Jeff Dinitz in 1978 and it defied

all attacks until its solution by Fred Galvin [2].
Let C :=

⋃
i,j C(i, j) be a set of all colours of a board and let |C| be size of the board.

It is worth to mention a particular case as presented in [1, p. 185]. If all colour sets
are the same, say {1, 2, . . . , n}, then the Dinitz problem reduces to the following task:
fill in the (n× n)-square with the numbers 1, 2, . . . , n in such a way that the numbers in
any row and column are distinct. This means that size of the board is n and all choices
on it are precisely Latin squares. Since this is so easy, why would it be so much harder
in the general case when the size is greater than n? The difficulty derives from the fact
that not every colour of C is available at each cell.

2.2 Galvin’s Proof
All definitions and results in this subsection are taken from [1, Chapter 28].

Definition 2.1. Let G = (V,E) be a graph. Let us assume that we are given a non-
empty set C(v) of colours for each vertex v ∈ V . A list colouring is a colouring
c : V −→

⋃
v∈V C(v) where c(v) ∈ C(v) for each v ∈ V (a colouring is an assignment

of colors to each vertex such that no edge connects two identically coloured vertices). A
list chromatic number χ`(G) is the smallest number k such that for any list of colour
sets C(v) with |C(v)| = k for all v ∈ V there always exists a list colouring.

Consider the square graph Sn which has as a vertex set the n2 cells of our board of
order n and two cells are adjacent if and only if they lie in the same row or column (see
Figure 1). The Dinitz problem can now be stated as

χ`(Sn) = n?

Definition 2.2. Let ~G = (V,E) be a directed graph (shortly, digraph), that is, a graph
where every edge e has an orientation. The notation e = (u, v) means that there is an
edge e, also denoted by u −→ v, whose initial vertex is u and whose terminal vertex is
v. Then outdegree d+(v) of a vertex v is the number of edges with v as initial vertex,
similarly for the indegree d−(v).

Furthermore, d+(v) + d−(v) = d(v), where d(v) is the degree of v.



42 Miroslav Haviar, Michal Ivaška

Figure 1. The graph S3

Definition 2.3. For a graph G = (V,E) and a non-empty subset A ⊆ V we denote by
G[A] the subgraph which has A as vertex set and which contains all edges of G between
vertices of A. We call G[A] the subgraph induced by A, and say that H is an induced
subgraph of G if H = G[A] for some A.

Definition 2.4. Let G = (V,E) be a graph without loops and multiple edges. A set
A ⊆ V is called independent if there are no edges within A.

Definition 2.5. Let ~G = (V,E) be a directed graph. A kernel K ⊆ V is a subset of
vertices such that

(1) K is independent in G, and

(2) for every u /∈ K there exists a vertex v ∈ K with an edge u −→ v.

For example, vertices of a kernel of the subgraph of a graph ~S3 shown in the Figure 2
are encircled. (We remark that here, and often elsewhere, we use the term “graph" for
“directed graph (digraph)" when no confusion arises.)

Figure 2. Kernel of the graph

In what follows, when we write G we mean the graph ~G without the orientations.

Lemma 2.6 ([1, Lemma 1]). Let ~G = (V,E) be a directed graph, and suppose that for
each vertex v ∈ V we have a color set that is larger than the outdegree, |C(v)| ≥ d+(v)+1.
If every induced subgraph of ~G possesses a kernel, then there exists a list colouring of G
with a colour from C(v) for each v.

Denote the vertices of Sn by (i, j), 1 ≤ i, j ≤ n. Thus (i, j) and (r, s) are adjacent
if and only if i = r or j = s. Take any Latin square L with letters from {1, 2, . . . , n}
and denote by L(i, j) the entry in cell (i, j). Next make Sn into a directed graph ~Sn by
orienting the horizontal edges (i, j) −→ (i, j′) if L(i, j) < L(i, j′) and the vertical edges
(i, j) −→ (i′, j) if L(i, j) > L(i′, j). Thus, horizontally we orient from the smaller to the
larger element, and vertically the other way round. We shall denote this digraph ~Sn

L
to

emphasize that the orientation of edges is given by a Latin square L.
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Notice that we obtain d+(i, j) = n− 1 for all (i, j). In fact, if L(i, j) = k, then n− k
cells in row i contain an entry larger than k, and k − 1 cells in column j have an entry
smaller than k.

The next result amazingly follows from the fact that a stable matching of a bipartite
graph always exists (cf. [1, Lemma 2]).

Lemma 2.7 ([1, p. 189]). Every induced subgraph of ~Sn possesses a kernel.

Putting these two lemmas together with the fact that d+(i, j) = n − 1 for all (i, j),
we get Galvin’s solution [2] of the Dinitz Problem.

Theorem 2.8 ([1, p. 189]). We have χL(Sn) = n for all n.

2.3 Colouring Algorithm
Galvin’s proof can tell us how to colour any board B of order n. We can use the following
algorithm:

(1) choose any Latin square L (of the same order n as the board B);

(2) assign a digraph ~Sn
L
with edge orientations given by L;

(3) choose any colour c ∈ C, where C =
⋃

i,j C(i, j);

(4) colour c generates a subgraph ~Sn
L

[A], where A = {v ∈ V, c ∈ C(v)};

(5) choose any kernel of this subgraph;

(6) colour the vertices of the kernel by a colour c;

(7) repeat steps 3–6 with colours c not previously used until the colouring is complete.

Galvin’s proof implicitly says that after a finite number of steps (not more than s
steps, where s is the size of the board) the colouring is complete and we obtain a good
choice.

Notice that in this case every Latin square combined with any sequence of colours
gives us a good choice according to the colouring algorithm. However, not all good choices
are obtainable by this algorithm. It can even happen that two distinct Latin squares or
two distinct sequences of colours can give us the same good choice (see Section 6).

3 Conjecture on the number of good choices

In this section we formulate a conjecture on the number of good choices on an arbitrary
board which we find quite important with respect to a good understanding of the Dinitz
Problem.

Let Bn be a board of order n. We shall denote σ(Bn) the number of all distinct good
choices on Bn. Galvin has shown that σ(Bn) ≥ 1 for any board Bn.

By a homogeneous board of order n we shall mean a board of n × n cells with the
same set {1, 2, . . . , n} of numbers in each cell. Hence the size of the homogeneous board
is equal to its order.

Let `(n) be the number of all Latin squares of order n. It is clear that `(n) is the
number of good choices on a homogeneous board of order n. So, σ(Bn) = `(n) if the
board Bn is homogeneous.

The following conjecture says that `(n) is the optimal lower bound for the number of
good choices on an arbitrary board of order n.
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Conjecture. σ(Bn) ≥ `(n) for any board Bn.

The following table lists the values of `(n), which are so far known for 1 ≤ n ≤ 11 [4].
Thus, for given n, these are our conjectured optimal lower bounds for the number of
good choices on an arbitrary board of order n.

n `(n)
1 1
2 2
3 12
4 576
5 161280
6 812851200
7 61479419904000
8 108776032459082956800
9 5524751496156892842531225600
10 9982437658213039871725064756920320000
11 776966836171770144107444346734230682311065600000

4 Graph Kernel

In the next definition we introduce a new concept regarding graph kernels of induced
subgraphs of a square graph.

Definition 4.1. Let Sn[A] be a subgraph of a square graph Sn induced by some set
A of vertices. We say that the graph Sn[A] is k-kerneled if for some Latin squares
L1, L2, . . . , Lm the digraphs ~Sn

L1 [A], ~Sn
L2 [A], . . ., ~Sn

Lm [A] have together at least k
distinct kernels.

Lemma 4.2. Let Sn[A] be a discrete graph. Then it is 1-kerneled and it is not k-kerneled
for any k > 1.

Proof. It is easy to see that the only kernel in the discrete graph is the whole vertex
set.

In Figure 3 (on the left) we draw the same digraph as in Figure 2 and present the
Latin square corresponding to its edge orientations. The kernel of this directed graph is
encircled. Now we focus on the vertex u. If we orient all edges towards u and make a new
digraph, then umust be in the kernel of this new digraph, because of the second condition
of the graph kernel. We want to find some Latin square such that it will correspond to
the orientation of this new graph. But it is easy, because we only need the entry in the
cell corresponding to the vertex u to be lower than the entries in the cells corresponding
to the vertices connected with u. So the entry in the cell corresponding to the vertex u
will be 1. One of the possible Latin squares is shown on the right side of the Figure 3.
The graph next to it is the graph with the new edge orientations and with a new kernel
encircled.

The method described above can be simply generalised. It suffices to have some edge
with end vertices whose degrees do not exceed 2, because in that case it is possible to
orient all edges into one of its end vertices. By the first kernel condition, two end vertices
of one edge cannot both belong to one kernel. We take the vertex which is not there and
construct a new orientation of the graph, where this taken vertex will already be in some
kernel.
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v

u

1 2 3
3 1 2
2 3 1

v

u

2 3 1
1 2 3
3 1 2

Figure 3. Two kernels of the same graph with changed edge orientations

Lemma 4.3. If there exists an edge uv ∈ S3[A] such that d(u) ≤ 2 and d(v) ≤ 2, then
S3[A] is 2-kerneled.

Proof. From Lemma 2.7 we know that ~S3
L1 [A] has a kernel, given by some Latin square

L1. We denote this kernel K1. We need to show that there exists a kernel K2 6= K1. We
will do it the way that we change the orientations of edges in ~S3

L1 [A] and obtain the
new kernel K2 of ~S3

L2 [A], which will correspond to some Latin square L2. Since a kernel
is a set of independent vertices and uv ∈ S3[A], then u /∈ K1 or v /∈ K1. Without loss of
generality we can assume that u /∈ K1. As d(u) ≤ 2, we can orient all edges in SL2

3 [A] in
such a way that d−(u) = d(u) and d+(u) = 0. Note that a Latin square L2 which will
give such orientations always exists. Now d+(u) = 0 implies that u ∈ K2, because from
the Definition 2.5 all vertices which are not in the kernel must be initial vertices of some
edge with terminal vertex in the kernel (and so their outdegree must be at least 1). Thus
K1 6= K2 and the proof is complete.

Definition 4.4. Let Sn[A] be an induced subgraph of Sn and let 1 ≤ r ≤ n. Then the
r-th row Rr of the graph Sn[A] is the set of vertices {(r, j) ∈ Sn[A], 1 ≤ j ≤ n}.

For the graph Sn and for every i ∈ {1, 2, . . . , n} we have |Ri| = n. For any induced
subgraph Sn[A] we have |Ri| ≤ n.

Lemma 4.5. Let S3[A] be an induced subgraph such that |Ri| = 3 and |Rj | = 0 for
some 1 ≤ i, j ≤ 3, i 6= j. Then S3[A] is 2-kerneled.

Proof. Let 1 ≤ k ≤ 3, k /∈ {i, j} (note that such k is unique). If |Rk| = 0 then by Lemma
4.3, S3[A] is 2-kerneled. So let |Rk| ≥ 1. We can choose any vertex w ∈ Rk (see Figure
4, in this case i = 1, j = 2 and k = 3). Then there exist vertices u, v ∈ Ri such that u,w
and v, w are independent. Now take any of these two pairs, for example take u,w and
construct a Latin square which has an entry 3 in the cells corresponding to the vertices
u,w. Since 3 is the biggest number in the Latin square of order 3, all vertices in the same
line will be directed into vertices u,w. But this already means that {u,w} is a kernel.
For the pair v, w it can be showed analogously. Thus {u,w} and {v, w} are two distinct
kernels of S3[A] and so S3[A] is 2-kerneled.

Definition 4.6. A diagonal of a graph Sn[A] is any set of n independent vertices.

Lemma 4.7. Every graph Sn[A] containing k different diagonals is k-kerneled.

Proof. To a given diagonal we can take any Latin square of order n which has an entry n
in all the cells corresponding to the vertices of the diagonal. Then the edge from all the
other vertices will be oriented towards these vertices, so the diagonal will be a kernel.
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u v

w

1 3 2
2 1 3
3 2 1

u v

w

1 2 3
2 3 1
3 1 2

Figure 4. Two kernels of the same graph with an empty row

Clearly, the graph Sn has n! diagonals. Certainly it can happen that some of its
induced subgraphs contain no diagonals (for example the graph in Figure 4).

Lemma 4.8. Every graph S3[A] in which |Ri| = 3, for some i ∈ {1, 2, 3}, and which
contains exactly one pair of independent vertices not contained in Ri, is 2-kerneled.

Proof. Note that such a graph always contains one diagonal, because the two independent
vertices can be supplemented by an independent vertex from the i-th row. So by Lemma
4.7, this diagonal is already a kernel. We will show that there always exists a kernel K
such that |K| = 2 (i.e. different from the first one).

So take any of the two independent vertices u and v. Say we take u. Then we take
the vertex from the i-th row, which is independent with u, but not independent with v
(there is exactly one such vertex). Up to isomorphism we can assume that we have one
of the graphs in Figure 5. Let us first consider the graph on the left side. Its kernel
corresponding to the Latin square is encircled. One can notice that if we add a vertex
so that there will still be exactly one independent pair of vertices, up to isomorphism we
obtain the graph on the right side of Figure 5. Now we can use the same Latin square
as before to orient the edges, and the kernel will remain the same.

u

v

2 3 1
1 2 3
3 1 2

u

v

Figure 5. Graphs with one full row and one independent pair of vertices

Theorem 4.9. Every nondiscrete subgraph of S3 is 2-kerneled.

Proof. Let S3[A] be a nondiscrete subgraph of S3. If maximal degree of its vertices
∆(S3[A]) ≤ 2, then S3[A] has two different kernels by Lemma 4.3. So now let there exist
a vertex v with d(v) > 2. It is easy to see that then for the line Ri, where v ∈ Ri, we
have |Ri| = 3 and |Rj | ≥ 1 for some 1 ≤ j ≤ 3, i 6= j. Without loss of generality we can
assume that |R1| = 3 and |R2| ≥ 1. Now we have these possibilities:
1. |R3| = 0 — then the statement holds by Lemma 4.5.
2. |R2| = 1 and |R3| = 1 — if the two vertices in R2 and R3 are independent, the
statement holds by Lemma 4.8, otherwise by Lemma 4.3.
3. |R2| = 2 and |R3| = 1 — if there is exactly one independent pair of vertices, the
statement holds by Lemma 4.8. Otherwise there are two or more independent pairs in
which case each of them can be completed to a diagonal with a vertex in R1, so the
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statement holds by Lemma 4.7.
4. |R2| ≥ 2 and |R3| ≥ 2 — the statement holds by Lemma 4.7.

The proof is complete.

5 From Kernels to Good Choices

Theorem 5.1. Let c be a colour of a board B of order n and let A be the set of all
vertices of the graph Sn corresponding to those cells which contain the colour c. If the
graph Sn[A] is k-kerneled, then the board B has at least k distinct good choices.

Proof. Let Sn[A] be a k-kerneled induced subgraph of the graph Sn, i.e. there exist
distinct kernels K1,K2, . . . ,Kk of the digraphs ~Sn

Li [A] with orientations given by some
Latin squares L1, L2, . . . , Lk, respectively. According to the colouring algorithm from
Galvin’s proof (see Subsection 2.2), we take the Latin square L1. The Latin square gives
us an orientation of the graph Sn and in the first step we choose a colour c (in the final
good choice the colour c will remain precisely in those cells corresponding to the vertices
of the kernel K1). After this, we continue with an arbitrary sequence of colours (see
Subsection 2.3) until we obtain a good choice. We denote the obtained good choice by
D1. Similarly, when we choose in the first step the Latin square L2 and the same colour
c, we obtain a good choice that we can denote D2. We do the same for all the other
kernels so that we have good choices D1, D2, . . . , Dk. Note that the sets of cells with a
colour c are distinct in all these good choices, since all the kernels were distinct. Thus
we obtained k distinct good choices and the proof is complete.

We recall that Galvin [2] has shown that σ(Bn) ≥ 1 for any board Bn of order n.
Before Galvin, in 1991 Hrnčiar [3] showed that σ(B3) ≥ 1 for any board of order 3.

We conjecture in Section 3 that σ(B3) ≥ 12. Our following result is improving the lower
bound for σ(B3) and so can be understood as the first little step towards proving the
conjecture.

Theorem 5.2. σ(B3) ≥ 2 for any board of order 3.

Proof. Let B3 be a board of order 3 and let S3 be its assigned square graph. We will
distinguish two cases: (1) every colour of the board is only once in the same row or
column, (2) there is a colour c such that it is at least twice in the same row or column.

(1) Let every colour be only once in the same row or column. We take any cell of
the board, denote it by E. It contains 3 colours, say a, b, c. Note that in this case the
induced subgraph of S3 generated by any colour is discrete and so its kernel is the whole
subgraph. Now according to the colouring algorithm we can take any Latin square and
in the first step we take colour a. As the whole subgraph belongs to the kernel, we colour
the cell E by the colour a. Then we continue with an arbitrary colour sequence to obtain
a good choice. Similarly, when we take a colour b in the first step, we obtain a good
choice with b in the cell E. So we constructed two distinct good choices.

(2) Let c be a colour of B3 such that it is at least twice in the same row or column.
Then the subgraph generated by this colour is nondiscrete, and, by Theorem 4.9, it is
2-kerneled. Now by Theorem 5.1, it has two distinct good choices.

In the last part of this section we introduce some concepts corresponding to a board
and present our final result.

Definition 5.3. Let B be a board of order n and let a diagonal of a board B be a
set of any n cells such that none of them lie in the same row or column. Then any set of
n colours from distinct cells of a diagonal will be called the choice on a diagonal.
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Let B be a board and let D be a choice on some diagonal. We denote every colour
in D as d(a,b) to express that this colour was chosen from the cell (a, b). Now for every
cell (i, j) of B and for every colour d(k,l) of D we delete this colour from the cell (i, j) if
i = k or j = l, i.e. we delete every colour of the choice on a diagonal from all cells which
lie in the same row or column.

Definition 5.4. We shall call the choice D tame if a reduced board obtained by the
process above has at least n− 1 remaining colours in every cell.

For example, the choice {1, 2, 5} on the diagonal (1, 1), (2, 2), (3, 3) in the board on
the left below is tame, because the reduced board on the right has at least 2 colours
remaining in every cell.

{1, 2, 3} {3, 4, 5} {2, 3, 5}
{4, 5, 6} {2, 3, 4} {1, 4, 6}
{2, 3, 5} {1, 2, 6} {4,5, 6}

{2, 3} {3, 4, 5} {2, 3}
{4, 5, 6} {3, 4} {1, 4, 6}
{2, 3} {1, 6} {4, 6}

As we shall see, the existence of tame choices guarantees the existence of good choices.

Theorem 5.5. Let B be a board. If there exist k tame choices on some diagonal of B,
then σ(B) ≥ k.

Proof. Denote this diagonal by D. We take any Latin square L such that it has an entry
n in all cells corresponding to the diagonal D, where n is the order of L. We consider the
square digraph ~Sn

L
with edge orientations given by the Latin square L. The outdegree

of every vertex will then be n − 1. Now we can delete all the vertices corresponding to
D from ~Sn

L
. Since in every row there was an edge oriented from every vertex to the

diagonal, now after we deleted it, the outdegree of every vertex will be n− 2.
For every tame choice we can now also delete all colours of a choice from all lists

of colours for every vertex. By the definition, every vertex will still have at least n − 1
colours. So |C(v)| ≥ n − 1 for every v. Now by Lemma 2.6, the subgraph with deleted
diagonals can be list coloured with colours from C(v) for every v. The deleted vertices
can be coloured with colours of a choice on a diagonal and we obtain a good choice.

We can do the same for all tame choices and we obtain k distinct good choices on
B.

6 Misguided Conjectures and Counterexamples

In this section we present various conjectures arising in the process of our investigation
and the counterexamples to these conjectures which we later found using (in almost all
cases) self-developed computer programs. The aim of this section is to give a helpful
hand to those who would follow similar steps as we did and come up with possibly the
same conjectures in the process of their investigation.

Misguided conjecture 6.1. Let B be a board of order n. Then there exists a diagonal
of B which has at least n tame choices.

Counterexample 6.1. The following board has exactly one tame choice in every diag-
onal:

{1, 2, 3} {1, 2, 3} {1, 2, 3}
{1, 2, 4} {1, 2, 4} {1, 2, 4}
{1, 3, 4} {1, 3, 4} {2, 3, 4}
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Misguided conjecture 6.2. Let B be a board of order n. Then every diagonal of B
has at least one tame choice.

Counterexample 6.2. The following board has no tame choices on the diagonal (1,1),
(2,2), (3,3):

{1, 2, 3} {1, 3, 4} {3, 4, 6}
{2, 3, 4} {3, 4, 5} {2, 3, 4}
{1, 2, 4} {2, 5, 6} {2, 4, 6}

Colours of a board can be in general any natural numbers, but note that if a board has
size s then we can replace all numbers greater than s with numbers smaller than or equal
to s. So we can always obtain the board with colours {1, 2, . . . , s}. We shall call this
process a board normalisation and the board obtained this way we shall call a normalised
board.

Misguided conjecture 6.3. Let B be a normalised board of size s. Let L1, L2 be
distinct Latin squares and let S be a sequence of colours from {1, 2, . . . , s}. Let D1, D2
be the good choices obtained from the Latin squares L1, L2, respectively, combined with
the colour sequence S. Then D1 and D2 are distinct.

Counterexample 6.3. Consider the following board:

{1, 2, 3} {2, 3, 4} {3, 4, 5}
{2, 3, 5} {1, 3, 4} {1, 3, 4}
{1, 4, 5} {1, 2, 3} {1, 3, 5}

Now if we take the following two Latin squares

1 2 3
3 1 2
2 3 1

1 3 2
2 1 3
3 2 1

and we use the sequence of colours 1, 2, 3, 4, 5, we will obtain the same good choice:

1 2 4
2 3 1
4 1 3

Misguided conjecture 6.4. Let B be a normalised board of size s. Let L be a Latin
square and let S1, S2 be distinct sequences of colours from {1, 2, . . . , s}. Let D1, D2 be
the good choices obtained from the Latin square L combined with the colour sequences
S1, S2, respectively. Then D1 and D2 are distinct.

Counterexample 6.4. Take the same board as in Counterexample 6.3, the Latin square

1 2 3
2 3 1
3 1 2
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and the sequences 2, 3, 4, 1, 5 and 4, 3, 2, 5, 1. Then for both sequences we obtain the same
good choice:

2 3 4
3 4 1
4 2 3

Misguided conjecture 6.5. Let B be a normalised board of size s. Let L1, L2 be
distinct Latin squares and let S1, S2 be distinct sequences of colours from {1, 2, . . . , s}.
Let D1, D2 be the good choices obtained from the Latin squares L1, L2 combined with
the colour sequences S1, S2, respectively. Then D1 and D2 are distinct.

Counterexample 6.5. Consider the same board as in Counterexample 6.3, the Latin
squares

2 1 3
1 3 2
3 2 1

3 1 2
1 2 3
3 2 1

and for these Latin squares take sequences of colours 1, 2, 4, 5, 3 and 4, 2, 5, 1, 3, respec-
tively. In both cases we obtain the same good choice:

1 2 4
2 4 1
4 1 5

Misguided conjecture 6.6. Every good choice on a board can be obtained via the
colouring algorithm (from Subsection 2.3) using some Latin square and some sequence
of colours.

Counterexample 6.6. We can take the same board as in Counterexample 6.3. Then
the following good choice can not be obtained via the colouring algorithm for any Latin
square and sequence of colours:

3 4 5
2 1 3
4 2 1
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