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Abstract
This paper deals with a fourth-order non-linear differential equation with multiple deviating arguments.
Some sufficient conditions are set up for all solutions and their derivatives to be bounded. Our results
are new and complement to previously known results.
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1 Introduction

We consider the nonlinear differential equation of fourth order with multiple deviating
arguments

x
(4)

(t) + f1(t, x(t))x
(3)

(t) + f2(t, x(t))x
(2)

(t) + f3(t, x(t))x
(1)

(t)

+g0(t, x(t)) +
n∑

i=1
gi(t, x(t− τi(t)) = p(t) (1.1)

where f1, f2, f3 and gi(i = 0, 1, 2, ..., n) are continuous functions on R+×R, τi(t) ≥ 0 (i =
1, 2, ..., n) and p(t) are bounded continuous functions on R+ = [0,+∞).

Define y(t) = dx(t)
dt

+ d1x(t), z(t) = dy(t)
dt

+ d2y(t) and w(t) = dz(t)
dt

+ d3z(t) where
d1, d2 and d3 are some constants. Then, we can transform Eq. (1.1) into the system, as
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follows,

dx(t)
dt

= −d1x(t) + y(t)

dy(t)
dt

= −d2y(t) + z(t)

dz(t)
dt

= −d3z(t) + w(t)

dw(t)
dt

= −(f1(t, x(t))− d1 − d2 − d3)w(t)

+ (−(d1 + d2 − f1(t, x(t)))(d1 + d2 + d3) + (d1d2 − f2(t, x(t)))− d2
3)z(t)

+ ((d1 + d2 − f1(t, x(t)))(d2
1 + d1d2 + d2

2)− (d1d2 − f2(t, x(t)))(d1 + d2)
− f3(t, x(t)))y(t)
+ ((f1(t, x(t))− d1 − d2)d3

1 + (d1d2 − f2(t, x(t)))d2
1 + f3(t, x(t))d1)x(t)

− g0(t, x(t))−
n∑

i=1
gi(t, x(t− τi(t)) + p(t). (1.2)

In applied science, some practical problems are associated with higher-order nonlin-
ear differential equations, such as nonlinear oscillations ([1]–[4]), electronic theory [5],
biological model and other models ([6], [7]). Just as above, in the past few decades,
the study of qualitative behaviors for higher order differential equations has been paid
attention to by many scholars. And, many results relative to the stability and bounded-
ness of solutions of higher order differential equations with delays or without delays have
been obtained in view of various methods, especially, Liapunov’s method (see [8]–[23]
and references therein). On the other hand, some researchers have obtained their results
for higher order differential equations with several deviating arguments without using
Liapunov’s method and Liapunov functional (see [24]–[27]). However, to the best of
our knowledge, no authors have considered the boundedness of solutions of fourth order
differential equations with multiple deviating arguments in non-Liapunov sense. By the
way, we interpret that forming the forthcoming conditions in non-Liapunov sense for our
results is easier and more useful than determining a Liapunov functional for higher order
differential equations with delays. Thus, it is worthwhile to continue to investigate the
boundedness of solutions of Eq. (1.1) in this case.

The main objective of this paper is to study the uniformly boundedness of solutions
of (1.2). We will establish some sufficient conditions satisfying the solutions of (1.2) to be
uniformly bounded. Our results are new and complement to previously known results.

2 Definition and Assumptions

We assume that h = max
1≤i≤n

{
sup
t∈R

τi(t)
}
≥ 0. Let C ([−h, 0], R) denote the space of con-

tinuous functions φ : [−h, 0]→ R with the supremum norm. It is known from ([28]–[30])
that for gi(i = 0, 1, 2, ..., n), φ, f1, f2, f3, p and τi(t)(i = 1, 2, ..., n) continuous, given a
continuous initial function φ ∈ C ([−h, 0], R) and a vector (y0, z0, w0) ∈ R3, there exists
a solution of (1.2) on an interval [0, T ) satisfying the initial condition and satisfying (1.2)
on [0, T ). If the solution remains bounded, then T = +∞. We denote such a solution by
(x(t), y(t), z(t), w(t)) = (x(t, φ, y0, z0, w0), y(t, φ, y0, z0, w0), z(t, φ, y0, z0, w0), w(t, φ, y0, z0, w0))
where y(s) = y(0), z(s) = z(0) and w(s) = w(0) for all s ∈ [−h, 0]. Then, it follows that
(x(t), y(t), z(t), w(t)) can be defined on [−h,+∞).



Acta Univ. M. Belii, ser. Math. Online (2014), 13–20 15

Definition. Solutions of (1.2) are called uniformly bounded (UB) if for each B1 > 0
there is a B2 > 0 such that (φ, y0, z0, w0) ∈ C ([−h, 0], R) × R3 and ‖φ‖ + ‖y0‖ +
‖z0‖+‖w0‖ ≤ B1 imply that |x(t, φ, y0, z0, w0)|+ |y(t, φ, y0, z0, w0)|+ |z(t, φ, y0, z0, w0)|+
|w(t, φ, y0, z0, w0)| ≤ B2 for all t ∈ R+.

In this work, we also assume that the following conditions hold:

There exist constants K > 0, d1 > 1, d2 > 1, d3 > 1, d4 > 0 and nonnegative
constants Li and qi (i = 0, 1, 2, ..., n) such that

i)
∣∣(f1(t, x(t))− d1 − d2)d3

1 + (d1d2 − f2(t, x(t)))d2
1 + f3(t, x(t))d1)u− g0(t, u)

∣∣ ≤
L0 |u|, for all u ∈ R and t ≥ K,

ii) |g1(t, u)| ≤ L1 |u|+ q1, |g2(t, u)| ≤ L2 |u|+ q2, ..., |gn(t, u)| ≤ Ln |u|+ qn for all
u ∈ R and t ≥ K,

iii) d4 = inf
t≥K

(f1(t, x(t))− d1 − d2 − d3)

−(sup
t≥K

∣∣(d1 + d2 − f1(t, x(t)))(d2
1 + d1d2 + d2

2)− (d1d2 − f2(t, x(t)))(d1 + d2)− f3(t, x(t))
∣∣

+sup
t≥K

∣∣−(d1 + d2 − f1(t, x(t)))(d1 + d2 + d3) + (d1d2 − f2(t, x(t)))− d2
3
∣∣) > n∑

i=0
Li.

3 Main Results

Theorem 1. Suppose (i)-(iii) hold. Then solutions of (1.2) are uniformly bounded.

Proof. Let (x(t), y(t), z(t), w(t)) be a solution of system (1.2) with initial conditions
x(s) = φ(s), y(0) = y0, z(0) = z0 and w(0) = w0 for all s ∈ [−h, 0] where φ ∈
C ([−h, 0], R) and (y0, z0, w0) ∈ R3.

Calculating the upper right derivatives of |x(s)| , |y(s)| , |z(s)| and |w(s)| along (1.2),
in view of (i)-(iii), we have

D+(|x(s)|)s=t = sgn(x(t)){−d1x(t) + y(t)}
≤ −d1 |x(t)|+ |y(t)| , (3.1)

D+(|y(s)|)s=t = sgn(y(t)){−d2y(t) + z(t)}
≤ −d2 |y(t)|+ |z(t)| , (3.2)

D+(|z(s)|)s=t = sgn(z(t)){−d3z(t) + w(t)}
≤ −d3 |z(t)|+ |w(t)| , (3.3)
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and

D+(|w(s)|)s=t

= sgn(w(t)){−(f1(t, x(t))− d1 − d2 − d3)w(t)
+ (−(d1 + d2 − f1(t, x(t)))(d1 + d2 + d3) + (d1d2 − f2(t, x(t)))− d2

3)z(t)
+ ((d1 + d2 − f1(t, x(t)))(d2

1 + d1d2 + d2
2)− (d1d2 − f2(t, x(t)))(d1 + d2)

− f3(t, x(t)))y(t)
+ ((f1(t, x(t))− d1 − d2)d3

1 + (d1d2 − f2(t, x(t)))d2
1 + f3(t, x(t))d1)x(t))

− g0(t, x(t))−
n∑

i=1
gi(t, x(t− τi(t)) + p(t)}

≤ {(− inf
t≥K

(f1(t, x(t))− d1 − d2 − d3)) |w(t)|

+ sup
t≥K

∣∣−(d1 + d2 − f1(t, x(t)))(d1 + d2 + d3) + (d1d2 − f2(t, x(t)))− d2
3
∣∣ |z(t)|

+ sup
t≥K

∣∣(d1 + d2 − f1(t, x(t)))(d2
1 + d1d2 + d2

2
)

− (d1d2 − f2(t, x(t)))(d1 + d2)− f3(t, x(t))| |y(t)|

+ L0 |x(t)|+
n∑

i=1
Li |x(t− τi(t))|}+

n∑
i=0

qi + |p(t)| . (3.4)

Let
M(t) = max

−h≤s≤t
{max {|x(s)| , |y(s)| , |z(s)| , |w(s)|}} .

It is clear that max {|x(t)| , |y(t)| , |z(t)| , |w(t)|} ≤ M(t) and M(t) is non-decreasing.
Now, we consider the following two cases:

Case I): If there exists a sufficiently large constant K1 > K such that

M(t) > max {|x(t)| , |y(t)| , |z(t)| , |w(t)|} (3.5)

for all t ≥ K1, then we claim that

M(t) ≡M(K1) (3.6)

is a constant for all t ≥ K1.
By contrapositive, assume (3.6) does not hold, then, there exists t1 ≥ K1 such that

M(t1) > M(K1).
Here max {|x(t)| , |y(t)| , |z(t)| , |w(t)|} ≤ M(K1) for all −h ≤ t ≤ K1 and there

exists β ∈ (K1, t1) such that max {|x(β)| , |y(β)| , |z(β)| , |w(β)|} = M(t1) ≥M(β) which
contradicts (3.5). This implies that (3.6 holds. It follows that there exists t2 ≥ K1 such
that max {|x(t)| , |y(t)| , |z(t)| , |w(t)|} < M(t) = M(K1) for all t ≥ t2.

Case II): There is a point t0 ≥ K1 such that

M(t0) = max {|x(t0)| , |y(t0)| , |z(t0)| , |w(t0)|} .

Let η = min
{
d1 − 1, d2 − 1, d3 − 1, d4 −

n∑
i=0
Li

}
> 0 and θ =

n∑
i=0
qi + sup

t∈R+
|p(t)| + 1

where t ≥ K1. Then, if M(t0) = max {|x(t0)| , |y(t0)| , |z(t0)| , |w(t0)|} = |x(t0)|, then, in
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view of (3.1), we obtain

0 ≤ D+(|x(s)|)s=t0 ≤ −d1 |x(t)|+ |y(t)|
≤ (1− d1)M(t0)
< −ηM(t0) + θ, (3.7)

if M(t0) = max {|x(t0)| , |y(t0)| , |z(t0)| , |w(t0)|} = |y(t0)|, then, in view of (3.2), we have

0 ≤ D+(|y(s)|)s=t0 ≤ −d2 |y(t)|+ |z(t)|
≤ (1− d2)M(t0)
< −ηM(t0) + θ, (3.8)

if M(t0) = max {|x(t0)| , |y(t0)| , |z(t0)| , |w(t0)|} = |z(t0)|, then, in view of (3.3), we get

0 ≤ D+(|z(s)|)s=t0 ≤ −d3 |z(t)|+ |w(t)|
≤ (1− d3)M(t0)
< −ηM(t0) + θ, (3.9)

if M(t0) = max {|x(t0)| , |y(t0)| , |z(t0)| , |w(t0)|} = |w(t0)|, then, in view of (3.4), we get

0 ≤D+(|w(s)|)s=t0

≤ {(− inf
t≥K

(f1(t)− d1 − d2 − d3)) |w(t)|

+ sup
t≥K

∣∣−(d1 + d2 − f1(t, x(t)))(d1 + d2 + d3) + (d1d2 − f2(t, x(t)))− d2
3
∣∣ |z(t)|

+ sup
t≥K

∣∣(d1 + d2 − f1(t, x(t)))(d2
1 + d1d2 + d2

2
)

− (d1d2 − f2(t, x(t)))(d1 + d2)− f3(t, x(t))| |y(t0)|

+ L0 |x(t0)|+
n∑

i=1
Li |x(t0 − τi(t0))|}+

n∑
i=0

qi + |p(t)|

≤ (
n∑

i=0
Li − d4)M(t0) +

n∑
i=0

qi + |p(t)|

< −ηM(t0) + θ. (3.10)

In addition, if M(t0) ≥ θ

η
, (3.7), (3.8), (3.9) and (3.10) imply that M(t) is strictly

decreasing in a small neighborhood (t0, t0 + δ0). This contradicts that M(t) is non-
decreasing. Therefore, M(t0) < θ

η
and

max {|x(t0)| , |y(t0)| , |z(t0)| , |w(t0)|} < θ

η
. (3.11)

For ∀t > t0, by the same approach used in the proof of (3.11), we have

max {|x(t)| , |y(t)| , |z(t)| , |w(t)|} < θ

η
, if M(t) = max {|x(t)| , |y(t)| , |z(t)| , |w(t)|} .

On the other hand, if M(t) > max {|x(t)| , |y(t)| , |z(t)| , |w(t)|} , t > t0, then, we
can choose t0 ≤ t3 < t such that M(t3) = max {|x(t3)| , |y(t3)| , |z(t3)| , |w(t3)|} < θ

η



18 Hilmi Ergören, Cemil Tunç

and M(s) > max {|x(s)| , |y(s)| , |z(s)| , |w(s)|} for all s ∈ (t3, t]. Using a similar ar-
gument as in the proof of Case (I), we can show that M(s) ≡ M(t3) is a constant,
for all s ∈ (t3, t], which implies max {|x(t)| , |y(t)| , |z(t)| , |w(t)|} < M(t) = M(t3) =
max {|x(t3)| , |y(t3)| , |z(t3)| , |w(t3)|} < θ

η
.

To sum up, the solutions of (1.2) are uniformly bounded. The proof is complete.

4 An Example

Consider the following fourth-order non-linear differential equation

x
(4)

(t) + (18− 1
1 + t+ x2(t) )x

(3)
(t) + (78− 4

1 + t+ x2(t) )x
(2)

(t)

+(127− 3
1 + t+ x2(t) )x

(1)
(t) + (69 + 3

1 + t+ x2(t) )x(t) + sin x(t− |sin t|)

+ cosx(t− 2 |sin t|) + sin t sin x(t− e|sin t|) + cos t cosx(t− e2|sin t|) = 1
1 + t2

(4.1)

Setting y(t) = dx(t)
dt

+ 2x(t), z(t) = dy(t)
dt

+ 2y(t) and w(t) = dz(t)
dt

+ 2z(t) we can
transform (4.1) into the following system

dx(t)
dt

= −2x(t) + y(t)

dy(t)
dt

= −2y(t) + z(t)

dz(t)
dt

= −2z(t) + w(t)

dw(t)
dt

= −(10− 1
1 + t+ x2(t) )w(t) + (2− 2

1 + t+ x2(t) )z(t) + (1− 1
1 + t+ x2(t) )y(t)

(1− 1
1 + t+ x2(t) )x(t)− sin x(t− |sin t|)− cosx(t− 2 |sin t|)

− sin t sin x(t− e|sin t|)− cos t cosx(t− e2|sin t|) + 1
1 + t2

. (4.2)

Then we can satisfy the assumptions (i− iii):
(i)
∣∣∣1− 1

1+t+u2

∣∣∣ ≤ L0 |u|+ q0 for all t, u ∈ R,
(ii) |g1(t, u)| = |sin u| ≤ L1 |u| + q1, |g2(t, u)| = |cosu| ≤ L2 |u| + q2, |g3(t, u)| =

|sin t sin u| ≤ L3 |u|+ q3, |g4(t, u)| = |cos t cosu| ≤ L4 |u|+ q4 for all t, u ∈ R,

(iii) d4 = inf
t≥K

(10− 1
1+t+x2(t) )− (sup

t≥K

∣∣∣2− 2
1+t+x2(t)

∣∣∣+ sup
t≥K

∣∣∣1− 1
1+t+x2(t)

∣∣∣) > 4∑
i=0

Li by

taking suitable Li and qi such as L0 = L1 = L2 = L3 = L4 = 1 for appropriate
qi (i = 0, 1, 2, 3, 4).Hence,all solutions of the system(4.2) are uniformly bounded.
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