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Abstract
In this paper, a simple efficient method for the numerical solution of a class of nonlinear Volterra
integral equations (VIEs) is presented. The approach starts by expanding the existing functions in
terms of Bernoulli polynomials. Subsequently, using the new introduced Bernoulli operational matrices
of integration and the product along with the so-called collocation method, the considered problem
is reduced into a set of nonlinear algebraic equations with unknown Bernoulli coefficients. The error
analysis and rate of convergence are also given. Finally, some tests of other authors are included and a
comparison has been done between the results.
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1 Introduction

As is noted in [32], Volterra integral equations arise in many physical problems, e.g., heat
conduction problem [5], concrete problem of mechanics or physics [44], on the unsteady
Poiseuille flow in a pipe [16], diffusion problems [4], electroelastic [14], contact problems
[23], etc. Due to this fact that analytical solutions of integral equations either do not
exist or are hard to find, many different methods have been proposed to approximate
solutions of these equations [1, 7, 8, 13, 21, 25, 27].

Recently, in [2] Aziz and Islam used Haar wavelets and in [34] Maleknejad and Rahimi
used ε modified block pulse functions (εMBPFs) to solve these kinds of equations. A
method based on Bernstein polynomials is also presented by Maleknejad, Basirat and
Hashemizadeh in [31].

In the present paper, we consider the nonlinear Volterra integral equations of the
form

u(x) = f(x) +
∫ x

0
k(x, t)N

(
u(t)

)
dt, x ∈ Ω := [0, 1], (1.1)
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where u(x) is an unknown real valued function and f(x) and k(x, t) are given continuous
functions defined, respectively on Ω and Ω × Ω, and N

(
u(x)

)
is a polynomial of u(x)

with constant coefficients. It follows from the classical theory of Volterra equations (see,
for example, [8], [9]) that (1.1) has a unique continuous solution u∗(x) on Ω. Moreover,
if functions f and k are r times continuously differentiable on Ω and S := {(x, t) : 0 ≤
t ≤ x ≤ 1}, respectively, then u∗ is r times continuously differentiable on Ω.

The method of this paper consists of reducing (1.1) into a set of nonlinear algebraic
equations. The underlying idea employed is the following integral property∫ x

0
Ψ(t)dt ' PΨ(x), (1.2)

where Ψ(x) = [ψ0(x), ψ1(x), . . . , ψn−1(x)]T is the basis vector and P is a square constant
matrix called the operational matrix of integration. Up to now, the operational matrix
of integration P has been derived for several types of basis functions such as Walsh [12],
block-pulse [41], Legendre wavelets [40], Haar wavelets [18], Laguerre [20], Chebyshev
[19, 37], Legendre [11], Bernstein [45], Bessel [38], Fourier [39] and Jacobi [28]. We are
interested here in the use of the Bernoulli polynomials. Some interesting properties of
the Bernoulli polynomials are:

• Comparing the structure of the Bernoulli operational matrix of integration P given
in (2.17) with the corresponding matrices of other basis functions, we may observe
that the setting up of P is simpler.
• The Bernoulli operational matrix of integration P appears to be computationally
very attractive because, compared with other types of basis functions, it has more
zero elements. Indeed, the nonzero entries of the Bernoulli operational matrix of
integration are located only on the superdiagonal and its first column, while the
corresponding matrices of the Bessel and the Bernstein polynomials are full and it
is an upper triangular matrix for the block-pulse functions and a tridiagonal matrix
for the Legendre wavelet basis. The nonzero elements of the shifted Chebyshev and
shifted Jacobi operational matrices of integration are located on the subdiagonals,
diagonals, superdiagonals and their first columns which are more than the case of
Bernoulli polynomials. Also, the shifted Legendre, Laguerre and Hermite opera-
tional matrices of integration have the same number of nonzero elements with the
Bernoulli operational matrix of integration. A same argument can be made for the
operational matrix of derivatives.
• The Bernoulli polynomials have less terms than the shifted Chebyshev, shifted
Legendre and shifted Jacobi polynomials which makes them attractive from the
computational point of view. For example B6(x) (the 6th Bernoulli polynomial),
has five terms while T6(x) (the 6th shifted Chebyshev polynomial) and L6(t) (the
6th shifted legendre polynomial), have seven terms, and this difference will increase
by increasing the degree. Hence for approximating an arbitrary function we use
less CPU time by applying Bernoulli polynomials as compared to any classical or-
thogonal polynomials; this issue is claimed in [35] for shifted Legendre polynomials.
• The coefficient of individual terms in Bernoulli polynomials Bk(t), are smaller than
the coefficient of individual terms in the shifted Legendre and shifted Chebyshev
polynomials Lk(t) and Tk(t), respectively (it can be easily checked by the Mathe-
matica software). Since the computational errors in the product are related to the
coefficients of individual terms, the computational errors are less by using Bernoulli
polynomials [35].
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For convenience, we assume that

N(u(x)) = um(x), (1.3)

where m is a positive integer, but the method can be easily extended and applied to any
nonlinear VIE of the form (1.1), where N

(
u(x)

)
is a polynomial of u(x) with constant

coefficients.
The reminder of the paper is organized as follows. We give a brief review of Bernoulli

polynomials and their properties in Sections 2.1 and 2.2. New Bernoulli operational ma-
trices of integration and the product are derived in Section 2.3. In Section 3, how the new
introduced Bernoulli operational matrices can be used to reduce the problem (1.1)-(1.3)
into a set of nonlinear algebraic equations is explained. The error analysis and rate of
convergence are also given in this section. In Section 4, we show that the Bernoulli poly-
nomial coefficients vector of um(x) can be computed in terms of the Bernoulli polynomial
coefficients vector of u(x). Some numerical examples are presented in Section 5, which
show the efficiency and accuracy of the proposed method. Conclusions of the work are
given in Section 6.

2 Some properties of Bernoulli polynomials

To facilitate the presentation of the material that follows, we present in this section some
background on the Bernoulli polynomials.

2.1 Definition
The generalized Bernoulli polynomials B(a)

k (x) of degree k can be defined by the gener-
ating formula [29, Section 2.8]

taext

(et − 1)a =
∞∑
k=0

tk

k!B
(a)
k (x), |t| ≤ 2π.

If a = 1, we have the Bernoulli polynomials B(1)
k (x) ≡ Bk(x), and if, further, x = 0, we

have the Bernoulli numbers Bk(0) = Bk.
The Bernoulli polynomials satisfy the familiar expansion [15, Section 1.13]

k−1∑
r=0

(
k

r

)
Br(x) = kxk−1, k = 1, 2, . . . . (2.1)

The first five Bernoulli polynomials are as follows

B0(x) = 1,

B1(x) = x− 1
2 ,

B2(x) = x2 − x+ 1
6 ,

B3(x) = x3 − 3
2x

2 + 1
2x,

B4(x) = x4 − 2x3 + x2 − 1
30 .
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Also, the Bernoulli polynomials satisfy the following relations ([15], Section 1.13)

B′k(x) = kBk−1(x), k ≥ 1,∫ 1
0 Bk(x)dx = 0, k ≥ 1,

Bk(x+ 1)−Bk(x) = kxk−1, k ≥ 1,

Bk(x) =
k∑
r=0

(
k

r

)
Brx

k−r, k ≥ 1.

(2.2)

With the aid of equation (2.1), the Bernoulli polynomial vector

B(x) = [B0(x), B1(x), . . . , BN (x)]T , (2.3)

can be written of the form
B(x) = D−1TN (x), (2.4)

where
TN (x) = [1, x, x2, . . . , xN ]T , (2.5)

and D is a lower triangular matrix defined by

D = [dij ]Ni,j=0, dij =


1
i+1
(
i+1
j

)
, 0 ≤ j ≤ i,

0, i < j ≤ N.

On the other hand, if in the third part of equation (2.2), k varies from 0 to N we have

B(x) = D̂TN (x), (2.6)

where D̂ is a lower triangular matrix as

D̂ = [d̂ij ]Ni,j=0, d̂ij =


(
i
i−j
)
Bi−j , 0 ≤ j ≤ i,

0, i < j ≤ N,
(2.7)

and TN (x) is the vector defined by equation (2.5). So, from equations (2.4) and (2.6) we
obtain D̂ = D−1. The dual matrix of B(x) is defined by

Q =
∫ 1

0
B(x)BT (x)dx =

∫ 1

0

(
D̂TN (x)

)(
D̂TN (x)

)T
dx

= D̂

(∫ 1

0
TN (x)TTN (x)dx

)
D̂T = D̂HD̂T ,

(2.8)

where D̂ is the matrix defined in (2.7) and H is the Hilbert matrix

H =
∫ 1

0
TN (x)TTN (x)dx =

[
1

i+ j + 1

]N
i,j=0

.
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2.2 Function approximation and error analysis
Let H = L2([0, 1]) be the space of square integrable functions with respect to Lebesgue
measure on the closed interval [0, 1]. The inner product in this space is defined by

〈f, g〉 =
∫ 1

0
f(x)g(x)dx, (2.9)

and the norm is as follows

‖f‖2 = 〈f, f〉 1
2 =

(∫ 1

0
f2(x)dx

) 1
2
. (2.10)

Let
HN = span{B0(x), B1(x), . . . , BN (x)}. (2.11)

Since HN is a finite dimensional subspace of H, then it is closed [24, Theorem 2.4-3] and
for every given g ∈ H there exists a unique best approximation ḡ ∈ HN [24, Theorem
6.2-5] such that

‖g − ḡ‖2 ≤ ‖g − f‖2, ∀f ∈ HN . (2.12)
Since ḡ ∈ HN , there exist unique coefficients g0, g1, . . . , gN such that

g(x) ' ḡ(x) =
N∑
k=0

gkBk(x) = BT (x)G, (2.13)

where B(x) is the Bernoulli polynomial vector defined in equation (2.3) and G is the
Bernoulli polynomial coefficients vector of g(x) defined as

G = [g0, g1, . . . , gN ]T . (2.14)

Also, for a positive integer m, gm(x) may be approximated as

gm(x) ' BT (x)G(m),

where G(m) is a column vector whose elements are nonlinear functions of the elements of
G. The form of these functions will be explained later in Section 4.

Let us denote by Cm(Ω) the space of functions f : Ω→ R with continuous derivatives

f (i)(x) = di

dxi
f(x), x ∈ Ω,

for all i such that 0 ≤ i ≤ m and by Cm,n(Ω× Ω) the space of functions f : Ω× Ω→ R
with continuous partial derivatives

f (i,j)(x, t) = ∂i+j

∂xm∂tn
f(x, t), (x, t) ∈ Ω× Ω,

for all (i, j) such that 0 ≤ i ≤ m, 0 ≤ j ≤ n. The following results are satisfied.

Corollary 1. [42] Suppose that g(x) ∈ CN (Ω) is approximated by the truncated Bernoulli

series PN [g](x) =
N∑
k=0

gkBk(x). Then the coefficients gn can be calculated from the fol-

lowing relation

gn = 1
n!

∫ 1

0
g(n)(x)dx, n = 0, 1, . . . , N.
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It follows from the next corollary that Bernoulli coefficients will decay rapidly with
increasing n.

Corollary 2. [42] Assume that the function g(x) ∈ CN (Ω) is approximated by Bernoulli
polynomials as argued in Corollary 1. Then the coefficients gn decay as follows

gn ≤
Ḡn
n! , n = 0, 1, . . . , N,

where Ḡn denotes the maximum of g(n)(x) in the interval Ω.

The following theorem provides an error term for the approximation presented in
Corollary 1.

Theorem 3. [42] Suppose that g(x) ∈ CN (Ω) and PN [g](x) is its approximation in
terms of Bernoulli polynomials and RN [g](x) is the remainder term. Then, the associated
formulas are stated as follows

g(x) = PN [g](x) +RN [g](x), x ∈ Ω,

PN [g](x) =
∫ 1

0
g(x)dx+

N∑
j=1

Bj(x)
j! (g(j−1)(1)− g(j−1)(0)),

RN [g](x) = − 1
N !

∫ 1

0
B∗N (x− t)g(N)(t)dt,

where B∗N (x) = BN (x− [x]) and [x] denotes the largest integer not greater than x.

Theorem 4. [43] Suppose g(x) ∈ CN (Ω) and PN [g](x) is its approximation in terms of
Bernoulli polynomials. Then the error bound would be obtained as follows

E(g) = ‖g(x)− PN [g](x)‖∞ ≤ CĜ(2π)−N , x ∈ Ω,

where C is a positive constant independent of N and Ĝ is such that

‖g(i)(x)‖∞ ≤ Ĝ, i = 0, 1, . . . , N.

The above results can be extended to the case of functions of two (or more) variables.
Let k(x, t) ∈ H ×H, then it can be approximated in terms of truncated Bernoulli series
as

k(x, t) '
N∑
i=0

N∑
j=0

kijBi(x)Bj(t) = BT (x)KB(t), (2.15)

where K = [kij ]Ni,j=0 is an (N + 1)× (N + 1) matrix.

Corollary 5. [6] Assume that the function k(x, t) ∈ CN,N (Ω × Ω) is approximated by

the two variable truncated Bernoulli series PN [k](x, t) =
N∑
i=0

N∑
j=0

kijBi(x)Bj(t), then the

coefficients kij can be calculated from the following relation

kij = 1
i!j!

∫ 1

0

∫ 1

0

∂i+j

∂xi∂tj
k(x, t)dxdt, i, j = 0, 1, . . . , N.
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Corollary 6. Assume that the function k(x, t) ∈ CN,N (Ω × Ω) is approximated by
Bernoulli polynomials as argued in Corollary 5. Then the coefficients kij decay as follows

kmn ≤
K̄i,j

i!j! , i, j = 0, 1, . . . , N,

where K̄i,j denotes the maximum of ∂i+j

∂xi∂tj k(x, t) in the unit square Ω× Ω.

Proof. Since it is trivial we omit the proof.

Theorem 7. [43] Suppose k(x, t) ∈ CN,N (Ω × Ω) and PN [k](x, t) be its approximation
in terms of Bernoulli polynomials. Then the error bound would be obtained as follows

E(k) = ‖k(x, t)− PN [k](x, t)‖∞ ≤ CK̂N(2π)−N ,

where C is a positive constant independent of N and K̂ is such that∥∥∥∥ ∂i+j

∂xi∂tj
k(x, t)

∥∥∥∥
∞
≤ K̂, i, j = 0, 1, . . . , N.

2.3 Operational matrices of integration
In this section, the Bernoulli operational matrices of integration and the product will be
derived.

Theorem 8. Let B(x) be the Bernoulli vector defined in (2.3). Then∫ x

0
B(t)dt ' PB(x), (2.16)

where P is the (N + 1)× (N + 1) operational matrix of integration defined by

P =



−B1 1 0 . . . 0

−B2
2 0 1

2 . . . 0

...
...

...
. . .

...

−BN

N 0 0 . . . 1
N

−BN+1
N+1 0 0 . . . 0


. (2.17)

Proof. It follows from the first part of (2.2) that∫ x

0
Bk(t)dt = 1

k + 1(Bk+1(x)−Bk+1), k ≥ 0.

So, the integration of the vector B(x) is given by∫ x

0
B(t)dt = P ∗B∗(x), (2.18)
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where P ∗ is an (N + 1)× (N + 2) matrix having the form

P ∗ =
[
P p

]
=



−B1 1 0 . . . 0 0

−B2
2 0 1

2 . . . 0 0

...
...

...
. . .

...
...

−BN

N 0 0 . . . 1
N 0

−BN+1
N+1 0 0 . . . 0 1

N+1


,

and B∗(x) is an (N + 2)× 1 vector of the form

B∗(x) =
[

B(x)
BN+1(x)

]
.

If we trunctate the term BN+1(x) in the vector B∗(x), i.e., if we drop the vector p in the
matrix P ∗, relation (2.18) becomes the approximate relation (2.16).

Note that, the structure of P is simple, since all its elements are zero, except for its
first column and its superdiagonal, and hence the Bernoulli basis may be computationally
more attractive than other sets of basis functions.

Comparing the structure of the Bernoulli integral operational matrix P (denoted for
the moment as PB) with the corresponding matrices of Walsh PW , block-pulse Pb, and
Laguerre PL, we may observe that PB has the following characteristics:

• Using PB , instead of P ∗B is a rather insignificant approximation, particularly if
one considers the fact that αN = 1

N+1 diminishes with N . The same approach is
applied in the Laguerre case [20], but the approximation there is more significant
since the corresponding term αN in the P matrix is independent of N and is
always equal to −1. For the Walsh case, the approximation of the form (2.16) is
definitely significant since, for any given N , many non-zero terms in determining
P are truncated. Finally, the case of block-pulse functions appears not to involve
this type of approximation. This fact may be of great importance, since it could
considerably reduce the overall approximation error.
• The accuracy in relation (1.2) depends on two factors, namely, the dimension (N+1)
of the basis vector Ψ(x) and the particular Ψ(x) used. From the remarks of the
previous paragraph it appears that relation (1.2) could be more accurate if Bernoulli
functions were used rather than Walsh or Laguerre functions.

It is to be noted that, using equations (2.13) and (2.16), the integral of any function g(x)
can be approximated as∫ x

0
g(t)dt '

∫ x

0
GTB(t)dt ' GTPB(x).

We also need to evaluate the product of B(x) and BT (x), which is called the product
matrix of Bernoulli polynomials. For this purpose, we first approximate the functions
xkBi(x), for i, k = 0, 1, . . . , N , in terms of B(x). By using (2.13), we can write

xkBi(x) ' BT (x)ek,i, (2.19)
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where ek,i is the Bernoulli polynomial coefficients vector defined as

ek,i = [ek,i0 , ek,i1 , . . . , ek,iN ]T . (2.20)

Using Eqs. (2.8) and (2.19), we obtain

ek,i ' Q−1
∫ 1

0
xkB(x)Bi(x)dx = Q−1



∫ 1

0
xkBi(x)B0(x)dx

∫ 1

0
xkBi(x)B1(x)dx

...∫ 1

0
xkBi(x)BN (x)dx


.

Now, for any arbitrary vector C = [c0, c1, . . . , cN ]T in RN+1 we define the notations

Ẽk = EkC, k = 0, 1, . . . , N,

C̃ = [Ẽ0, Ẽ1, . . . , ẼN ],

where D̂ is the matrix defined by (2.7) and Ek is an (N + 1)× (N + 1) matrix with ek,i,
i = 0, 1, . . . , N , as its columns.

Theorem 9. Let C = [c0, c1, . . . , cN ]T be an arbitrary vector in RN+1. Then

B(x)BT (x)C ' ĈB(x), (2.21)

where Ĉ is the (N + 1)× (N + 1) product operational matrix defined by

Ĉ = D̂C̃T .

Proof. Using (2.6) we obtain

B(x)BT (x)C =
(
D̂TN (x)

)
BT (x)C

= D̂
[
BT (x)C, xBT (x)C, . . . , xNBT (x)C

]T
= D̂

[
N∑
i=0

ciBi(x),
N∑
i=0

cixBi(x), . . . ,
N∑
i=0

cix
NBi(x)

]T
,

(2.22)
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and using (2.19) and (2.20) yield

N∑
i=0

cix
kBi(x) '

N∑
i=0

ci
(
BT (x)ek,i

)
=

N∑
i=0

ci

 N∑
j=0

ek,ij Bj(x)



= BT (x)



N∑
i=0

cie
k,i
0

N∑
i=0

cie
k,i
1

...

N∑
i=0

cie
k,i
N


= BT (x)[ek,0, ek,1, . . . , ek,N ]C = BT (x)ẼK .

(2.23)

Combining equations (2.22) and (2.23) gives the result.

3 Numerical solution of nonlinear VIEs

In this section, we use the operational matrices of the Bernoulli polynomials and a collo-
cation method to numerically solve problem (1.1) with assumption (1.3). So, we consider
the following integral equation

u(x) = f(x) +
∫ x

0
k(x, t)um(t)dt, x ∈ Ω. (3.1)

If we approximate functions f(x), u(x), um(x) and k(x, t) using Bernoulli polynomi-
als, as described by equations (2.13) and (2.15), then we obtain

f(x) ' BT (x)F, (3.2)

u(x) ' BT (x)U, (3.3)

um(x) ' BT (x)U (m), (3.4)

k(x, t) ' BT (x)KB(t), (3.5)

where the vectors F,U, U (m) and matrix K are Bernoulli polynomial coefficients of f(x),
u(x), um(x) and k(x, t) respectively. We again note that U (m) is a column vector whose
elements are nonlinear functions of the elements of the unknown vector U . With substi-
tuting approximations (3.2)-(3.5) into (3.1), we get

BT (x)U ' BT (x)F +
∫ x

0
BT (x)KB(t)BT (t)U (m)dt

= BT (x)F +BT (x)K
∫ x

0
B(t)BT (t)U (m)dt.



60 Sohrab Bazm, Mohammad Reza Azimi

Using (2.21) leads to

BT (x)U ' BT (x)F +BT (x)K
∫ x

0

(
Û (m)

)T
B(t)dt

= BT (x)F +BT (x)K
(
Û (m)

)T ∫ x

0
B(t)dt.

Now, using (2.16) gives

BT (x)U ' BT (x)F +BT (x)K
(
Û (m)

)T
PB(x), (3.6)

where P is the Bernoulli operational matrix of integration given in (2.17). Collocating
equation (3.6) at the (N + 1) Newton-Cotes nodes as

xl = 2l + 1
2(N + 1) , l = 0, 1, . . . , N, (3.7)

will result in

BT (xl)U ' BT (xl)F +BT (xl)
(
K
(
Û (m)

)T
P

)
B(xl), l = 0, 1, . . . , N. (3.8)

Since U (m) is a column vector whose elements are nonlinear functions of the element of
the unknown vector U = [ui]Ni=0, then equation (3.8) is a nonlinear system of (N + 1)
algebraic equations with (N + 1) unknowns u0, u1, . . . , uN . This nonlinear system
of algebraic equations can be solved by numerical methods such as Newton’s iterative
method. If Ū be an approximate solution of this system, then Ūm(x) = BT (x)Ū is an
approximate solution of equation (3.1).

In the following theorem we shall find an upper bound for the error between the exact
solution u(x) and the approximate solution uN (x) of equation (3.1) with the considered
assumptions.

Theorem 10. Let u(x) be the exact solution and uN (x) = BT (x)Ū be the approximated
solution of (3.1) where the unknown Bernoulli coefficient vector Ū is determined by solv-
ing the nonlinear algebraic system of equations (3.8). Moreover assume that

(1) |u(x)| ≤ ρ, ∀x ∈ Ω,

(2) |k(x, t)| ≤ k̃, ∀(x, t) ∈ Ω× Ω,

(3) M
(
k̃ + E(k)

)
< 1 in which M > 0 satisfies

|um(t)− umN (t)| ≤M |u(t)− uN (t)|, ∀t ∈ Ω. (3.9)

Then we have
‖u− uN‖∞ ≤

E(f) + ρmE(k)
1−M

(
k̃ + E(k)

) .
Proof. If we approximate both the driving term f(x) and kernel k(x, t) in terms of
Bernoulli polynomials as described by equations (2.13) and (2.15), then the obtained
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solution is an approximated polynomial; uN (x) and we have

|u(x)− uN (x)| =
∣∣∣∣f(x)− fN (x) +

∫ x

0

(
k(x, t)um(t)− kN (x, t)umN (t)

)
dt

∣∣∣∣
≤
∣∣f(x)− fN (x)

∣∣+
∫ x

0

∣∣∣k(x, t)um(t)− kN (x, t)umN (t)
∣∣∣dt. (3.10)

Moreover, using assumptions (1)-(3) we get∣∣∣k(x, t)um(t)− kN (x, t)um
N (t)

∣∣∣ =
∣∣∣k(x, t)

(
um(t)− um

N (t)
)

+
(
k(x, t)− kN (x, t)

)
um

N (t)
∣∣∣

≤ |k(x, t)|
∣∣um(t)− um

N (t)
∣∣+
∣∣k(x, t)− kN (x, t)

∣∣∣∣um
N (t)

∣∣
≤ k̃M‖u− uN‖∞ + E(k)

(∣∣um(t)− um
N (t)

∣∣+
∣∣um

N (t)
∣∣)

≤ M
(
k̃ + E(k)

)
‖u− uN‖∞ + ρmE(k).

(3.11)

Substituting (3.11) in (3.10), and noting that x ∈ [0, 1], we obtain

‖u− uN‖∞ ≤ E(f) +
(
k̃ + E(k)

)
‖u− uN‖∞ + ρmE(k).

Then, by assumption (3) we get

‖u− uN‖∞ ≤
E(f) + ρmE(k)

1−M
(
k̃ + E(k)

) ,
which completes the proof.

For a given function f(x) if f ′(x) is continuous in [−1, 1] except for a finite number
of bounded jumps, then f(x) can be expanded in a convergent series as [29, pp. 309]

f(x) = 1
2c0 +

∞∑
j=1

cjTj(x), (3.12)

where
cj = 2

π

∫ 1

−1

f(x)Tj(x)
(1− x2) 1

2
dx,

and Tn(x) denotes the Chebyshev polynomial of the first kind of degree n.

Theorem 11. [17, Theorem 3.12] When a function f has r + 1 continuous derivatives
on [−1, 1], where r is a finite number, then |f(x) − Sn(x)| = O(n−r) as n → ∞ for all

x ∈ [−1, 1], in which Sn(x) = 1
2c0 +

n∑
j=1

cjTj(x) denotes the partial sum of expansion

(3.12).

We define the residual function rN (x) on Ω as

rN (x) = uN (x)− f(x)−
∫ x

0
k(x, t)umN (t)dt, (3.13)
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where u(x) is the exact solution of (3.1) and uN (x) is the approximation of u(x) in terms
of Bernoulli polynomials as described by equations (2.13). The next theorem gives an
estimation of the residual error.

Theorem 12. Let r is a finite number and the exact solution u(x) of (3.1) has r + 1
continuous derivatives on Ω. If M = ‖k(x, t)‖∞ < ∞, then ‖rN‖∞ = O(N−r) as
N →∞.

Proof. It follows from equations (3.13) and (3.1) that

‖rN‖∞ ≤ (1 +M)‖u− uN‖∞. (3.14)

Suppose that uN (x) =
N∑
n=0

aN,nBn(x). Since the Bernoulli polynomials can be expressed

in terms of Chebyshev polynomials of the first kind [22, Theorem 2.1], then uN (x) can
be expanded as

uN (x) =
N∑
k=0

bN,kTk(x),

where bN,k can be expressed in terms of aN,n, n, k = 0, . . . , N . Therefore, by Theorem
11 we have ‖u − uN‖∞ = O(N−r) as N → ∞ which along with (3.14) completes the
proof.

4 Expressing U (m) in terms of U

For the numerical implementation of the presented method, we need to express the
components of the vector U (m) as nonlinear functions of the elements of the vector U ,
where U (m) and U are the Bernoulli polynomial coefficients vectors of u(x) and um(x)
respectively. To do this, we state the following lemma.

Lemma 13. let m be a positive integer and U and U (m) are respectively the Bernoulli
polynomial coefficients vectors of u(x) and um(x), that are defined on Ω. Also, let Q be
the matrix defined in (2.8). Then, we have

U (m) = Q−1(ÛT )
m
e1, (4.1)

where e1 denotes the first standard unit vector of order (N + 1).

Proof. We have

QU (m) =
(∫ 1

0
B(x)BT (x)dx

)
U (m) =

∫ 1

0
B(x)BT (x)U (m)dx.
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Using relations (3.4), (3.3), (2.2) and (2.21), we can write∫ 1

0
B(x)BT (x)U (m)dx '

∫ 1

0
B(x)um(x)dx

'
∫ 1

0
B(x)

(
BT (x)U

)m
dx

=
∫ 1

0

(
B(x)BT (x)U

)(
BT (x)U

)m−1
dx

' ÛT
∫ 1

0
B(x)

(
BT (x)U

)m−1
dx

= ÛT
∫ 1

0

(
B(x)BT (x)U

)(
BT (x)U

)m−2
dx

'
(
ÛT
)2 ∫ 1

0
B(x)

(
BT (x)U

)m−2
dx

...

'
(
ÛT
)m ∫ 1

0
B(x)dx

=
(
ÛT
)m

e1.

Since Q is invertible, we obtain (4.1).

5 Illustrative examples

To demonstrate the applicability and accuracy of our method, we have applied it to
several examples. These examples are solved in different references, so the numerical
results obtained here can be compared with those of other numerical methods.

In order to analyze the error of the method we introduce notations

eN (x) = u(x)− uN (x),

and
‖eN‖∞ = max

{∣∣eN (xl)
∣∣, l = 0, 1, . . . , N

}
,

where uN (x) denotes the approximate solution of order N of integral equation, which is
obtained by the method presented in Section 3, and u(x) is the exact solution of integral
equation. Also, xl, l = 0, 1, . . . , N , denote the Newton-Cotes nodes defined by (3.7).

Moreover, we define the global error as [26]

εN = 1
|u|max

√√√√ 1
N

N∑
l=0

[
eN (xl)

]2
,

where |u|max denotes the maximum absolute value of the exact solution u on Ω.
Experiments were performed on a personal computer using a 2.50 GHz processor and

the codes were written in Mathematica 9.
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Example 14. Consider the nonlinear Volterra integral equation

u(x) = 2− ex +
∫ x

0
ex−tu2(t)dt, x ∈ [0, 1]. (5.1)

The exact solution of this equation is u(x) = 1. Numerical results obtained by the present
method for this example has been shown in the first column of Table 1. Also, Fig. 1
shows the error graph of eN , for N = 8.

Table 1. Computed errors ‖eN‖∞ for Examples 14-16.

N Example 14 Example 15 Example 16

1 9.883× 10−2 1.138× 10−2 3.349× 10−2

2 4.703× 10−2 5.551× 10−3 1.849× 10−2

3 9.026× 10−3 1.271× 10−3 7.851× 10−3

4 7.014× 10−4 3.847× 10−4 2.364× 10−3

5 1.938× 10−4 1.393× 10−4 1.277× 10−3

6 1.637× 10−5 4.172× 10−5 2.925× 10−4

7 5.109× 10−6 1.397× 10−5 1.742× 10−4

8 4.010× 10−7 4.301× 10−6 3.982× 10−5

0.0 0.2 0.4 0.6 0.8 1.0

0

1.´10
-7

2.´10
-7

3.´10
-7

4.´10
-7

Figure 1. Graph of eN (x) for Example 14 with N = 8.

Example 15. [2, 30] Consider the following nonlinear Volterra integral equation

u(x) = 3
2 −

1
2e
−2x −

∫ x

0

(
u2(t) + u(t)

)
dt, x ∈ [0, 1]. (5.2)

The exact solution of this problem is u(x) = e−x. The second column of Table 1 illustrates
the numerical results obtained by the present method for this example. Also, Fig. 2 shows
the error graph of eN , for N = 10.

Integral equation (5.2) is solved in [2] and [30], respectively by Haar wavelets method
and triangular functions (TF) method. Comparison of the second column of Table 1 with
Fig. 3 of [2] shows better accuracy of our method using fewer number of basis functions
and collocation points.
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Figure 2. Graph of eN (x) for Example 15 with N = 10.

Example 16. [26] Let us consider the following linear Volterra integral equation

u(x) = f(x) +
∫ x

0
x cos(t)u(t)dt, x ∈ [0, 1], (5.3)

where
f(x) = 1

4x cos(2x) + sin(x)− 1
2x.

The exact solution of this problem is u(x) = sin(x). The third column of Table 1
illustrates the numerical results obtained by the present method for this example. Also,
Fig. 3 shows the error graph of eN , for N = 15.

0.0 0.2 0.4 0.6 0.8 1.0

-4.´ 10
-8

-2.´ 10
-8

0

2.´ 10
-8

4.´ 10
-8

Figure 3. Graph of eN (x) for Example 16 with N = 15.

The random integral quadrature (RIQ) method is used in [26] to approximate the
solution of integral equation (5.3) where 0 ≤ x ≤ π. In the case of 5 field nodes distributed
uniformly and randomly, the global errors obtained by RIQ method are 1.6462E− 3 and
2.4302E − 3 respectively. Also, in the case of 5 collocation points used, the global error
obtained by the presented method for Example 16 is 2.0504E − 3 which shows similar
accuracies for our method and RIQ method.
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Example 17. [3, 33] Consider the nonlinear Volterra integral equation

u(x) = x+ cos(x)− 1 +
∫ x

0
sin
(
u(t)

)
dt, x ∈ [0, 1], (5.4)

with the exact solution u(x) = x. Integral equation (5.4) is not in the desired form (1.1),
but it can be converted by approximating sin(u) using a finite number of terms of its
Taylor series as

sin(u) = u− u3

3! + u5

5! + · · ·+ (−1)d u2d+1

(2d+ 1)! , d ∈ Z≥0.

Table 2 illustrates the numerical results obtained by the present method for N = 5 and
different values of d. Also, Fig. 4 shows the error graph of eN , for N = 6 and d = 3.

Table 2. Computed errors ‖eN‖∞ for Example 17.

N d = 0 d = 1 d = 2 d = 3

5 3.482× 10−2 8.735× 10−4 9.372× 10−6 2.960× 10−6

Integral equation (5.4) is solved in [33] using cubic B-spline wavelets basis. A com-
parison between the absolute errors obtained by the present method and the method
of [33] is done in Table 3. This table shows that our method needs fewer number of
basis functions (and therefore fewer number of collocation points) to achieve the desired
accuracy.

Table 3. Comparison of absolute errors for Example 17.

x Present method with 7 basis Algorithm 1 of [33] with 11 basis
functions (N=6) and d=3 functions (m = 4, sµ = 3)

0 7.13684× 10−7 4.14485× 10−6

0.1 6.29968× 10−7 1.61021× 10−7

0.2 3.08742× 10−7 4.15844× 10−7

0.3 1.22505× 10−7 7.48669× 10−7

0.4 4.93745× 10−7 5.50796× 10−7

0.5 6.64531× 10−7 4.08869× 10−7

0.6 5.71379× 10−7 4.95687× 10−7

0.7 2.50408× 10−7 1.71069× 10−7

0.8 1.64765× 10−7 1.40256× 10−6

0.9 4.69861× 10−7 1.62347× 10−6

0.9 4.41524× 10−7 7.31106× 10−6

Example 18. [36] Consider the following second kind linear Volterra integral equation

3u(x)−
∫ x

0
(x+ t)2u(t)dt = f(x), x ∈ [0, 1]. (5.5)

The function f(x) was chosen so that the analytical solution of (5.5) is u(x) = ex. Fig.
5 shows the error graph of eN , for N = 12.
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Figure 4. Graph of eN (x) for Example 17 with N = 6 and d = 3.

Table 4. Comparison of errors ‖eN‖∞ for Example 18.

N Present method N Moving least squares (MLS) method [36]
Linear (q = 1) Quadratic (q = 2)

2 7.09× 10−2 5 9.13× 10−3 2.39× 10−4

4 7.69× 10−3 9 2.70× 10−3 2.37× 10−5

6 4.21× 10−4 17 7.84× 10−4 7.59× 10−6

8 1.93× 10−5 33 2.09× 10−4 6.14× 10−6

10 7.74× 10−7 65 5.11× 10−5 5.31× 10−4

12 2.99× 10−8 129 1.37× 10−5 2.73× 10−3

0.0 0.2 0.4 0.6 0.8 1.0

-3.´10
-8

-2.´10
-8

-1.´10
-8

0

1.´10
-8

2.´10
-8

Figure 5. Graph of eN (x) for Example 18 with N = 12.

Integral equation (5.5) was previously considered in [36] by the moving least squares
(MLS) method. A comparison between our results and the results of [36] has done in
Table 4. The values of N in the first and the third columns of this table show the
number of collocation points used for our method and the number of nodal points used
for the MLS method, respectively. Based upon the results of Table 4, compared to the
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MLS method, our method gives more accurate solutions by solving a very smaller linear
system of equations.

Example 19. For our final example we consider the following Volterra integral equation
of the second kind

u(x) = f(x) +
∫ x

0
(x− t)u(t)dt, x ∈ [0, 1].

The function f(x) was chosen so that the analytical solution of (5.1) is

u(x) = γxe1−γx,

with γ denoting a given (real) parameter. Table 5 illustrates the numerical results ob-
tained by the present method for γ = 1,−1,−2,−3 and different values of N . In the
case of γ = −1, the numerical results obtained by the present method can be compared
with those of Brunner and Yan [10] who used the collocation and iterated collocation
methods for the numerical solution of this problem. We see that when γ decreases the
total variation of the exact solution u(x) (which is denoted by utv) increases and the
method converges slowly. Also, Fig. 6 shows the error graph of eN , for N = 15 and
γ = −1.

Table 5. Computed errors ‖eN‖∞ for Example 19.

N γ = 1(utv = 1) γ = −1(utv = e2) γ = −2(utv = 2e3) γ = −3(utv = 3e4)

5 7.204× 10−4 2.597× 10−3 3.450× 10−2 1.574× 10+0

10 3.126× 10−7 1.086× 10−6 7.229× 10−4 6.114× 10−2

15 1.952× 10−8 4.549× 10−9 5.239× 10−6 2.101× 10−3

0.0 0.2 0.4 0.6 0.8 1.0

-2.´ 10
-9

-1.´ 10
-9

0

1.´ 10
-9

2.´ 10
-9

3.´ 10
-9

4.´ 10
-9

Figure 6. Graph of eN (x) for Example 19 with N = 15 and γ = −1.

6 Conclusion and comments

In this article we proposed an efficient and simple numerical method for solving a class
of nonlinear Volterra integral equations of the form (1.1) and (1.3). For this purpose
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the existing functions expanded in terms of Bernoulli polynomials. Then, using the new
derived Bernoulli operational matrices and the collocation method, the problem reduced
to a nonlinear system of algebraic equations. The obtained results show that this method
is competitive with the other ones.
The proposed method has some notable advantages such as:

• The required computational effort to implement the method is small while the
accuracy is high (the computations can be carried out on a personal computer).
• As the numerical results show, in the case of smooth solutions, a small number of
basis functions (N ≤ 15) is enough to obtain a high accuracy approximation of the
solution

(
error norm less than 10−8).

Nevertheless, the method has some limitations and drawbacks, including:

• As we see in Example 19, when the exact solution u(x) of the problem has large
total variation, the method converges slowly.
• Since the coefficients of the Bernoulli polynomials grow quite fast in absolute value
when N increases, then for large values of N the accuracy of the method is affected
badly due to round off errors. This drawback will be also encountered when other
classical orthogonal basis such as the shifted Legendre and shifted Chebyshev poly-
nomials is used (since the coefficient of individual terms are greater than the ones
of Bernoulli polynomials).

At the end, as it done in Example 17, if the part N
(
u(x)

)
in equation (1.1) is not a

polynomial of u(x) but is continuous then the Weierstrass approximation theorem can
be used to convert the problem to the desired form.
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