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Abstract
In this paper we first study the problem of uniform ultimate boundedness of a certain third order
nonlinear differential equation with delay. Further the existence of periodic solutions for the considered
equation are also given, as a consequence of uniform ultimate boundedness results. Finally, some criteria
to guarantee the uniform asymptotic stability are derived via the Lyapunov’s second method. We also
give an example to illustrate our results.
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1 Introduction

Nonlinear differential equations of higher order have been extensively studied with high
degree of generality. In particular, boundedness, uniform boundedness, ultimate bound-
edness, uniform ultimate boundedness and asymptotic behavior of solutions have in the
past and also recently been discussed. See for instance Reissig et al. [13], Rouche et al.
[19], Yoshizawa [22] and [23]. It is well known that the ultimate boundedness is a very
important problem in the theory and applications of differential equations. An effective
method for studying the ultimate boundedness of nonlinear differential equations is still
the Lyapunov’s direct method.

Because of their applications, the existence of periodic solutions of third order differ-
ential equations has been also investigated by many researchers in recent years. Besides
it is worth-mentioning that there are a few results on the same topic for third order delay
differential equations, for example, Chukwu [6], Gui[10], Tunç [21] and Zhu[24].
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In 1992, Zhu[24], established some sufficient conditions to ensure the stability, bound-
edness, ultimate boundedness of the solutions of the following third order non-linear delay
differential equation

x′′′ + ax′′ + bx′ + f(x(t− r)) = e(t). (1.1)

The existence of periodic solutions was also discussed in the case where e(t) is a periodic
function.
Recently, in [8], the authors extend results obtained in [24] to the following third order
non autonomous differential equation with delay

[g(x(t))x′(t)]′′ + (h(x(t))x′(t))′ + ϕ(x(t))x′(t) + f(x(t− r)) = e(t), (1.2)

In this paper, we are concerned with the third order delay differential equation(
q(t)

(
g(x(t))x′(t)

)′)′ + a(t)
(
h(x(t))x′(t))′ + b(t)ϕ(x(t))x′(t) + c(t)f(x(t− r)) = e(t),

(1.3)
where r > 0 is a fixed delay and a, b, c, e, f, g, h, and ϕ are continuous functions and
depend only on the arguments shown explicitly; f(0) = 0; f ′(x), g′(x), h′(x), and ϕ′(x)
exist and are continuous for all x. Our objective here is to extend results obtained in [8]
to (1.3). The paper is organized as follows. In section 3 we study the problems of the
boundedness and ultimate boundedness of solutions when e(t) 6= 0. The assumptions
will also give us an opportunity to discuss the existence of periodic solutions of the same
equation when a, b, c, e, q, are periodic functions. Finally we investigate the asymptotic
stability of the zero solution of the delay differential equation (1.3) with e(t) = 0. We
give an example to illustrate the effectiveness of main results obtained in Section 3.
Clearly the equation discussed by Zhu in [24] is a special case of equation (1.3) when
g(x) = h(x) = ϕ(x) = 1, a(x) = a, and b(t) = b, also (1.2) is a special case of (1.3) with
q(t) = 1.

2 Preliminaries

To describe the main result of this paper, we include some preliminary knowledge on
the stability and ultimate boundedness for a general class of nonlinear delay differential
system

x′ = f(t, xt), xt(θ) = x(t+ θ) , −r ≤ θ ≤ 0, t ≥ 0, (2.1)

where f : CH → Rn is a continuous mapping, f(0) = 0, CH := {φ ∈ (C[−r, 0], Rn) :
‖φ‖ ≤ H}, and forH1 < H, there exists L(H1) > 0, with |f(φ)| < L(H1) when ‖φ‖ < H1.

Lemma 1. [12] If there is a continuous functional V (t, φ) : [0,+∞[×CH → [0,+∞[
locally Lipschitz in φ and wedges Wi such that:
(i) If W1(‖φ‖) ≤ V (t, φ), V (t, 0) = 0 and V ′(2,1)(t, φ) ≤ 0.

Then, the zero solution of (2.1) is stable. If in addition V (t, φ) ≤ W2(‖φ‖). Then, the
zero solution of (2.1) is uniformly stable.
(ii) If W1(‖φ‖) ≤ V (t, φ) ≤W2(‖φ‖) and V ′(2,1)(t, φ) ≤ −W3(‖φ‖).

Then, the zero solution of (2.1) is uniformly asymptotically stable.

Definition 2. [4] Solutions of (2.1) are uniform ultimate bounded for bound B at t = 0
if for each A > 0 there is a K > 0 such that φ ∈ CH , ||φ|| < A, t ≥ K imply that
x(t, 0, φ) < A.
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Lemma 3. [4] Let V (t, ϕ) : R× C → R be continous and locally Lipschitz in ϕ. If

i) W0(|x(t)|) ≤ V (t, xt) ≤W1(|x(t)|) +W2(
∫ t

t−r
W3(|x(t)|)ds),

ii) V ′(2.1) ≤ −W3(|x(t)|) +M,

for some M > 0, where Wi(i = 0, 1, 2, 3) are wedges, then the solutions of (2.1) are
uniformly bounded and uniformly ultimately bounded for bound B.

If (2.1) is periodic system with period T , we have the following result:

Lemma 4. [20] Suppose that, for α > 0, there exists L(α) > 0 such that |f(t, xt)| ≤ L(α),
for t ∈ [−T, 0] and ‖xt‖ ≤ α, and suppose that the solutions of (2.1) are equi-bounded
and equi-ultimately bounded for bound B, then there exists a periodic solution of (2.1) of
period T .

3 Main Results

We shall give here some assumptions which will be used on the functions that appeared in
equation (1.3). Suppose that there are positive constants a0, a1, b0, b1, c0, c1, g0, g1, h0, h1,
ϕ0, ϕ1, δ0, δ1, µ1 and µ2 such that the following conditions are satisfied:

i) 0 < a0 ≤ q(t) ≤ a(t) ≤ a1, 0 < b0 ≤ b(t) ≤ b1, 0 < c0 ≤ c(t) ≤ c1.

ii)
∫ +∞
−∞ (|q′(u)|+ |a′(u)|+ |b′(u)|+ |c′(u)|)du <∞.

iii) 0 < g0 ≤ g(x) ≤ g1, 0 < h0 ≤ h(x) ≤ h1, 0 < ϕ0 ≤ ϕ(x) ≤ ϕ1.

iv)
∫ +∞
−∞ (|g′(u)|+ |h′(u)|+ |ϕ′(u)|)du <∞.

v) f(0) = 0, f(x)
x
≥ δ0 > 0 (x 6= 0), and |f ′(x)| ≤ δ1 for all x.

vi) c1g1δ1
b0ϕ0

< µ1 <
a0h0

a1
and

µ2 = min
{

1, 2D2,
2g2

0D1

g2
1
(
2a1h1 + 2 + b1ϕ1

)} , where
D1 =

a0
(
µ1b0ϕ0 − c1δ1g1

)
g2

1
> 0, D2 = a0h0 − µ1a1

a1g1
> 0,

Before stating theorems, let us introduce the following notations:

Θ1(t) = 1
β1

( 1
g(x(t))

)′
,Θ2(t) = 1

β1

(h(x(t))
g(x(t))

)′
, Θ3(t) = 1

β1

(ϕ(x(t))
g(x(t))

)′
,

Θ4(t) = 1
β1

( q(t)
g(x(t))

)′
, Θ5(t) =

(
|q′(t)|+ |a′(t)|+ |b′(t)|+ |c′(t)|

)
,

Θ6(t) = 1
β3

(
h(x(t))

)′
, (3.1)

and

Ω(t) =
∫ t

0

[
|Θ1(s)|+ |Θ2(s)|+ |Θ3(s)|+ |Θ4(s)|+

( 1
β1

+ 1
β2

)
Θ5(s) + |Θ6(s)|

]
ds.
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Also,

γ1 = max
{
a1ϕ1

2g0
,
a1

2µ1
,
µ1a1h1

g2
0

+ b1ϕ1

2g0
+ c1

2µ1

}
,

γ2 = max
{
h1

g0
(µ2 + 1

2 + a1h1

g0
), a1ϕ1

2g0
,
a1α

2 ,
ϕ1b1
2g0

+ c1α

2

}
, such that α = a0b0ϕ0

c1g1a1
,

D3 = c0δ0 −
(1 + b1ϕ1)

2 , D4 = a0b0h0ϕ0 − a1c1δ1g1

g2
0

> 0.

Now, our main result on the boundedness and ultimate boundedness of (1.3) with e(t) 6=
0.

Theorem 5. If hypotheses (i)-(vi) hold true, and in addition the following conditions
are satisfied

vii) |e(t)| ≤ m,

viii) D3 > 0.

Then all solutions of (1.3) are uniformly bounded and uniformly ultimately bounded pro-
vided r satisfies

r < min
{

2D2 − µ2

δ1c1
,

2D3

δ1c1
,

2g3
0D4

δ1c1[g0(2 + µ2) + a1(µ1 + h1)(1 + g2
0)]

}
. (3.2)

Proof. We write the equation (1.3) as the following equivalent system

x′ = 1
g(x)y,

y′ = 1
q(t)z,

z′ = −a(t)h(x)
q(t)g(x) z − a(t)Θ2(t)y − b(t)ϕ(x)

g(x) y − c(t)f(x) + e(t)

+c(t)
∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds.

(3.3)

Note that the continuity of the functions a, b, c, e, f, g, h, ϕ, f ′, g′, h′, and ϕ′

guarantees the existence of the solutions of (1.3) ( see [7], pp.15). It is assumed that the
right hand side of the system (3.3) satisfies a Lipschitz condition in x(t), y(t), z(t), and
x(t−r). This assumption guarantees the uniqueness of solutions of (1.3) ( see [7], pp.15).
We shall use as a tool to prove our main results a Lyapunov functionW = W (t, xt, yt, zt)
defined by

W (t, xt, yt, zt) = e−Ω(t)V (t, xt, yt, zt) = e−Ω(t)V, (3.4)
where

V = V1(t, xt, yt, zt) + V2(t, xt, yt, zt) + λ

∫ 0

−r

∫ t

t+s
y2(ξ)dξds,

V1 = µ1q(t)c(t)G(x, y) + µ1q(t)
2

(a(t)h(t)− µ1q(t)
g2(x)

)
y2 + 1

2
(
z + µ1q(t)

g(x) y
)2

+q(t)
2
(ϕ(t)b(t)

g(x) − c(t)δ1
µ1

)
y2, (3.5)
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V2 = a(t)c(t)h(x)F (x)− q(t)c2(t)g(x)
2b(t)ϕ(x) f2(x) + 1

2

(
z + a(t)h(x)

g(x) y + µ2x

)2

+q(t)b(t)ϕ(x)
2g(x)

(
y + c(t)f(x)g(x)

b(t)ϕ(x)

)2
+ 1

2µ2(1− µ2)x2, (3.6)

such that F (x) =
∫ x

0 f(u)du andG(x, y) = F (x)+ 1
µ1
f(x)y+ δ1

2µ2
1
y2. λ is positive constant

which will be specified later in the proof. We easily rearrange the above functional V1 as
follows

V1 = µ1q(t)c(t)F (x) + q(t)b(t)ϕ(x)
2g(x)

(
y + c(t)f(x)g(x)

b(t)ϕ(x)

)2
− q(t)c2(t)g(x)f2(x)

2b(t)ϕ(x)

+1
2(z + µ1q(t)

g(x) y)2 + µ1q(t)(a(t)h(x)− µ1q(t))
2g2(x) y2. (3.7)

Using (i), (iii) and (vi) we have

µ1q(t)(a(t)h(x)− µ1q(t))
2g2(x) ≥ µ1a0(a0h0 − µ1a1)

2g2(x) > 0.

Thus there exists a positive constant δ2 such that

1
2(z + µ1q(t)

g(x) y)2 + µ1q(t)(a(t)h(x)− µ1q(t))
2g2(x) y2 ≥ δ2y2 + δ2z

2. (3.8)

On the other hand, using the assumptions (i), (iii), (v) and (vi) we obtain

µ1q(t)c(t)F (x)− q(t)c2(t)g(x)f2(x)
2b(t)ϕ(x) ≥ µ1q(t)c(t)

∫ x

0
(1− c(t) g(x)f ′(u)

µ1b(t)ϕ(x) )f(u)du

≥ µ1a1c1

∫ x

0
(1− g1c1δ1

µ1b0ϕ0
)f(u)du

≥ δ3F (x),

where δ3 = µ1a1c1(1− g1c1δ1
µ1b0ϕ0

) > 0. Hence, from the last inequality, (3.8) and (3.7),

V1 ≥ δ3F (x) + δ2y
2 + δ2z

2. (3.9)

Clearly, using hypothesis (v) we have the following estimate

V1 ≥
δ3δ0

2 x2 + δ2y
2 + δ2z

2. (3.10)

By adding and subtracting some terms together with condition (i) we can estimate the
functional V2 above thus

V2 ≥ q(t)c(t)H(x, y) + 1
2

(
z + h(x)

g(x) y + µ2x

)2
+ 1

2µ2(1− µ2)x2

+q(t)
2

(
b(t)ϕ(x)
g(x) − αc(t)

)
y2,

where
H(x, y) = h(x)F (x) + f(x)y + α

2 y
2.
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From condition (vi) we have b(t)ϕ(x)
g(x) − αc(t) ≥ 0, and 1− µ2 ≥ 0, it follows that

V2 ≥ q(t)c(t)H(x, y).

But

H(x, y) = h(x)F (x) + α

2
(
y + 1

α
f(x)

)2 − 1
2αf

2(x)

≥ h(x)F (x)− 1
2αf

2(x)

≥
∫ x

0

(
h0 −

δ1
α

)
f(u)du.

From condition (vi) H(x, y) ≥ 0. Hence, by (i) we get

V2 ≥ a0c0H(x, y). (3.11)

It is easily seen from (3.6) that

V2 ≥ a(t)c(t)h(x)F (x)− q(t)c2(t)g(x)
2b(t)ϕ(x) f2(x)

≥ c(t)
(
a0h0F (x)− a1c(t)g1

2b0ϕ0
f2(x)

)
≥ c1

∫ x

0
(a0h0 −

a1g1c1δ1
b0ϕ0

)f(u)du

≥ δ4F (x),

where δ4 = c1
(
a0h0 −

a1c1g1δ1
b0ϕ0

)
> 0. Thus from (v) we obtain,

V2 ≥
δ4δ0

2 x2. (3.12)

Clearly, from (3.12), (3.10) and the fact that the integral
∫ 0
−r
∫ t
t+s y

2(ξ)dξds is positive,
we deduce that

V ≥ δ2y2 + δ2z
2 + δ5δ0

2 x2,

where δ5 = δ3 + δ4. Further simplification of the last inequality gives

V ≥ k(x2 + y2 + z2), (3.13)
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where k = min{δ2; δ5δ02 }. In view of the hypotheses (i)-(iv) we have

Ω(t) =
∫ t

0

[
|Θ1(s)|+ |Θ2(s)|+ |Θ3(s)|+ |Θ4(s)|+

( 1
β1

+ 1
β2

)
Θ5 + |Θ6(s)|

]
ds

≤ (1 + ϕ1 + h1 + a1)
β1

∫ σ2(t)

σ1(t)

|g′(u)|
g2(u) du+ 1

β1

∫ σ2(t)

σ1(t)

|ϕ′(u)|+ |h′(u)|
g(u) du

+ 1
β3

∫ σ2(t)

σ1(t)
|h′(u)| du+ 1

β1g0

∫ t

0
|q′(u)|du

+
( 1
β1

+ 1
β2

) ∫ t

0
(|q′(u)|+ |a′(u)|+ |b′(u)|+ |c′(u)|)du

≤ (1 + ϕ1 + h1 + a1)
β1g2

0

∫ +∞

−∞
|g′(u)| du+ 1

β1g0

∫ +∞

−∞

(
|ϕ′(u)|+ |h′(u)|

)
du

+ 1
β3

∫ +∞

−∞
|h′(u)| du+ 1

β1g0

∫ +∞

−∞
|q′(u)|du

+
( 1
β1

+ 1
β2

) ∫ +∞

−∞
(|q′(u)|+ |a′(u)|+ |b′(u)|+ |c′(u)|)du ≤ N <∞,

where σ1(t) = min{x(0), x(t)}, and σ2(t) = max{x(0), x(t)}. Therefore we can find a
continuous function W1(|Φ(0)|) with

W1(|Φ(0)|) ≥ 0 and W1(|Φ(0)|) ≤W (t,Φ).

The existence of a continuous function W2(‖φ‖) which satisfies the inequality W (t, φ) ≤
W2(‖φ‖), is easily verified.

For the time derivative of the Lyapunov functional V (t, xt, yt, zt), along the trajectories
of the system (3.3), we have

V ′(3.3) = V ′1(3.3)
+ V ′2(3.3)

+ λry2 − λ
∫ t

t−r
y2(ξ)dξ,

where

V ′1(3.3)
= µ1

(
q(t)c(t)

)′
G(x, y) +

[
q(t)c(t)g(x)f ′(x)− µ1q(t)b(t)ϕ(x)

g2(x)

]
y2

+
[
µ1q(t)− a(t)h(x)

q(t)g(x)

]
z2 − µ1a(t)q(t)

2
h(x)
g(x) Θ1(t)y2

+a(t)
(
yz + µ1q(t)

(
1− 1

g(x)
)
y2
)

Θ2(t) + q(t)b(t)
2 Θ3(t)y2 + µ1Θ4(t)yz

+µ1
(
a(t)q(t)

)′ h(x)
g2(x)y

2 + 1
2
(
b(t)q(t)

)′ϕ(x)
g(x) y

2 − 1
2µ1

(
c(t)q(t)

)′
y2

+µ1
q(t)
g(x)e(t)y + e(t)z + c(t)

(
z + µ1q(t)

g(x) y

)∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds.
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In view of conditions (i), (iii) and (v) we get

V ′1(3.3)
≤ µ1AΘ5(t)G(x, y)−D1y

2 −D2z
2 + γ1Θ5(t)y2

+µ1a
2
1

2
h1

g0
|Θ1(t)|y2 + a1b1

2 |Θ3(t)|y2 +
(
a1|yz|+ µ1a

2
1
(
1 + 1

g0

)
y2
)
|Θ2(t)|

+µ1|Θ4(t)||yz|+ µ1
a1

g0
|y|m+ |z|m

+c(t)
(
z + µ1q(t)

g(x) y

)∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds,

where A = max
{
a1, c1

}
. Using the Schwartz inequality |uv| ≤ 1

2 (u2 + v2), we obtain

µ1a
2
1

2
h1

g0
|Θ1(t)|y2 + a1b1

2 |Θ3(t)|y2 +
(
a1|yz|+ µ1a

2
1
(
1 + 1

g0

)
y2
)
|Θ2(t)|

+µ1|Θ4(t)||yz| ≤ k1

[
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|

]
(y2 + z2),

where k1 = max{µ1

2 (1 + h1

g0
), 1

2(1 + µ1

g0
), 1

2}.

From condition (v) and the Schwartz inequality, we obtain the following

c(t)µ1q(t)
g(x) y

∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds ≤ δ1µ1a1c1r

2g0
y2 + µ1a1c1δ1

2g3
0

∫ t

t−r
y2(ξ)dξ, (3.14)

and
c(t)z

∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds ≤ δ1c1r

2 z2 + δ1c1
2g2

0

∫ t

t−r
y2(ξ)dξ.

After some rearrangements we get

V ′1(3.3)
≤ µ1AΘ5(t)G(x, y)−

[
D1 −

µ1a1δ1c1
2g0

r

]
y2 −

[
D2 −

δ1c1r

2

]
z2 (3.15)

+γ1Θ5(t)y2 + k1

[
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|

]
(y2 + z2)

+µ1
a1

g0
|y|m+ |z|+ δ1c1

2g2
0

(1 + µ1a1

g0
)
∫ t

t−r
y2(ξ)dξ.

In addition,

V ′2(3.3)
=

(
a(t)c(t)

)′
h(x)F (x) +

(
q(t)c(t)

)′
f(x)y + a(t)c(t)Θ6(t)F (x) + µ2

a(t)h(x)
g2(x) y2

+q(t)c(t)f ′(x)g(x)− a(t)b(t)h(x)ϕ(x)
g2(x) y2 + µ2

g(x)

(
1− b(t)ϕ(x)

)
xy + µ2

g(x)yz

+b(t)q(t)
2 Θ3(t)y2 − µ2c(t)xf(x) + µ2xe(t) + a(t)h(x)

g(x) ye(t) + ze(t)

+a′(t)h(x)
g(x)

(
µ2xy + yz + a(t)h(x)

g(x) y
2)+ 1

2
(
b(t)q(t)

)′ϕ(x)
g(x) y

2

+c(t)(µ2x+ z + a(t)h(x)
g(x) y)

∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds.
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We can now proceed analogously to (3.14)

µ2c(t)x
∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds ≤ µ2δ1c1r

2 x2 + µ2δ1c1
2g2

0

∫ t

t−r
y2(ξ)dξ,

a(t)c(t)h(x)
g(x) y

∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds ≤ δ1a1c1h1r

2g0
y2 + a1h1δ1c1

2g3
0

∫ t

t−r
y2(ξ)dξ,

and

c(t)z
∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds ≤ δ1c1r

2 z2 + δ1c1
2g2

0

∫ t

t−r
y2(ξ)dξ.

These estimates and Schwartz inequality imply the following

V ′2(3.3)
≤

[(
a(t)c(t)

)′ − (q(t)c(t))′]h(x)F (x) +
(
q(t)c(t)

)′
H(x, y)

+a(t)c(t)Θ6(t)F (x)− µ2

[
c0δ0 −

(1 + b(t)ϕ(t))
2

]
x2

+q(t)c(t)f ′(x)g(x)− a(t)b(t)h(x)ϕ(x)
g2(x) y2

+ µ2

2g2(x)

(
2 + b(t)ϕ(x) + 2a(t)h(x)

)
y2

+µ2

2 z2 + b(t)q(t)
2 Θ3(t)y2 +

(
µ2|x|+

a(t)h(x)
g(x) |y|+ |z|

)
m

+a′(t)h(x)
g(x)

(
µ2xy + yz + a(t)h(x)

g(x) y
2)+ 1

2
(
b(t)q(t)

)′ϕ(x)
g(x) y

2

−α2
(
q(t)c(t)

)′
y2 + µ2δ1c1r

2 x2 + δ1a1c1h1r

2g0
y2 + δ1c1r

2 z2

+δ1c1
2g2

0

(
µ2 + a1h1

g0
+ 1
) ∫ t

t−r
y2(ξ)dξ.

It is easy to check that by (i), (iii) and (v) we have

[(
a(t)c(t)

)′ − (q(t)c(t))′]h(x)F (x) ≤
[
|
(
a(t)c(t)

)′|+ |(q(t)c(t))′|]h1δ1
2 x2

≤ h1δ1B

2 Θ5(t)x2,

such that B = max
{

2a1, c1
}
. By conditions (i), (iii) and (v) we have

q(t)c(t)f ′(x)g(x)− a(t)b(t)h(x)ϕ(x)
g2(x) ≤ a1c1δ1g1 − a0b0h0ϕ0

g2
0

< 0.
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Using condition (i) and (iii) again we get

V ′2(3.3)
≤ h1δ1B

2 Θ5(t)x2 +AΘ5(t)H(x, y) + a1c1|Θ6(t)|F (x)− µ2D3x
2

−
[
D4 −

µ2

2g2
0

(
2 + b1ϕ1 + 2a1h1

)]
y2 + µ2

2 z2 + b1a1

2 |Θ3(t)|y2

+
(
µ2|x|+

a1h1

g0
|y|+ |z|

)
m+ γ2Θ5(t)(x2 + y2 + z2) (3.16)

+µ2δ1c1r

2 x2 + δ1a1c1h1r

2g0
y2 + δ1c1r

2 z2 + δ1c1
2g2

0

(
µ2 + a1h1

g0
+ 1
) ∫ t

t−r
y2(ξ)dξ.

Combining (3.16), (3.15) and condition (vi) we get

V ′(3.3) ≤ AΘ5(t)
(
µ1G(x, y) +H(x, y)

)
+ a1c1|Θ6(t)|F (x)

−µ2

[
D3 −

δ1c1r

2

]
x2 −

[
D4 − r(λ+ δ1a1c1µ1

2g0
+ δ1a1c1h1

2g0
)
]
y2

−
[
D2 −

µ2

2 −
δ1c1r

2

]
z2 + µ2|x|m+ h1 + µ1

g0
|y|m+ 2|z|m

+k2

[
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|+ Θ5(t)

]
(x2 + y2 + z2)

+
(
δ1c1[g0(2 + µ2) + a1(µ1 + h1)]

2g3
0

− λ
)∫ t

t−r
y2(ξ)dξ,

where k2 = max
{
γ1 + γ2,

h1δ1B

2 , k1 + 1
2

}
.

Choosing δ1c1[g0(2 + µ2) + a1(µ1 + h1)]
2g3

0
= λ, since r and D3 satisfy (3.2) and condition

(viii) respectively, there is η > 0 such that

V ′(3.3) ≤ AΘ5(t)
(
µ1G(x, y) +H(x, y)

)
+ a1c1|Θ6(t)|F (x)

−η(x2 + y2 + z2) + ηM(|x|+ |z|+ |y|)
+k2

(
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|+ Θ5(t)

)
(x2 + y2 + z2),(3.17)

where

η = min
{
D4 − r(λ+ δ1a1c1µ1

2g0
+ δ1a1c1h1

2g0
), D3 −

δ1c1r

2 , D2 −
µ2

2 −
δ1c1r

2

}
.

M = m

η
max

{
2, h1 + µ1

g0
, µ2

}
.

The above inequality may be written as

V ′(3.3) ≤ AΘ5(t)
(
µ1G(x, y) +H(x, y)

)
+ a1c1|Θ6(t)|F (x)

−η2 (x2 + y2 + z2) + k2
(
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|

)
(y2 + z2)

−η2 [(x−M)2 + (y −M)2 + (z −M)2] + 3η
2 M2

≤ AΘ5(t)
(
µ1G(x, y) +H(x, y)

)
+ a1c1|Θ6(t)|F (x)− η

2 (x2 + y2 + z2)

+k2
(
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|+ Θ5(t)

)
(x2 + y2 + z2) + 3η

2 M2.
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It is easily verified that

W ′(3.3) = e−Ω(t)

[
V ′(3.3) −

(
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|

+
( 1
β1

+ 1
β2

)
Θ5(t) + |Θ6(t)|

)
V

]
.

Using the fact that

G(x, y) = F (x) + δ1
2µ2

1

(
y + µ1

δ1
f(x)

)2 − 1
2δ1

f2(x)

≥ F (x)− 1
2δ1

f2(x)

=
∫ x

0

(
1− f ′(u)

δ1

)
f(u)du ≥ 0,

since 1− f ′(u)
δ1
≥ 0. It can be followed from (3.5) and (iii) that there exist δ6 > 0 such

that
V1 ≥ µ1a0c0G(x, y) + δ6y

2 + δ6z
2. (3.18)

Combining (3.9) and (3.12) we have

V1 ≥ δ3F (x) + δ2y
2 + δ2z

2 and V2 ≥
δ4δ0

2 x2.

From (3.11) and (3.18) we get

V ≥ µ1a0c0G(x, y) + δ6y
2 + δ6z

2 + a0c0H(x, y).

Hence, by (3.13) and the last inequalities we have the following estimate

W ′(3.3) ≤ e−Ω(t)

[
V ′(3.3) −

(
k
(
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|

+ 1
β1

Θ5(t)
)(
x2 + y2 + z2)

+ 1
β2

Θ5(t)
(
µ1a0c0G(x, y)δ6y2 + δ6z

2 + a0c0H(x, y)
)

+|Θ6(t)|
(
δ3F (x) + δ2y

2 + δ2z
2 + δ4δ0

2 x2))].
So choosing β1 = k

k2
, β2 = a0c0

A
and β3 = δ3

a1c1
this reduces to

W ′(3.3)(t, xt, yt, zt) ≤ L
[
−η2 (x2 + y2 + z2) + 3η

2

2]
, for some L > 0.

Hence the conclusions of Theorem 5 can be followed from Lemma 3, this completes the
proof of Theorem 5

The following Theorem being a consequence of Theorem 5 and Lemma 4
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Theorem 6. If hypotheses of Theorem 5 be satisfied and a, b, c, e, q are periodic
functions of period T , then there exists at the east periodic solution of system (1.3) with
the period T .
Proof. It only remains to verify using the assumptions of Theorem 5 that the conditions
of Lemma 4 follow easily.

Example 7. We consider the following third order delay differential equation[
ln(3 + cos t)

[
( cos(x)
1 + x2 + 4)x′(t)

]′]′ + (2ln(5 + 2 cos t)
( sin x+ 3ex + 3e−x

ex + e−x
x′(t)

)′
+(3ln(2 + cos t) + 1)( sin(x)

1 + x2 + 11)x′(t)

+(1
2 ln(4 + cos t))

[
x(t− r) + x(t− r)

1 + x2(t− r)

]
= 3 sin t+ 5. (3.19)

It can be seen that

2ln3 = a0 ≤ a(t) = 2ln(5 + 2 cos t) ≤ 2ln7, a′(t) = − 4 sin t
5 + 2 cos t ,

1 = b0 ≤ b(t) = 3ln(2 + cos t) + 1 ≤ 1 + 3ln3, b′(t) = −3 sin t
2 + cos t ,

ln3
2 = c0 ≤ c(t) = 1

2 ln(4 + cos t) ≤ ln5
2 , ≤ c′(t) = 1

2
sin t

5 + cos t ,

ln2 ≤ q(t) = ln(3 + cos t) ≤ 2ln2,≤ q′(t) = − sin t
3 + cos t ,

50 ≤ f(x)
x

= 50 + 1
1 + x2 with x 6= 0, |f ′(x)| ≤ δ1 = 2, t ≥ 0,

Moreover,

2 ≤ e(t) = 3 sin t+ 5 ≤ 8, 3 ≤ g(x) = cos(x)
1 + x2 + 4 ≤ 5,

10 ≤ ϕ(x) = sin(x)
1 + x2 + 11 ≤ 12, 5

2 ≤ h(x) = sin x+ 3ex + 3e−x

ex + e−x
≤ 7

2 .

Also, 0.80 = c1g1δ1
b0ϕ0

< µ1 <
a0h0

a1
= 1.41 and 50 = δ0 >

1 + ϕ1b1
2c0

= 47.83.
It is straightforward to verify that∫ +∞

−∞
|g′(u)| du ≤

∫ +∞

−∞

[∣∣∣∣ sin u
1 + u2

∣∣∣∣+
∣∣∣∣ 2u cosu
(1 + u2)2

∣∣∣∣] du
≤ π + 2.

Similarly, ∫ +∞

−∞
|ϕ′(u)| du ≤

∫ +∞

−∞

[∣∣∣∣ cosu
1 + u2

∣∣∣∣+
∣∣∣∣ 2u sin u
(1 + u2)2

∣∣∣∣] du
≤ π + 2.∫ +∞

−∞
|h′ (u)| du =

∫ +∞

−∞

∣∣∣∣∣ (eu + e−u) cosu− (eu − e−u) sin u
(eu + e−u)2

∣∣∣∣∣ du
≤

∫ +∞

−∞

(
1

eu + e−u
+ u

(eu + e−u)2
(
eu − e−u

))
du = π.
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−∞
|q′(u)| du =

∫ +∞

−∞
| sin u
3 + cosu |du ≤

∫ +∞

−∞

1
3 + cosudu

=
∫ +π

2

−π2

1
2 + u2 du = 2√

2
tan−1( π

2
√

2
).

∫ +∞

−∞
|a′(u)| du =

∫ +∞

−∞
| 4 sin u
5 + 2 cosu |du ≤

∫ +∞

−∞

4
5 + 2 cosudu

=
∫ +π

2

−π2

8
7 + 3u2 du = 16√

21
tan−1(π

√
3

2
√

7
).

∫ +∞

−∞
|b′(u)| du = 3

∫ +∞

−∞
| sin u
2 + cosu |du ≤ 3

∫ +∞

−∞

1
3 + cosudu

= 3
∫ +π

2

−π2

1
2 + u2 du = 4√

3
tan−1( π

2
√

3
).

∫ +∞

−∞
|c′(u)| du = 1

2

∫ +∞

−∞
| sin u
4 + cosu |du ≤

1
2

∫ +∞

−∞

1
4 + cosudu

=
∫ +π

2

−π2

1
5 + 3u2 du = 2√

15
tan−1(π

√
3

2
√

5
).

Thus all the assumptions of Theorem 5. hold, this shows that every solution of (3.19) is
uniformly bounded and uniformly ultimately bounded. Since a, b, c, e, q are periodic
functions of period 2π, then there exists a periodic solution of (3.19) of period 2π.

For the case e(t) = 0, the equation (1.3) is equivalent to the system
x′ = 1

g(x)y,

y′ = 1
q(t)z,

z′ = −a(t)h(x)
q(t)g(x) z − a(t)Θ2(t)y − b(t)ϕ(x)

g(x) y − c(t)f(x) + c(t)
∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds.

(3.20)
The following result is introduced.

Corollary 8. One assumes that all the assumptions (i)-(vi) and (vii) hold. Then the
zero solution of equation (1.3) is uniformly asymptotically stable.

Proof. If e(t) = 0, similarly to above proof, the inequality (3.17) becomes

V ′(3.20) ≤ AΘ5(t)
(
µ1G(x, y) +H(x, y)

)
+ a1c1|Θ6(t)|F (x)− η(x2 + y2 + z2)

+k2
(
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|+ Θ5(t)

)
(x2 + y2 + z2),

Hence
W ′(3.20)(t, xt, yt, zt) ≤ L

[
−η(x2 + y2 + z2)

]
, for some L > 0.

Thus, all the conditions of Lemma 1 are satisfied. This shows that the zero solution of
equation (1.3) is uniformly asymptotically stable.
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4 Conclusions

Liapunov’s method has proved to be a popular and useful technique in the study of the
stability and boundedness of solutions of higher order non-linear differential equations.
In this paper we examine the boundedness and ultimate boundedness of solutions for
certain third order non-linear non-autonomous differential equations with delay. Suffi-
cient conditions were obtained for the existence of at least one periodic solution of the
equation. Finally, we investigate the asymptotic stability of the zero solution of the same
equation for the case e(t) = 0.
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