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Abstract
The objective of this paper is to obtain sharp upper bound for the second Hankel functional associ-
ated with the kth root transform

[
f(zk)

] 1
k of normalized analytic function f(z) when it belongs to

bounded turning functions, defined on the open unit disc in the complex plane, with the help of Toeplitz
determinants.
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1 Introduction

Let A denote the class of analytic functions f of the form

f(z) = z +
∞∑
n=2

anz
n (1.1)

defined in the open unit disc E = {z : |z| < 1}, satisfying the conditions that f(0) = 0
and f ′(0) = 1. Let S be the subclass of A consisting of univalent functions. In 1985, Louis
de Branges de Bourcia proved the Bieberbach conjecture, i.e., for a univalent function,
its nth Taylor coefficient is bounded by n (see [2]). The bounds for the coefficients of
these functions give the information about their geometric properties. In particular, the
growth and distortion properties of a normalized univalent function are determined by
∗corresponding author
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the bound of its second coefficient. The kth root transform for the function f given in
(1.1) is defined as

F (z) :=
[
f(zk)

] 1
k = z +

∞∑
n=1

bkn+1z
kn+1. (1.2)

Now, we introduce the Hankel determinant for the kth root transform for the function f,
for q, n, k ∈ N = {1, 2, 3, ...}, defined as

[Hq(n)] 1
k =

bkn bkn+1 · · · bk(n+q−2)+1
bkn+1 bk(n+1)+1 · · · bk(n+q−1)+1

...
...

...
...

bk(n+q−2)+1 bk(n+q−1)+1 · · · bk[n+2(q−1)−1]+1

(bk = 1).

In particular for k = 1, the above determinant reduces to the Hankel determinant
defined by Pommerenke [9] for the function f given in (1.1). For the values q = 2, n = 1
and q = 2, n = 2, the above Hankel determinant simplifies respectively to

[H2(1)] 1
k = bk bk+1

bk+1 b2k+1
= b2k+1 − b2

k+1

and [H2(2)] 1
k = b2k b2k+1

b2k+1 b3k+1
= b2kb3k+1 − b2

2k+1. (1.3)

Ali et al. [1] obtained sharp bounds for the Fekete-Szegö functional denoted by |b2k+1 −
µb2
k+1| associated with the kth root transform

[
f(zk)

] 1
k of the function f given in (1.1)

and belonging to certain subclasses of S. We refer to [H2(2)] 1
k as the second Hankel

determinant for the kth root transform associated with the function f. In the present
paper, we consider the Hankel determinant given by [H2(2)] 1

k and obtain sharp upper
bound to the functional |bk+1b3k+1 − b2

2k+1| for the kth root transform of the function
f when it belongs to certain subclass denoted by < of S, consisting of functions whose
derivative has a positive real part, defined as follows.

Definition 1. Let f be given by (1.1). Then f ∈ <, if it satisfies the condition

Ref ′(z) > 0, ∀z ∈ E.

The subclass < was introduced by Alexander in 1915 and a systematic study of prop-
erties of these functions was conducted by MacGregor [7] in 1962, who indeed referred to
numerous earlier investigations involving functions whose derivative has a positive real
part (also called Bounded turning functions).

Some preliminary Lemmas required for proving our result are as follows:

2 Preliminary Results

Let P denote the class of functions consisting of p such that

p(z) = 1 +
∞∑
n=1

cnz
n, (2.1)

which are analytic (regular) in the open unit disc E and satisfy Rep(z) > 0, for any
z ∈ E. Here p(z) is called a Caratheódory function [3].
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Lemma 2 ([8], [10]). If p ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the inequality is sharp
for the function 1+z

1−z .

Lemma 3 ([4]). The power series for p(z) = 1 +
∑∞
n=1 cnz

n given in (2.1) converges in
the open unit disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1
c−2 c−1 2 · · · cn−2

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3....

and c−k = ck, are all non-negative. They are strictly positive except for
p(z) =

∑m
k=1 ρkp0(eitkz),

∑m
k=1 ρk = 1, tk real and tk 6= tj, for k 6= j, where p0(z) = 1+z

1−z ;
in this case Dn > 0 for n < (m− 1) and Dn

.= 0 for n ≥ m.

This necessary and sufficient condition found in (see [4]) is due to Caratheódory and
Toeplitz. Without loss of generality, in view of Lemma 2, we consider c1 > 0. On using
Lemma 3, for n = 2 and n = 3 respectively, we have

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

On expanding the determinant, we get

D2 = [ 8 + 2Re{c2
1c2} − 2 | c2 |2 − 4 | c1 |2 ] ≥ 0,

Applying the fundamental principles of complex numbers, the above expression is equiv-
alent to

2c2 = c2
1 + y(4− c2

1), for some complex value of y with |y| ≤ 1. (2.2)

and D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

.

Then D3 ≥ 0 is equivalent to

|(4c3 − 4c1c2 + c3
1)(4− c2

1) + c1(2c2 − c2
1)2| ≤ 2(4− c2

1)2 − 2|(2c2 − c2
1)|2. (2.3)

Simplifying the relations (2.2) and (2.3), we obtain

4c3 = {c3
1 + 2c1(4 − c2

1)y − c1(4 − c2
1)y2 + 2(4 − c2

1)(1 − |y|2)ζ} (2.4)

for some complex values y and ζ with |y| ≤ 1 and |ζ| ≤ 1 respectively.
To obtain our main result, we refer to the classical method developed by Libera and
Zlotkiewicz [6], which has been used widely (see [11, 12, 13, 14, 15]).

3 Main Result

Theorem 4. If f ∈ < and F is the kth root transformation of f given by (1.2) then

|bk+1b3k+1 − b2
2k+1| ≤

4
9k2

and the inequality is sharp.
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Proof. For f ∈ <, by virtue of Definition 1, we have

f ′(z) = p(z), ∀z ∈ E. (3.1)

Using the series representation for f and p in (3.1), upon simplification, we obtain

an+1 = cn
n+ 1 , n ∈ N. (3.2)

For the function f given in (1.1), on computing, we have

[
f(zk)

] 1
k =

[
zk +

∞∑
n=2

anz
nk

] 1
k

= z + 1
k
a2z

k+1 +
{1
k
a3 + (1− k)

2k2 a2
2

}
z2k+1

+
{1
k
a4 + (1− k)

k2 a2a3 + (1− k)(1− 2k)
6k3 a3

2

}
z3k+1 + · · · . (3.3)

From the equations (1.2) and (3.3), we get

bk+1 = 1
k
a2 ; b2k+1 = 1

k
a3 + (1− k)

2k2 a2
2 ;

b3k+1 = 1
k
a4 + (1− k)

k2 a2a3 + (1− k)(1− 2k)
6k3 a3

2. (3.4)

Simplifying the expressions (3.2) and (3.4), we get

bk+1 = c1

2k ; b2k+1 = c2

3k −
(k − 1)

8k2 c2
1 ;

b3k+1 = c3

4k −
(k − 1)

6k2 c1c2 + (k − 1)(2k − 1)
48k3 c3

1. (3.5)

Substituting the values of bk+1, b2k+1 and b3k+1 from (3.5) in the functional |bk+1b3k+1−
b2

2k+1|, which simplifies to give

|bk+1b3k+1 − b2
2k+1| =

1
576k4

∣∣(72c1c3 − 64c2
2)k2 + 3(k2 − 1)c4

1
∣∣ . (3.6)

Substituting c2 and c3 values from (2.2) and (2.4) respectively, on the right-hand side of
the expression (3.6), we have

576k4|bk+1b3k+1 − b2
2k+1| =

∣∣∣∣[72c1 ×
1
4
{
c3

1 + 2c1(4− c2
1)y − c1(4− c2

1)y2

+2(4− c2
1)(1− |y|2)ζ

}
− 64× 1

4
{
c2

1 + y(4− c2
1)
}2 ]

k2 + 3(k2 − 1)c4
1

∣∣∣∣ .
Then applying the triangle inequality and using the fact |ζ| < 1, will give

576k4|bk+1b3k+1 − b2
2k+1| ≤

∣∣(5k2 − 3)c4
1 + 36k2c1(4− c2

1) + 4k2c2
1(4− c2

1)|y|
+2(c1 + 2)(c1 + 16)k2(4− c2

1)|y|2
∣∣ . (3.7)

Choosing c1 = c ∈ [0, 2], noting that (c1 + a)(c1 + b) ≥ (c1 − a)(c1 − b), where a, b ≥ 0,
applying the triangle inequality and replacing |y| by µ on the right-hand side of (3.7),
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we obtain

576k4|bk+1b3k+1 − b2
2k+1| ≤

[(
5k2 − 3)c4 + 36k2c(4− c2) + 4k2c2(4− c2)µ

+ 2(c− 2)(c− 16)k2(4− c2)µ2
]

= F (c, µ), for 0 ≤ µ = |y| ≤ 1. (3.8)

Here F (c, µ) =
(
5k2 − 3)c4 + 36k2c(4− c2) + 4k2c2(4− c2)µ
+ 2(c− 2)(c− 16)k2(4− c2)µ2. (3.9)

Next, we need to find the maximum value of the function F (c, µ) on the closed region
[0, 2]×[0, 1]. For this, let us suppose that there exists a maximum value at any point (c, µ)
in the interior of the closed region [0, 2] × [0, 1] for the function F (c, µ). Differentiating
F (c, µ) in (3.9) partially with respect to µ, we get

∂F

∂µ
= 4k2{c2 + (c− 2)(c− 16)µ

}
(4− c2). (3.10)

For 0 < µ < 1, for fixed c with 0 < c < 2, from (3.10), we observe that ∂F∂µ > 0. Therefore,
F (c, µ) becomes an increasing function of µ and hence it cannot have a maximum value
at any point (c, µ) in the interior of the closed region [0, 2]× [0, 1]. The maximum value
of F (c, µ) occurs on the boundary only i.e., when µ = 1. Therefore, for fixed c ∈ [0, 2],
we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c). (3.11)

In view of (3.11), replacing µ by 1 in (3.9), we get

G(c) = −(k2 + 3)c4 − 40k2c2 + 256k2, (3.12)

G′(c) = −4(k2 + 3)c3 − 80k2c. (3.13)

From the expression (3.13), we observe that G′(c) ≤ 0 for all values of c in the interval
[0, 2] and for every k. Therefore, G(c) is a monotonically decreasing function of c in the
interval [0, 2] and hence it attains the maximum value at c = 0 only. From (3.12), the
maximum value G(c) at c = 0 is given by

max
0≤c≤2

G(0) = 256k2. (3.14)

Simplifying the relations (3.8) and (3.14), we obtain

|bk+1b3k+1 − b2
2k+1| ≤

4
9k2 . (3.15)

Choosing c1 = c = 0 and selecting y = 1 in (2.2) and (2.4), we find that c2 = 2 and
c3 = 0. Substituting the values c2 = 2 and c1 = c3 = 0 in (3.5) and the obtained values
in (3.15), we see that equality is attained, which shows that our result is sharp. For these
values, from (2.1), we can derive

p(z) = 1 + 2
∞∑
n=1

z2n = 1 + z2

1− z2 . (3.16)
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Therefore, in this case the extremal function is

f ′(z) = 1 + 2
∞∑
n=1

z2n.

This completes the proof of our Theorem.

Remark 5. By choosing k = 1 in (3.15), the result coincides with that of Janteng et
al. [5].
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