Acta Universitatis Matthiae Belii, series Mathematics

Issue 2017, 77-82, ISSN 1338-7111
Online Edition, http://actamath.savbb.sk

Coefficient inequality for transforms of bounded turning functions

D. Vamshee Krishna*

Department of Mathematics, Gitam Institute of Technology, GITAM University,
Visakhapatnam-530 045, A.P., India.
vamsheekrishna1972@gmail.com

D. Shalini

Department of Mathematics, Sri Venkateswara College of Engineering and Technology, Etcherla-532 410, A.P., India. shaliniraj1005@gmail.com

T. RamReddy

Department of Mathematics, Kakatiya University,
Warangal-506 009, T.S., India.
reddytr2@gmail.com

Abstract

The objective of this paper is to obtain sharp upper bound for the second Hankel functional associated with the k^{th} root transform $\left[f(z^k)\right]^{\frac{1}{k}}$ of normalized analytic function f(z) when it belongs to bounded turning functions, defined on the open unit disc in the complex plane, with the help of Toeplitz determinants.

Received 4 April 2017 Accepted in final form 9 November 2017 Published online 27 November 2017 Communicated with Vladimír Janiš.

Keywords analytic function, upper bound, second Hankel functional, positive real function, Toeplitz determinants.

MSC(2010) 30C45; 30C50.

1 Introduction

Let A denote the class of analytic functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

defined in the open unit disc $E = \{z : |z| < 1\}$, satisfying the conditions that f(0) = 0 and f'(0) = 1. Let S be the subclass of A consisting of univalent functions. In 1985, Louis de Branges de Bourcia proved the Bieberbach conjecture, i.e., for a univalent function, its n^{th} Taylor coefficient is bounded by n (see [2]). The bounds for the coefficients of these functions give the information about their geometric properties. In particular, the growth and distortion properties of a normalized univalent function are determined by

^{*}corresponding author

the bound of its second coefficient. The k^{th} root transform for the function f given in (1.1) is defined as

$$F(z) := \left[f(z^k) \right]^{\frac{1}{k}} = z + \sum_{n=1}^{\infty} b_{kn+1} z^{kn+1}. \tag{1.2}$$

Now, we introduce the Hankel determinant for the k^{th} root transform for the function f, for $q, n, k \in \mathbb{N} = \{1, 2, 3, ...\}$, defined as

$$[H_q(n)]^{\frac{1}{k}} = \begin{vmatrix} b_{kn} & b_{kn+1} & \cdots & b_{k(n+q-2)+1} \\ b_{kn+1} & b_{k(n+1)+1} & \cdots & b_{k(n+q-1)+1} \\ \vdots & \vdots & \vdots & \vdots \\ b_{k(n+q-2)+1} & b_{k(n+q-1)+1} & \cdots & b_{k[n+2(q-1)-1]+1} \end{vmatrix} (b_k = 1).$$

In particular for k = 1, the above determinant reduces to the Hankel determinant defined by Pommerenke [9] for the function f given in (1.1). For the values q = 2, n = 1 and q = 2, n = 2, the above Hankel determinant simplifies respectively to

$$[H_2(1)]^{\frac{1}{k}} = \begin{vmatrix} b_k & b_{k+1} \\ b_{k+1} & b_{2k+1} \end{vmatrix} = b_{2k+1} - b_{k+1}^2$$
and
$$[H_2(2)]^{\frac{1}{k}} = \begin{vmatrix} b_{2k} & b_{2k+1} \\ b_{2k+1} & b_{3k+1} \end{vmatrix} = b_{2k}b_{3k+1} - b_{2k+1}^2. \tag{1.3}$$

Ali et al. [1] obtained sharp bounds for the Fekete-Szegö functional denoted by $|b_{2k+1} - \mu b_{k+1}^2|$ associated with the k^{th} root transform $[f(z^k)]^{\frac{1}{k}}$ of the function f given in (1.1) and belonging to certain subclasses of S. We refer to $[H_2(2)]^{\frac{1}{k}}$ as the second Hankel determinant for the k^{th} root transform associated with the function f. In the present paper, we consider the Hankel determinant given by $[H_2(2)]^{\frac{1}{k}}$ and obtain sharp upper bound to the functional $|b_{k+1}b_{3k+1} - b_{2k+1}^2|$ for the k^{th} root transform of the function f when it belongs to certain subclass denoted by \Re of S, consisting of functions whose derivative has a positive real part, defined as follows.

Definition 1. Let f be given by (1.1). Then $f \in \Re$, if it satisfies the condition

$$Ref'(z) > 0, \quad \forall z \in E.$$

The subclass \Re was introduced by Alexander in 1915 and a systematic study of properties of these functions was conducted by MacGregor [7] in 1962, who indeed referred to numerous earlier investigations involving functions whose derivative has a positive real part (also called Bounded turning functions).

Some preliminary Lemmas required for proving our result are as follows:

2 Preliminary Results

Let \mathcal{P} denote the class of functions consisting of p such that

$$p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n,$$
(2.1)

which are analytic (regular) in the open unit disc E and satisfy $\operatorname{Re} p(z) > 0$, for any $z \in E$. Here p(z) is called a Caratheódory function [3].

Lemma 2 ([8], [10]). If $p \in \mathcal{P}$, then $|c_k| \leq 2$, for each $k \geq 1$ and the inequality is sharp for the function $\frac{1+z}{1-z}$.

Lemma 3 ([4]). The power series for $p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$ given in (2.1) converges in the open unit disc E to a function in \mathcal{P} if and only if the Toeplitz determinants

$$D_{n} = \begin{vmatrix} 2 & c_{1} & c_{2} & \cdots & c_{n} \\ c_{-1} & 2 & c_{1} & \cdots & c_{n-1} \\ c_{-2} & c_{-1} & 2 & \cdots & c_{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2 \end{vmatrix}, n = 1, 2, 3....$$

and $c_{-k} = \overline{c}_k$, are all non-negative. They are strictly positive except for $p(z) = \sum_{k=1}^{m} \rho_k p_0(e^{it_k}z)$, $\sum_{k=1}^{m} \rho_k = 1$, t_k real and $t_k \neq t_j$, for $k \neq j$, where $p_0(z) = \frac{1+z}{1-z}$; in this case $D_n > 0$ for n < (m-1) and $D_n \doteq 0$ for $n \geq m$.

This necessary and sufficient condition found in (see [4]) is due to Caratheódory and Toeplitz. Without loss of generality, in view of Lemma 2, we consider $c_1 > 0$. On using Lemma 3, for n = 2 and n = 3 respectively, we have

$$D_2 = \begin{vmatrix} 2 & c_1 & c_2 \\ \overline{c}_1 & 2 & c_1 \\ \overline{c}_2 & \overline{c}_1 & 2 \end{vmatrix}$$

On expanding the determinant, we get

$$D_2 = [8 + 2Re\{c_1^2c_2\} - 2 \mid c_2 \mid^2 - 4 \mid c_1 \mid^2] \ge 0,$$

Applying the fundamental principles of complex numbers, the above expression is equivalent to

$$2c_2 = c_1^2 + y(4 - c_1^2), \text{ for some complex value of } y \text{ with } |y| \le 1. \tag{2.2}$$

and
$$D_3 = \begin{vmatrix} 2 & c_1 & c_2 & c_3 \\ \overline{c}_1 & 2 & c_1 & c_2 \\ \overline{c}_2 & \overline{c}_1 & 2 & c_1 \\ \overline{c}_3 & \overline{c}_2 & \overline{c}_1 & 2 \end{vmatrix}$$
.

Then $D_3 \geq 0$ is equivalent to

$$\left| (4c_3 - 4c_1c_2 + c_1^3)(4 - c_1^2) + c_1(2c_2 - c_1^2)^2 \right| \le 2(4 - c_1^2)^2 - 2\left| (2c_2 - c_1^2)\right|^2. \tag{2.3}$$

Simplifying the relations (2.2) and (2.3), we obtain

$$4c_3 = \{c_1^3 + 2c_1(4 - c_1^2)y - c_1(4 - c_1^2)y^2 + 2(4 - c_1^2)(1 - |y|^2)\zeta\}$$
 (2.4)

for some complex values y and ζ with $|y| \leq 1$ and $|\zeta| \leq 1$ respectively.

To obtain our main result, we refer to the classical method developed by Libera and Zlotkiewicz [6], which has been used widely (see [11, 12, 13, 14, 15]).

3 Main Result

Theorem 4. If $f \in \Re$ and F is the k^{th} root transformation of f given by (1.2) then

$$|b_{k+1}b_{3k+1} - b_{2k+1}^2| \le \frac{4}{9k^2}$$

and the inequality is sharp.

Proof. For $f \in \Re$, by virtue of Definition 1, we have

$$f'(z) = p(z), \quad \forall z \in E.$$
 (3.1)

Using the series representation for f and p in (3.1), upon simplification, we obtain

$$a_{n+1} = \frac{c_n}{n+1}, \quad n \in \mathbb{N}. \tag{3.2}$$

For the function f given in (1.1), on computing, we have

$$[f(z^{k})]^{\frac{1}{k}} = \left[z^{k} + \sum_{n=2}^{\infty} a_{n} z^{nk}\right]^{\frac{1}{k}} = z + \frac{1}{k} a_{2} z^{k+1} + \left\{\frac{1}{k} a_{3} + \frac{(1-k)}{2k^{2}} a_{2}^{2}\right\} z^{2k+1} + \left\{\frac{1}{k} a_{4} + \frac{(1-k)}{k^{2}} a_{2} a_{3} + \frac{(1-k)(1-2k)}{6k^{3}} a_{2}^{3}\right\} z^{3k+1} + \cdots$$
(3.3)

From the equations (1.2) and (3.3), we get

$$b_{k+1} = \frac{1}{k} a_2 \quad ; \quad b_{2k+1} = \frac{1}{k} a_3 + \frac{(1-k)}{2k^2} a_2^2 \quad ;$$

$$b_{3k+1} = \frac{1}{k} a_4 + \frac{(1-k)}{k^2} a_2 a_3 + \frac{(1-k)(1-2k)}{6k^3} a_2^3. \tag{3.4}$$

Simplifying the expressions (3.2) and (3.4), we get

$$b_{k+1} = \frac{c_1}{2k} \; ; \quad b_{2k+1} = \frac{c_2}{3k} - \frac{(k-1)}{8k^2} c_1^2 \; ;$$
$$b_{3k+1} = \frac{c_3}{4k} - \frac{(k-1)}{6k^2} c_1 c_2 + \frac{(k-1)(2k-1)}{48k^3} c_1^3. \tag{3.5}$$

Substituting the values of b_{k+1} , b_{2k+1} and b_{3k+1} from (3.5) in the functional $|b_{k+1}b_{3k+1} - b_{2k+1}^2|$, which simplifies to give

$$|b_{k+1}b_{3k+1} - b_{2k+1}^2| = \frac{1}{576k^4} \left| (72c_1c_3 - 64c_2^2)k^2 + 3(k^2 - 1)c_1^4 \right|.$$
 (3.6)

Substituting c_2 and c_3 values from (2.2) and (2.4) respectively, on the right-hand side of the expression (3.6), we have

$$576k^{4}|b_{k+1}b_{3k+1} - b_{2k+1}^{2}| = \left| \left[72c_{1} \times \frac{1}{4} \left\{ c_{1}^{3} + 2c_{1}(4 - c_{1}^{2})y - c_{1}(4 - c_{1}^{2})y^{2} + 2(4 - c_{1}^{2})(1 - |y|^{2})\zeta \right\} - 64 \times \frac{1}{4} \left\{ c_{1}^{2} + y(4 - c_{1}^{2}) \right\}^{2} \right] k^{2} + 3(k^{2} - 1)c_{1}^{4} \right|.$$

Then applying the triangle inequality and using the fact $|\zeta| < 1$, will give

$$576k^{4}|b_{k+1}b_{3k+1} - b_{2k+1}^{2}| \le \left| (5k^{2} - 3)c_{1}^{4} + 36k^{2}c_{1}(4 - c_{1}^{2}) + 4k^{2}c_{1}^{2}(4 - c_{1}^{2})|y| + 2(c_{1} + 2)(c_{1} + 16)k^{2}(4 - c_{1}^{2})|y|^{2} \right|.$$
(3.7)

Choosing $c_1 = c \in [0, 2]$, noting that $(c_1 + a)(c_1 + b) \ge (c_1 - a)(c_1 - b)$, where $a, b \ge 0$, applying the triangle inequality and replacing |y| by μ on the right-hand side of (3.7),

we obtain

$$576k^{4}|b_{k+1}b_{3k+1} - b_{2k+1}^{2}| \leq \left[(5k^{2} - 3)c^{4} + 36k^{2}c(4 - c^{2}) + 4k^{2}c^{2}(4 - c^{2})\mu + 2(c - 2)(c - 16)k^{2}(4 - c^{2})\mu^{2} \right]$$

$$= F(c, \mu), \text{ for } 0 \leq \mu = |y| \leq 1.$$
(3.8)

Here
$$F(c,\mu) = (5k^2 - 3)c^4 + 36k^2c(4 - c^2) + 4k^2c^2(4 - c^2)\mu + 2(c-2)(c-16)k^2(4 - c^2)\mu^2$$
. (3.9)

Next, we need to find the maximum value of the function $F(c, \mu)$ on the closed region $[0, 2] \times [0, 1]$. For this, let us suppose that there exists a maximum value at any point (c, μ) in the interior of the closed region $[0, 2] \times [0, 1]$ for the function $F(c, \mu)$. Differentiating $F(c, \mu)$ in (3.9) partially with respect to μ , we get

$$\frac{\partial F}{\partial \mu} = 4k^2 \left\{ c^2 + (c - 2)(c - 16)\mu \right\} (4 - c^2). \tag{3.10}$$

For $0 < \mu < 1$, for fixed c with 0 < c < 2, from (3.10), we observe that $\frac{\partial F}{\partial \mu} > 0$. Therefore, $F(c,\mu)$ becomes an increasing function of μ and hence it cannot have a maximum value at any point (c,μ) in the interior of the closed region $[0,2] \times [0,1]$. The maximum value of $F(c,\mu)$ occurs on the boundary only i.e., when $\mu=1$. Therefore, for fixed $c \in [0,2]$, we have

$$\max_{0 \le \mu \le 1} F(c, \mu) = F(c, 1) = G(c). \tag{3.11}$$

In view of (3.11), replacing μ by 1 in (3.9), we get

$$G(c) = -(k^2 + 3)c^4 - 40k^2c^2 + 256k^2,$$
(3.12)

$$G'(c) = -4(k^2 + 3)c^3 - 80k^2c. (3.13)$$

From the expression (3.13), we observe that $G'(c) \leq 0$ for all values of c in the interval [0,2] and for every k. Therefore, G(c) is a monotonically decreasing function of c in the interval [0,2] and hence it attains the maximum value at c=0 only. From (3.12), the maximum value G(c) at c=0 is given by

$$\max_{0 \le c \le 2} G(0) = 256k^2. \tag{3.14}$$

Simplifying the relations (3.8) and (3.14), we obtain

$$|b_{k+1}b_{3k+1} - b_{2k+1}^2| \le \frac{4}{9k^2}. (3.15)$$

Choosing $c_1 = c = 0$ and selecting y = 1 in (2.2) and (2.4), we find that $c_2 = 2$ and $c_3 = 0$. Substituting the values $c_2 = 2$ and $c_1 = c_3 = 0$ in (3.5) and the obtained values in (3.15), we see that equality is attained, which shows that our result is sharp. For these values, from (2.1), we can derive

$$p(z) = 1 + 2\sum_{n=1}^{\infty} z^{2n} = \frac{1+z^2}{1-z^2}.$$
 (3.16)

Therefore, in this case the extremal function is

$$f'(z) = 1 + 2\sum_{n=1}^{\infty} z^{2n}.$$

This completes the proof of our Theorem.

Remark 5. By choosing k = 1 in (3.15), the result coincides with that of Janteng et al. [5].

Acknowledgements

The authors are very much thankful to the Referee(s) for their valuable comments and suggestions which helped them in improving the paper.

References

- [1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szegő coefficient functional for transforms of analytic functions, *Bull. Iranian Math. Soc.*, **35**(2), 119–142 (2009).
- [2] L. de Branges de Bourcia, A proof of Bieberbach conjecture, Acta Mathematica, 154(1-2), 137–152 (1985).
- [3] P. L. Duren, "Univalent functions", vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 1983.
- [4] U. Grenander and G. Szegö, "Toeplitz forms and their applications", 2nd ed., Chelsea Publishing Co., New York (NY), 1984.
- [5] A. Janteng, S. A. Halim and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7(2), 1–5 (2006).
- [6] R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2) 251–257 (1983).
- [7] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104(3), 532 – 537 (1962).
- [8] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
- [9] Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 41(1), 111–122 (1966).
- [10] B. Simon, "Orthogonal polynomials on the unit circle", part 1. Classical theory, vol. 54, American mathematical society colloquium publications. Providence (RI): American Mathematical Society; 2005.
- [11] D. Vamshee Krishna and T. RamReddy, Coefficient inequality for multivalent bounded turning functions of order alpha, *Probl. Anal. Issues Anal.*, **23**(1), 45–54 (2016).
- [12] D. Vamshee Krishna and T. RamReddy, Coefficient inequality for parabolic star like functions of order alpha, *Afr. Mat.*, **27**(1-2), 121–132 (2016).
- [13] D. Vamshee Krishna and T. RamReddy, An upper bound to the second Hankel determinant for functions in Mocanu class, Viet. J. Math., 43(3), 541–549 (2015).
- [14] D. Vamshee Krishna and T. RamReddy, Coefficient inequality for certain p- valent analytic functions, Rocky Mountain J. Math., 44(6), 1941–1959 (2014).
- [15] D. Vamshee Krishna and T. RamReddy, An upper bound to the second Hankel determinant for certain subclass of analytic functions, Proc. Janjeon Math. Soc., 16(4), 559–568 (2013).