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Abstract

We characterize boundedness and compactness of Riemann-Stieltjes composition operators acting be-
tween weighted Banach spaces of holomorphic functions.
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1 Introduction

Let D denote the open unit disk in the complex plane and H (D) the set of all analytic
functions on . Moreover, we consider an analytic self-map ¢ of D as well as an analytic
map g : D — C. Such maps induce the following Riemann-Stieltjes composition operator

Iy HD) — H(D), [Iy,f](2 / flp(tz))d' (tz)z dt.

Recently, this type of operator has been of great interest, see e.g. [1], [2], [3], [6], [9], [10].

In this article we study operators of the above type acting in the following setting:
Let v be a strictly positive, bounded and continuous function (weight) on D. Then the
weighted Banach space of holomorphic functions is defined by

HE = {f & HD); 5]l = supo() ()] < oo}.

Endowed with the weighted sup-norm ||.||, this is a Banach space. Such spaces occur
naturally in a variety of problems. For more information on that topic we refer the reader
to the articles [4] and [7] and the references therein.

In [0] Li characterized boundedness and compactness of operators I, , acting between
weighted Bergman spaces and weighed Bloch spaces, both generated by standard weights.
In [8] we generalized his results to a more general setting. In this article we continue
this branch of research by considering operators I, acting between different weighted
Banach spaces of holomorphic functions. We give a characterization of the boundedness
and compactness of such operators that only involve the given weights as well as the
holomorphic map g as well as the symbol .
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2 Basics

Let v be a holomorphic function on D that is additionally non-vanishing and strictly
positive on [0, 1[ and satisfies lim,_,; v(r) = 0. Then we define the corresponding weight
by

v(z) = v(|z]) for every z € D.

Moreover, we assume that |v(z)| > v(|z|) for every z € D. The most relevant weights,
such as the standard weights, the logarithmic weights and the exponential weights satisfy
these conditions.

Such weights may be written as

v(z) = min{|v(\z)|, |A| = 1}.
For a better understanding we will give the proof. First, we use polar coordinates
min{|v(Az)|, [A| = 1} = min{[p(Are’®)[, |A| = 1} < |p(eCre'®)| = [v(r)] = v(|z]) = v(2).
On the other hand, for every A € 9D we obtain for every z € D
lv(A2)] = v(|Az]) = v(|2]) = v(z).

We close this section with stating a very useful lemma, which can be easily derived
from [5] Proposition 3.11.

Lemma 1. Let v and w be weights. Then the operator 1, , : Hy® — HZ® is compact if
and only if it is bounded and for every bounded sequence (fn)n in H® which converges
to zero uniformly on the compact subsets of D, I, . fn tends to zero in Hyy if n — oo.

3 Results

Proposition 2. The opemtor Ig o o Hy° — Hpp is bounded if and only if
Sup,ep w(z ‘fo v(ap(tz)))z dt

Proof. First, we assume that the operator I, : H3® — HZ° is bounded. As we know,
the weight v may be presented as

v(z) = min{[v(A2)], [A] =1},

where v is a holomorphic function. Now, for fixed A € D let

for every z € D. Then |[hxllv = sup.cp 1 ()\z))l < sup,cp W Sup,cp vgzg _

for every A € 0D. Now, we arrive at

1 /
/ _g(tz)z dt’ = sup w(2)
0 14

i S AT pw s R B

z€D

1
|ttt (02)z dt| < [Tyl
0

< gl <00

for every A € 0D. Hence, since A € JD is arbitrary, we obtain
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sup w(z)

1 /
t
g(tz) | dt’
z€D

v(p(tz))

as desired.
Conversely, we assume that sup,cp w(z ‘fo U(W(tz)) dt‘ < oo. For every f € HS® we

have
! / t /
Itgeflhe = | [ stote0g 0212 ] = | [ T 1) 0212
A ‘
< supw(z) Sup vlel))lF el | S omy®
AL ‘
=2BeE, ey ¥ M
Hence the operator I, , must be bounded. O

Remark 3. Let us assume that I , : Hy° — HZ° is bounded. Then

/Olmzdt‘.

11g,0ll = supw(z)
z€eD

First, for fixed A € 0D we consider

1
h =
A(2) v(Az)
for every z € . We have seen that ||hy|l, < 1. Moreover, the proof of Proposition 4
shows that L
"(t
sup w(z) / _g(tz)z dt‘ < ||y,
z€D 0 V(A(p(tz))

Since A € JD was arbitrary, we also obtain

! g'(t2)z
o minpy =y [v(Ap(tz))]

sup w(z)
zeD

L g(tz)z
| St dt) < Mol

On the other hand the proof of Proposition 4 yields for every f € H°

dt‘ = supw(2)
zeD

b og(tz)

v(p(t2))

but by definition we have ||I, || = inf {M >0, ||y, fllw < M| f]], for every f € H,

1 g’ (tz) »
v(p(tz))

Iyl < sp0(2) . dt\ £l

0

Hence |14, || < sup,cp w( ’ K dt’ and the claim follows.

Proposition 4. The operator 1, , : H® — H;Y is compact if and only if the following
conditions are satisfied:

(a) limsup,_,; w(z ’fo vgw(izz) dt‘ =0,

(b) sup,cpw(z) ‘fo g'(tz)z dt| < cc.
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Proof. First, we assume that the conditions (a) and (b) are fulfilled. Let (f,), be a
bounded sequence in HJ° that converges to 0 uniformly on the compact subsets of D
such that ||f,||, < M for every n € N. By hypothesis, for every e > 0, there is r > 0

such that if |z| > r, then
1 /
g'(t2)
w(z) / =z dt’ <e.
o v(p(tz))

Hence

1 12
WLy hn(a)] < ue)| | g“z)zdt\ 1 fullo < M

v(p(t2))

for every n € N and every z € D with |z| > r.

On the other hand, if |z| < 7 there must be 0 < R < 1 such that |p(z)| < R. Since
frn — 0 uniformly on {u; |u| <r}, we can find ng € N such that if |¢(z)] < R and n > ng
then | f,(¢(2))| < e. Hence, we arrive at

w(2) g, fn(2)] = w(z) /0 g (t2) fnlp(tz))z dt‘ < ew(z) /0 g (tz)z dt’ <eN,

where N = sup,p w(z) ’fol g (t2)z dt‘ < 0.
Conversely, we assume to the contrary that the condition (a) does not hold. Then
there is a sequence (z,), C D with |z,| — 1 as n — oo such that

/olmzndt‘Za>o

for every n € N. Next, we can choose an increasing sequence (k(n)),, of natural numbers

with k(n) — oo such that zﬁ(n) > 1 for every n € N and for every n € N we select

An € 0D such that V()\Wl(tzn)) = @) Next, we consider the functions

. 2k(n)
noan(2) 1= v(An2)
for every z € D and every n € N. Then obviously, (hn,)n C HS® is bounded, since
k(n)
|hnanllo = sup,ep v(z)lluz(lkiz)‘ < sup,ep |2|*™ < 1. Moreover, h,,, — 0 pointwise
because of the factor z#(™). Finally,

1 1 k(n)

/ / Zn

g (tzn)hna, (Zn)2n dt‘ > w(zy) / g (tzp) —————2z, dt

[ o W)

Hg.ohnxnllo = w(zn)

1
> §w(zn)

for every n € N which is a contradiction.
It remains to show that condition (b) is satisfied. Since the operator I, , : Hy® — HY
is compact it also must be bounded. Now, take f(z) =1 for every z € D. Then we have

[fllo = supv(z)|f(z)| = supv(z) < o0
zeD zeD



Acta Univ. M. Belii, ser. Math. Online (2018), 1-6 5

since the weight is bounded by hypothesis. Thus, f € H>°. Finally, we arrive at

1
I dt\ < ool o

02)g(02)2 ] = supo(2)

g, f [l = supw(z)
z€D

O

Example 5. (a) We select v(z) = w(z) = 1 — |2| as well as ¢(z) = g(z) = z for every
z € D. Thus, we obtain
1
z
sup w(z —— dt
zeg ( ) ]C ]'_'ﬂz‘

/1 Mz dt‘ = sup(l — |z|)

o VU

— sup(1 — [2]) | In(1 — #]z0)}5| = sup(1 ~ |2[) (1 2] < oc.
z€D zeD

((t2)) Jos

Hence the corresponding operator I, , must be bounded. Moreover, obviously,

lim supy |1 w(

el dt‘ — limsupy. (1 — |2[) [In(1 — |2])| = 0 and

sup,cp w(z ‘fo (tz)z dt) = sup,¢p(1l — |2]) ’fo z dt‘ = sup,¢p(l — |2])]2] < 1.
Thus, the operator must be compact.

(b) We choose w(z) = 1 — |z|,v(2) = (1 — |2])? and ¢(z) = g(z) = 2 for every z € D.
Then, easy calculations show that

1 /
t
sup w(z) A (t2) z dt’ =sup(1l — |z]) ‘/ t‘
z€D o v(p(tz)) z€D t|Z|
1
=sup(l—|z]) | —— —1| < 1.
g1 =D [ 1) <

1 (tz) IRT 1 o
u(gga(tzz)) dt’ = limsupy,|_,; (1-z]) L_—lzl - 1} =
limsup|, |1 [1 =1+ [2]] = 1. Hence the operator ist not compact.

(c) We consider w(z) =1 — |z|, v(z) = (1 — |2])? and p(2) = g(z) = z for every z € D.

Then
[ s ] =t | [ g

1{ 1 1+||}
= sup — z|| = oo.
ZED>2 1 _|Z|

But obviously lim supy,|_,; w(

sup w(z)
z€D

Hence, the corresponding operator is not bounded.
(d) Select w(z) =wv(z) =1—|z| as well as p(z) = z and g(z) = ﬁ for every z € D.
Then obviously ¢'(z) = ﬁ for every z € D. Moroever,

1 /

e I i
supw(z ————z dt| =sup(l — |z|)
supu(a)| | ooy | =2 = k| | e

1
z 1
>sup2(1 — |z /7dt:su 1—1z])|—-s —1| = 0.
Sup (1—1|2]) AEsE Zeg( |2]) e

Hence the operator is not bounded.
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