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TWO-PARAMETER CHAOS

LuBoMIiR SNOHA

ABSTRACT. Let I be a real compact interval and 0 < a < 8 be real numbers

smaller than the length of I. A continuous function f from I into itself is

said to be generically or densely («, 8)-chaotic if the set of all points [z, y],

for which liminf |f"(z) — f"(y)| < a and limsup |[f"(z) — f"(y)| > B, is
n—oo n—oo

residual or dense in I X I, respectively. In the paper such functions are
characterized in terms of behaviour of subintervals of I under iterates of f
provided a > 0 (see [2] and [3] for a = 0).

In the paper a function will always be a function belonging to the space
C°(I,1I) of all continuous maps of a real compact interval I into itself,
endowed with the topology of uniform convergence. An interval will al-
ways be a nondegenerate interval lying in I. If J is an interval then
diam J is its length. If A, B C I then dist(A, B) =inf {|z —y| : € A,
y € B}.

The k-th iterate of a function f is denoted by f*. For a function f and
a, B with 0 < a < 3 <diam I define the following planar sets:

Ci(f,0) = {lzy] € I2 - limind | " () — " ()] < o},
Co(f,B) = {[z,y] € I? : limsup | f" (z) — f"(y)| > B},
n—oo
C(faaaﬁ) = Cl(f7 Oé) n C2(f7ﬁ)
Due to A. Lasota, a function f is called generically chaotic if the set
C(f,0,0) is residual in T x I (cf. [1]).
Suppose we are studying some physical or biological system on which we

make measurements at regular intervals. If we are just measuring a single
quantity then the n-th measurement can be represented by a real number
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ZTn. A very simple mathematical model of such a system is obtained by
assuming that x,,41 is only a function of z,,, and that this function does not
depend on n. That is, we assume there is a function f so that z,+1 = f(xy)
for all n > 0. In connection with the definition of generic chaos we must
realize that from the physical point of view we are not able to check for
example whether liminf,, o |f™(z) — f™(y)| is zero or not. In fact, even if
we admit that we are able to make infinitely many measurements, we are
restricted by the accuracy of our measuring apparatus. So it seems that the
following notion of («, 3)-chaos could have a physical sense.

Definition 1. A function f € C°(I,I) is said to be generically or densely
(a, B)-chaotic if the set C(f, «, B) is residual or dense in I x I, respectively.

So the generic (0, 0)-chaos is the same as the generic chaos in the sense of
A. Lasota. The generically (a, 8)-chaotic functions and the densely (a, 3)-
chaotic functions were characterized in [2] and [3] provided o = 0. In the
present paper we show that an analogous characterization holds if a > 0
(see Theorem 4). Further, we show that the set of all such maps is nowhere
dense in the space C°(I,I).

The following lemma is a generalization of Lemma 4.3 from [2].

Lemma 2. Let f € C°(I,I) and 0 < a <diam I. Then the following three
conditions are equivalent:
(i) Ci(f,a) is residual,
(ii) Ci(f,«) is dense,
(iii) for every two intervals Jy, Jo, liminf dist (f™(J1), f"(J2)) < a.
n—oo

Proof. The implications (i) = (ii) = (iii) are obvious. We are go-
ing to prove (iii) = (i). So let (iii) be fulfilled. Since Ci(f,a) =
=MoL, L(n,a + 1/n) where L(n,a + 1/n) = {[z,y] € I? : infy>,|f*(z) —
f¥(y)] < a + 1/n} are open sets, it suffices to prove that for every n,
L(n,a + 1/n) is dense in I?. So take any positive integer n and intervals
Ji, Ja. We prove that L(n,a + 1/n) N (Jy x J2) # 0. From (iii) it follows
that there exists k > n with dist (f*(.J1), f¥(J2)) < @ + 1/n. This implies
the existence of points z € Ji, y € J» such that |f*(z) — f¥(y)| < a+1/n.
Hence [z,y] € L(n,a 4+ 1/n) and the proof is complete.

The following lemma is a part of Lemma 4.16 in [2].

Lemma 3. Let f € C°(I,I) and 0 < 8 <diam I. Then the following three
conditions are equivalent:

(i) C2(f,P) is residual,



(ii) C2(f,PB) is dense,
(iii) for every interval J, limsup diam f™(J) > (.
n—o0
Since the intersection of two residual sets is a residual set, from Lemma
2 and Lemma 3 we immediately get

Theorem 4. Let f € C°(I,1) and 0 < a < 3 <diam I. Then the following
three conditions are equivalent:
(i) f is generically (a, 3)-chaotic,
(ii) f is densely («, 8)-chaotic,
(iii) for every two intervals Jy, Jo, linl)inf dist (f™(J1), f*(J2)) < « and
n (oo}
for every interval J, limsup diam f"(J) > 3.

n—o0

From [2] it is known that if f is generically chaotic then it is generically
(0,&)-chaotic for some ¢ > 0 and so it is generically («, 3)-chaotic for any
a, B with 0 < a < 8 < e. On the other hand, the following example
shows that there are functions which are generically («, 8) -chaotic for some
0 < a < 8 < diam I without being generically chaotic.

Example 5. Take I = [0,1] and numbers 0 < a < 8 < L and R with
L+a+R=1 Let f(O)=L+a, f(L)=1, f(L+a)=0, f(1-R/2)=1L,
f(1) = 0 and let f be linear on each of the intervals [0,L], [L,L + «f,
[L+ «,1— R/2] and [1 — R/2,1]. Then, using Theorem 4 it is easy to see
that f is generically («, 3)-chaotic although it is not generically chaotic.

Now denote the set of all densely or generically («,f)-chaotic maps
from C°(I,I) by D(a,3) or G(a,f3), respectively. Further denote D =
U{D(e,B) : 0 < @ < B <diam I} and G = J{G(a,B) : 0 < a < 8 <diam
I}. Clearly, G C D. We have (cf. Theorem 1.5 in [2])

Theorem 6. The set D is nowhere dense in C°(I,I).

Proof. Let B(f,e) be an open ball in C°(I,I). Since f has at least one
fixed point z,, it is possible to define a function g € B(f,¢) such that for
some x; < xy very close to x, and for some small n > 0 the intervals
Ji = [z; —n,z; + n], i=1,2 are disjoint and ¢(J;) = {z;}, i=1,2. Denote
M = [z1 + 1,22 — n]. We may assume that diam M > diam J; = 27,
otherwise we can take smaller . Take § > 0 such that simultaneously
B(g,9) C B(f,e) and for every h € B(g,9), h(J;) C J;,i=1,2. Now suppose
that there is a map h € B(g,9) and «, § with 0 < @ < 8 <diam [ such that
h is densely (a, 8)-chaotic. Since limsup | f"(z)—f"(y)| < diam J; whenever

n—o0
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[z,y] € Ji X Ji, we have diam J; > . Since liminf |f"(z) — f"(y)| > diam
n— 00
M whenever [z,y] € J; x Ja, we have diam M < a. The inequality diam M

> diam J; gives a > (3 which is a contradiction with the fact that a < .
So B(g,0) N D = (. The proof is finished.
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NOTES ON THE CONGRUENCE
LATTICES OF ALGEBRAS

ALFONZ HAVIAR

ABSTRACT. From [1] and [3] it follows that for any algebra A there exists
a groupoid G for which ConA +1 ~ Cong (where ConA + 1 is
the ordinal sum). In the paper we directly define the operation of groupoid
G by using the operations of algebra .A. From this construction it follows
that for any binary countable algebra A there exists a groupoid G for which
ConA+1 ~ ConG and moreover, G has no nontrivial subgroupoid and
no nontrivial automorphism. We also present (in Theorem 3) some results
related to the lattice of subuniverses and to the automorphism group of A.

Throughout this paper Ord denotes the class of all ordinal numbers and
N denotes the set of all natural numbers. An algebra (A, F') will be often
denoted by A. Further, Con A, SubA and AutA denote the congruence
lattice, the lattice of subuniverses and the automorphism group for the
algebra A, respectively.

Let (A, F) be a binary algebra

A={ar;k <o,k € Ord}, «a€Ord,

F={fr;k <B,k€Ord}, pBeOrd,

let v be a limit ordinal such that -~ > maz{a,8} and let
M={keOrd;k <~}, S={-3,-2,-1}UM.
We consider the usual ordering

3<-2<-1<0<1<2<3< ...,
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on the set S. Now we put
G ={(ay,s);r < a,7 € M,s € S}.

To define a groupoid operation 0 on G we consider the following cases for
an element

(ai,r)olaj,s), i,j<a, 4,jeEM, rsesS.

I. r=s.a) 0<r<g

(1) (a;,m)olaj, s) = (fr(ai, a;),7 + 1),
b) either r € {-3,-2,—-1} or r>p
(2) (ai,r)o(aj,s) = (a;,r +1).

II. r<s. a) r+l=s

(3) (ai,r)o(aj,r +1) = (ai, =2),

b)r+1<s

(6) (ai,r)o(aj, =2) = (aj,=3),

c)s=-1, 0<r<a

(7) (ai,r)o(aj, —1) = (ap, —3),
d) otherwise
(8) (ai,r)o(aj,s) = (a;,r +1).



Lemma 1. Let (A, F) be a binary algebra and (G, o) be the groupoid whose
operation is defined by (1) - (8). For any congruence relation ® of (G, o)
the following properties are satisfied:

(i) (z,k)®(y, k) < (2,5)2(y,5)
for all k,s€S,
(i) (z,k)®(y,s), k#s = &=G"

Proof. (i). From (z,k)®(y, k) it follows
(2, K)o(, k +2)B(y, k)o(z, k +2),  Le., by (4
(x,-3)®(y,—3). Thus, (z,s)o(z,—3)®(z,s)o(y,—3) and so by (5)
(z,s)®(y,s) holds for any s # —3.

(¢i). Let (x,k)®(y,s), k #s. We may assume that k¥ < s. By
hypothesis
(xz,k)o(z,s + 1)®(y, s)o(z,s + 1), i.e., by (4) and (3),

(a) (z, =3)®(y, —2).

From (a) it follows that for all se€ S, s> -2
(.’IJ, S)O(CE, _3)(1)(:1:’ S)O(y7 _2)7 i-e-a by (5) and (6)5

(b) (z,5)®(y, =3).

f‘u)rthermore, (b) implies  (z,s)o(xz, —1)®(y, —3)o(z, —1); thus, by (7) and
4 )

(c) (a5, =3)®(y, —3)

forall se€ M, s<a. Then (c),(i),(b) and (a) yield ® = G*.

Theorem 1. Let (A, F') be an algebra. There exists a groupoid (G, 0) such
that
ConA+1~CongG

Proof. We can suppose that (A, F) is an algebra with binary operations.
Let (G, 0) be the groupoid whose operation is defined by (1) — (8). Define
a mapping F:ConA — ConG as follows:

(9) (,k)F(©)(y,s) iff k=s and 2Oy, O € ConA.
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1. First, we prove that the mapping F' is well-defined, i.e., F(©) € Cong.

Obviously, F(0) is an equivalence relation on G. It suffices to prove that
(z,k)F(O)(y,k) implies

(d) (2, k)o(z,r)F(©)(y, k)o(z,T)
and
(e) (z,r)o(z, k)F(©)(z,7)o(y, k)

for every (z,7) € G.  We only prove (d), since (e) can be proved in a
similar way.

Ifk=rand 0<k< g, then from z0y it follows fi(z,2)0 fr(y,z) and
80
(fr(z,2),k+1)F(O)(fr(y, 2), k + 1) holds. Therefore we get (d) by (1).

In the other cases (d) is of the form

(x,m)F(O)(y,m) or (t,m)F(O)(t,m)

for some ¢, m. Hence, (d) obviously holds.
2. Let ® € ConG, & # G%. We define a relation © on A as follows:

(10) Oy iff (z,—3)®(y,-3).

Obviously, © is an equivalence relation on A. Let x®y and let
k€ M,k < 8. Then by (i) (Lemma 1) we have (z,k)®(y, k). Therefore, we
get (x,k)o(z,k)®(y, k)o(z, k), ie.
(fr(z,2),k + 1)®(fr(y,2),k + 1). Then again by (10) and (i) we have
fe(z,2)Ofk(y,2). Analogously, we get fr(z,2)0 fr(z,y). Thus,
© € ConA and obviously F(©) = .

3. It is easy to check that

0. <0, iff F(0:)<F(0)

for all ©;,0, € ConA. If we denote  F(A%) by Q, then we conclude
that €2 is a unique dual atom of the lattice =~ ConG and the mappping F
is an isomorphism between ConA and the ideal (2] of the lattice ~CongG.
The proof is complete.

Corollary. Let L be an algebraic lattice. There exists a groupoid G such
that L+1~ CongG.

10



Theorem 2. Let (A, F) be an algebra with binary operations such that
A, F are countable. Then there exists a groupoid G having no proper sub-
groupoids and no nontrivial automorphisms such that

ConA+1~CongG.

Proof. Let (G,0) be the groupoid whose operation is defined by (1) — (8),
with y =w. Then ConA+ 1~ ConG by Theorem 1.

a) Now we shall prove that G has no proper subgroupoids. Let H be
the subuniverse of the groupoid (G, 0) generated by the element (a,p). Let
0 <p< B. Then we successively get that H also contains the elements
(a,p)o(a,p) = (fp(a,a),p+1) = (b,p+ 1), (b,p + 1)o(b,p + 1) =
(fp+1(0,0),p+2) = (c,p+2), wheneverp+1<g
(b,p+1o(b,p+1)=(b,p+2)=(c,p+2), ifp+1=45,

(a,p)o(c,p + 2) = (a) _3)) (a) _B)O(G) _3) = (av _2)7 (av _2)0((]’7 _2) =
(a,—1), etc.

For every m € S there exists an element d € A such that (d,m) € H. Then
foreverym, 0<m<a weget

(d,m)o(a,—1) = (am,—3) € H.

We also get

(d,n)o(am,—3) = (am,n) € H, for every n > —3.
Hence, H =G holds.

Ifeither pe {-3,-2,—1} or p>p weobtain H =G in a similar
way.

b) It remains to prove that G has no nontrivial automorphisms. Let g be
an automorphism of G. If  g(a,—3) = (b, —2) for some elements a,b € A,
then

g(a, =2) = g((a, =3)o(a, =3)) = g(a, =3)og(a, =3) = (b, =2)o(b, =2) = (b, —1)
but this contradicts the fact that

g(a, =2) = g((a, =3)o(a, =2)) = (b, =2)o(b, —1) = (b, =2).
We analogously check that g(a,—3) = (b,p) wherep=—-1lorO<p<p

or 3 > p is impossible, too. Hence, for every element (a,—3) € G there
exists an element (b, —3) € G such that

(f) g(a,=3) = (b, =3).

11



But (f) implies
g(av _2) = g((av _3)0((]'7 _3)) = (bv _3)O(b7 _3) = (bv _2)'

Simila‘rIY7 g(a'a _1) = (b7 _1)7 g((l, 0) (b7 0

g(fo(a,a),l) = g((a,O)o(a,O)) = (b7 O)O(b,O) (fO(bab)a 1)7 etc.
One can prove by induction that for every m € S there exist elements
¢,d € A such that

(8) g(e,m) = (d,m).
Foranyn, O<n<a, (g)yields

g(an, =3) = g((c,n)o(a, —1)) = (d,n)o(b, =1) = (an, —3).
Now, for any m # —3 we get

g(an,m) = g((¢,m)o(an, =3)) = (d, m)o(an, =3) = (an, m).

Therefore, g is the identity on G, and the proof is complete.

Theorem 3. Let (A, F') be an algebra with binary operations such that A,
F are countable. There exists a groupoid (G, o) such that

SubA ~ SubG, AutA~ AutG and ConA =~ (9],

where (] is an ideal of ConG generated by some element 2 € Cong.

Proof. Let (G,0) be the groupoid constructed in the same way as in the
proof of Theorem 1 where

(7) (ai,r)olaj, —1) = (a;,r + 1)

holds instead of (7) (i-e., (8) also holds in the case s = —1).
1. We shall prove that  SubA ~ SubG. Let ¢ : SubA — SubG be
the mapping defined as follows:

(11) ¢(A1) ={(a,n); a€ A, neS}

First, we shall show that ¢ is well-defined, i.e., that ¢(A;) is a subuniversum
of the groupoid G. Let (a,n), (b,m) € ¢(A4;).

If0 <n=m< g, then (a,n)o(b,m) = (fn(a,b),n) € ¢(A1). In the

12



other cases we have (a,n)o(b,m) = (a,k) or (a,n)o(b,m) = (b, k) for
suitable k € S, so again (a,n)o(b,m) € ¢(A1).
In order to show that ¢ is surjective, let H be a subuniversum of G, and
let
Ay ={a€4; In (a,n)€ H}.

Further, let a,b € A; and let f, € F. Then there exist m,n such that

(a,m),(b,n) € H. 1In a similar way as in the proof of Theorem 2 one can

prove that  (a,—3),(b,—3) € H, and that for every n there exists d such

that (d,n) € H. This implies

(d,p)o(a, _3) = (avp) € H) (d,p)O(b, _3) = (bap) € H;

(a,p)o(b,p) = (fp(a,b),p+1) € H, 1ie.,fp(a,b)e€ A;.

Therefore, A; is the subuniversum of A, and clearly ¢(A4,) = H.
Obviously, ¢ is one-to-one and

A C Ay iff (A1) C ¢(Az).

Hence, ¢ is an isomorphism.
2.Now we shall prove that AutA ~ AutG. Let ¢ : AutA — AutG
be the mapping defined as follows:

(12) 6(f)(a,n) = (f(a)yn), f € AutA,

First, we shall again show that ¢ is well-defined, i.e., that ¢(f) is an auto-
morphism of the groupoid G. Obviously, ¢(f) is a bijection on G since f is
a bijection on A. Let (a,n),(bym) € G. If 0 <n =m < (3, then
o(f)((a,n)o(b,n)) = ¢(f)(fnla,b),n+1) = (f(fu(a,b)),n+1) =

= (al£(@), F(B))sm + 1) = (F(a),)o(f (B), m) = 6(f)(a, m)od(f)(b, ).

Ifn#m, n+4+1=m, then we have
o(f)((a,n)o(b,m)) = ¢(f)(a, —2) = (f(a),-2) =
= (F(a),m)o(f (), m) = 6(f)(a, )od(f) (b, m).

We analogously get
d(f)((a,n)o(b,m)) = ¢(f)(a,n)od(f)(b,m) in every other case (i.e., if
n+1<m,orn>m).

In order to show that ¢ is surjective, suppose that g is an automorphism
of G. In a similar way as in the proof of Theorem 2 one can prove that
for every element (a,—3) € G there exists an element (b,—3) € G such
that g(a,—3) = (b,—3), and that for every m € S there exist elements
¢,d € G such that g(¢,m) = (d,m). This yields that for any m > —3

g(av m) = g((cv m)o(a, _3)) = (d7 m)o(b, _3) = (bv m)

13



On the other hand

g(aa _3) = g((a, ’I'L)O(C, n+ 2)) = (b7 TL)O(d, n+ 2) = (b7 _3)7
whenever g(a,n) = (b,n) for some n. Therefore, for any automorphism
g € AutG  we can define a mapping f: A4 — A as follows:
fla)=b <= g(a,n)=(b,n) foreveryn € S.
We shall prove that the mapping f is an endomorphism on A. Let a,c €
A, 0<n<pB. Then

(f(fnla,c)),n +1) = g(fu(a,c),n + 1) = g((a,n)o(c,n)) =
= (f(a),n)o(f(c),n) = (fu(f(a), f(¢)),n + 1)
which implies  f(fn(a,c)) = fu(f(a), f(c)).
Since ¢ is the automorphism on G, we conclude that f is the automor-
phism on A, and obviously  ¢(f) =g.

One can easily check that ¢ is one-to-one, and that for any automor-
phisms f,g € AutA

¢(fog)(a,n) = ((fog)(a),n) = (f(g(a)),n) = (&(f)og(g))(a,n).

Hence, ¢ is an isomorphism.
3. We define a relation Q on G as follows:

(13) (a,m)Q(b,n) iff m=n.

Obviously, Q is the congruence of groupoid (G,0). Let

F : ConA — ConG be the mapping defined by (9) (in the proof of
Theorem 1). In the same way as in the proof of Theorem 1, one can prove
that F' is an isomorphism between Con.A and the ideal (2] of the lattice
CongG. The proof is complete.
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THE LATTICE OF ORDER VARIETIES

ALFONZ HAVIAR AND PAVEL KONOPKA

ABSTRACT. The list of all varieties of posets that cover the variety
C Vv A is given (C is the variety of all complete lattices and A is the variety
of all antichains). Some results on varieties of posets containing the variety
of antichains are established.

In the paper we obtain some new results on the lattice of varieties of
posets which was introduced in [1]. Notations and terminology correspond
to those from [1]. Throughout the paper the basic set of the poset is always
assumed to be nonempty.

A poset Q is a retract of poset P (written @ < P) if there are order-
preserving maps f :  — P (which is called a coretraction map) and g :
P — @ (called a retraction map) such that gof is the identity map of @ to
itself.

There is another characterisation of a retract: a subposet () of a poset
P is a retract of P if there is an order-preserving map g : P — @ which is
identical on Q.

Let K be a class of partially ordered sets. The class of all retracts of
posets from K will be denoted by R(K) and the class of all direct products
of nonvoid families of posets from K will be denoted by P(K).

An order variety is a class V of ordered sets which contains all retracts
of members of V and all direct product of nonvoid families of members of
V (i.e. V is order variety iff R(V)CV and P(V)CV).

For a class K of posets let K™ denote the smallest order variety containing
each member of K. A variety K7 is called the order variety generated by K.
In [1] it is proved that

K™ = RP(K).

1991 Mathematics Subject Classification. 06A06, 08B99.
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The collection of all order varieties is a complete lattice ordered by in-
clusion.

There are only two atoms in this lattice:

C - the variety of all complete lattices ( C = { 2}” where 2 denotes the

two-element chain )

A - the variety of all antichains (A = {2}” where 2 denotes the two-
element antichain).

Any order relation on P induces the relation of comparability on P de-
fined by a ~ b if a < b or b < a. The relation of comparability is reflexive
and symmetric. We note that the transitive closure of a reflexive and sym-
metric relation is an equivalence relation. The blocks of this equivalence
relation are called connected components of the order relation. A poset P
is called a connected poset if it has just one connected component. K is a
class of connected posets if any member of K is connected.

Let {P; : i € I} be a family of mutually disjoint posets. The cardinal
sum of the family { P; : ¢ € I'} (written ) P;) is the poset with the universe

il
P = .UIP,' and the order relation < on P defined as follows: a < b iff there
1€
exists an index i, € I such that a,b € P;, and a < b holds in F;, .
Let > K denote the class of all isomorphic images of the cardinal sums
of members of K.
It is easy to see that any poset is the cardinal sum of its connected

components.

Lemma 1. Let A= )" A; and B= ) B; be cardinal sums of nonvoid
i€l JET

families { A; :i € I} and { B;j : j € J} respectively. If for every i € I there

exists j; € J such that A; <« Bj, and j;, = j;, implies i1 = i, then A< B.

Proof. Let ¢; : Bj; — A; be a retraction and

¢; + A; — Bj, be a coretraction for every ¢ € I.
We define the maps g: Y B; — > A4;
= icl
and f: > A; = > Bj as follows:
iel =
(@ pi(a) if a € Bj,
| d otherwise

where d is any fixed element of Y A; and
i€l

f(0) = ¢i(b) if b € A;.
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The reader can straightforwardly verify that for every € 3 A; there are
iel
indices i, j; such that 2 € A; and f(A;) C By, and ((gof)(z) = (piog:)(z) =
z and f and g are order-preserving maps. This completes the proof of the
lemma.

Theorem 1. The variety A of all antichains is contained in a variety V iff
V=3V

Proof. a) If the poset P contains at least two connected components P, P»
then choose two elements € P, and y € P,. The map f: P — {z,y}
which maps each element u € P; to z and each element v € P — P} to y is
a retraction map with fixed points z and y. Thus
2 <P .This implies that if V contains at least one disconnected poset then V
contains A.If V="V then V contains a disconnected poset,so ACV.

b) Let ACV and P € Y V.Then P = ) P;, where P; € V for every i € I.

iel
This implies that [ P; € V. Let I denote the antichain with the universe I
iel
and let @ = ([] P;)xI. Obviously @ is a member of V.(Note that I € A C
il

V.) We denote

Qj={r€Q:xz=(f,j) wheref € le}

iel

It is easy to see that @ = > Q;. It is known that U;, < [[ U; for any family

i€l leL
of posets { U;:1 € L} and for any I, € L. The posets P = Y P; and
i€l
Q = > Q; satisfy the conditions from Lemma 1 and so P < Q. This implies
i€l

that P € V. The converse inclusion is obvious.
Theorem 2. If V is an order variety then Y V is also an order variety.

Proof. If there is a disconnected poset in V then the assertion follows from
Theorem 1. So assume that V contains no disconnected poset.

a) Let P< ) P, and P; € V for any i € I. Denote by f a retrac-

iel
tion and by ¢ a coretraction corresponding to f. Let S; denote the set
{z € P:g(z) € P} .Obviously, P = }_S;. Let the subset J C I be given
icl
by : je Jif S; #0. Then P = ) S;. Forevery j € J the poset P; is
JjeJ

connected and so is the poset g(f(P;)). Hence g(f(P;)) C P;. Thus we get
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f(P;) C S for any j € J. On the other hand S; = f(g(5;)) C f(P;). It
implies that f(P;) = S; for any j € J. We have S; « P; with f [ P; as
a retraction and g [ S; as a coretraction. This implies that S; € V and
P € >"V. Therefore R(>_ V)C >"V.

b) Now we prove that P(>_ V)C > V. The proof is based on fact that

H(Zpij)

iel jeJ;

S (1779

feTl J; iel
i€l

and

are isomorphic posets. The poset [] P,/ is the direct product of a family
icl
of connected sets from V and so [] P;/ () ¢ V. Hence
il

> (TIP?) e 3 V. This completes the proof.
rellJ; i€l

i€l
Corollary 1. In the lattice of order varieties Y, V. = A V V for any variety
V.

Theorem 3. If V is a variety which contains no disconnected poset, then
there is no variety W such that VCW C > V(i.e.,the variety V is covered

by 22V).
Proof. Suppose VCW C Y V. If every poset in W is connected then W=V.
Otherwise ACW,thus W= W and >V C > " W=W. Hence W=}_V.

Corollary 2. If the system V. of all connected posets of the variety V is
a variety, then V. is covered by Vor V., = V.

Proof. This follows from the fact that V=) V. or V=V,.

Theorem 4. If V and W are varieties of connected posets and V' is covered
by W then 3V is covered by Y W.

Proof. Obviously, VCW implies Y. V C Y W. Let V; be a variety such
that Y V.CV; C > W. Denote by K the system of all connected posets of
V1.Then VC K CW. It is easy to see that R(K)CW, P(K)CW, R(K)C V;,
P(K)C V;. This implies RP(K)C V; and RP(K)CW. So, for the variety
RP(K) generated by K we have VCRP(K)CW. If RP(K)=V then V; =
V. If RP(K)=W then V; = SW.
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Corollary 3. Let V and W be varieties which contain A and let V be
covered by W. Let V. and W, denote the systems of all connected posets
of V and W, respectively.If V. and W, are varieties, then V. is covered by
W..

Proof. If K is variety such that V. C K C W, V. # K # W, then > V. C
S>KCY> Weand > V. # > K#> W, a contradiction.

Let P,Q be ordered sets.We will denote by P @ @ the ordinal sum of P
and Q. Further, let P¢ denote the dual poset of P.Let F; be the poset with
the universe { 1,2,3} and the order relation given by : 2<1, 3<1 and 2,3
are noncomparable elements (i.e.,F5 is a fence ).

Theorem 5 ([1]). In the lattice of order varieties each of the following
order varieties cover the variety C of all complete lattices

{a}", {8, {a@p’}y, {FB}, {BYY, {B'eF),
{ee R}y, {(B'eply, Y C,

where a and (3 are any regular ordinals. Moreover, the system of all varieties
which cover C consists just of the varieties in (L).

Theorem 6. In the lattice of order varieties the variety > C(= AV C) is
covered only by the varieties of the form ) V for all V from the list (L)
except of V= >"C.

Proof. Theorem 4 implies that these varieties cover Y C. Let V be variety
with > C C Vand ) C # V. Then there exists a poset P such that P is not
a complete lattice, P is connected, P €V and {P}” CV. In [1] it is shown
(see proof of Theorem 7.1) that there is a poset @) generating a variety from
the list (L) and @ is a retract of P. Thus, we get >, {Q} C > {P}" C
V = V. This completes the proof.

Theorem 7. The system of all varieties of connected posets is the ideal of
the lattice of order varieties.

Proof. Let V and W be varieties of connected posets. Then VVW =
RP(VUW) (cf. [1]). If P € RP(VUW) then P <@y X @2, where ) €
P(V) and Q2 € P(W). This implies that ¢); and @2 are connected and
@1 X Q- is also connected.Every retract of connected poset is also con-
nected.Let V and K be any varieties of posets.If V contains no disconnected
poset and KCV ,then also K contains no disconnected poset.
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ON DECOMPOSITIONS OF COMPLETE GRAPHS
INTO FACTORS WITH GIVEN DIAMETERS

PAVEL HRNCIAR

ABSTRACT. Let F,(d1,d2,...,dmn) be the least positive integer n such that
the complete graph K, can be decomposed into m factors with the diameters
di,ds,...,dm. The estimations for Fy,(d1,d>,...,dmn) are found.

By a factor of a graph G we mean a subgraph of G containing all the
vertices of G. A system of factors of G such that every edge of G belongs to
exactly one of them is called a decomposition of G. The symbol K,, denotes
the complete graph with n vertices.

Let m,dy,ds,...,d, be natural numbers. The symbol (see [1])
Fy(dy,ds,...,dy) denotes the smallest natural number n such that the
complete graph K, can be decomposed into m factors with the diameters
dy,ds,...,dn,; if such a natural number does not exist then put £, (d;, ds, . . .,
dy) = c0. Inthecased; = dy = --- = d,;, = d we shall write F,,,(d,d,...,d) =
fm(d). The significance of the function F,,(dy,ds, ..., dy,) resides in the va-
lidity of the following assertion (proved in [1]): K, is decomposable into m
factors with diameters dy,ds,...,d, if and only if n > F,,(d1,ds, ..., dy).

J. Bosék, A. Rosa and S. Zném ([1]) initiated the studies of decompo-
sitions of complete graphs into factors with given diameters. Many papers
deal with the problem of [1] or with its various modifications.

The following result is proved in [1]: Let m,d,ds,...,dy, be natural
numbers > 3, then

Fo(di,da,...,dp) <di+dy+ -+ dy —m.

This result can be strengthened. For m = 3 this was done in [1] (if
min{dl,dg,dg} Z 5, then Fg(dl,dg,d3) S d1 + d2 + d3 - 8) and in [2]
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(lf min{dl,dg,dg} > 65, then F3(d1,d2,d3) =di +dy +ds — 8) For m >3
the following theorem gives a better result than that mentioned above.

Theorem 1. Let m > 3, dy > dy > --- > d,, > 6, d; > 2m — 1 and
d3 > m — 1. Then

Fu(di,da, ... dy) <di +dip_1 +dg + 3,
where k is the maximum natural number such that 3 < k < m and dj, >
m — 1.

Proof. Tt is sufficient to show that the complete graph with dy + d_1 +

dy, + 3 vertices is decomposable into m factors Fy, Fy, ..., F,, with the di-
ameters da,ds,...,dk—2,dg+1,dg+2,- . -, dm,d1,dg—1,ds, respectively. De-
note the vertices of the above mentioned graph by wi,us, ..., ug,+1,v1, v,
ey Udp_ 41, W1, W2, . .., Wq, +1. Let t = [%]

We shall consider the path P; of the length d; fori =1,2,...,m —2

Ui+ 1 Ui Ui+2Ui—1 Ui+ 3UG—2 - - - Uj—p 42 Ui+t Uj—t41

in the case that d; is an odd number or

U1 Ui Ui4-2U; -1 Uj4-3UG—2 -+« - Ut Uj—t 41 Uit 41

in the case that d; is an even number. The subscripts j of u; are taken as
the integers 1,2,...,d; +1 mod(d; + 1). Now we are going to construct the
factors F; fort =1,2,...,m.

a) The factor F; for i =1,2,...,m — 3 consists of
1) a path P; with the following four properties
(i) the length of P; is equal to the diameter of the
factor Fj,
(ii) we get P; from P/ by deleting ( if necessary) some
vertices at the beginning and the end of the path P/,
(iii) P; contains the vertices ug;+1 and usito,
(iv) neither us;q1 nor ug;4o is one of the first two ver-
tices or one of the last two vertices of P;,
2) the edges
U2i+11}j,j =12,... ;dkfl +1,
u2i+2wj7j = 1)27 .. '7dk + ]-7
3) for any vertex u; which does not belong to P;
(i) the edge v;u; if j is an even number or
(ii) the edge w;u; if j is an odd number.

22



b) The factor F,,,_» will contain the path P/, _, and the edges
Uom—305,5 = 1,2,... ydg—1 + 1,
Ugm—2wj,j =1,2,. cydi + 1.
c) The factor F,,,_; will contain the path
V10V20Vq,;,_1+1V30V4 .. . Uqy, 1 —10Ud;,_4
and the edges

vdk—1+1u2j;j = ]-7 >"')t7
Vdy_1+1Wj5,]) = 1727 .. '7dk + 17

- _ [di+2
wdku2j717]_1727"'787 §= [17]

d) The factor F;, will contain the path
WL WoW(+1W3W4 . . . Wy, —1Wq,,
and the edges

Wa+1U25-1,5 = 1,2,...,8 s= [%] )
wdk+1vj,j = 1, 2, .. -,dk—la

'Udk_1U2j,j = ]-72> . '>t7

U1Udj_141-

Now consider all the edges which so far we have not included into any
of the factors Fy, F5,...,Fy,. Let those of them which are of the types
VW, VU5, W;w; O U;uj, u;w; or u;v; belong to the factors F,—o or Fp_q
or F,,, respectively. It is easy to verify that the factors F}, F», ..., F,, have
the desired diameters and they form a decomposition of the complete graph
with dy + dp_1 + d + 3 vertices. Q.E.D.

In [1] a lower bound for f3(d) was found :

N 3+\/§d_5+4\/§.

fald) > =5 .

For m > 3 the following theorem holds.

Theorem 2. If m > 3 and d > 2m — 1, then

(d)>m+\/ﬁd_m+\/ﬁ(2m—l).

Fm - m-1 m—1

Proof. The maximum number of edges in a graph with n vertices and with
the diameter d is ([1], Lemma 1)

d+3(n—d—1)+ (n_d_l);n_d_%.
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The necessary condition for the existence of a decomposition of the complete
graph K, into m factors with diameter d is the inequality ([1], Theorem 2)

mld+3(n —d—1)+ (n—d—l)é(n—d—2)] > n(n2— 1)
or, equivalently
(1) (m — 1)n® + (3m — 2md + )n + m(d> —d — 4) > 0.

In the following we shall use the idea from the proof of Lemma 6 in [1].
The quadratic function of the variable n defined by the left hand side of (1)

takes negative values for n; = d and for no = my:l/lmd— m+\/TT£21m71) (with
the exception of the case d = 2m — 1, when it takes the value 0). Since
this function is convex and a graph with the diameter d has at least d + 1

vertices, the theorem is proved.

Remark. For d = 2m — 1 the estimation in Theorem 2 is the best possible.
In fact, in this case the right hand side of the inequality of Theorem 2 gives
the value 2m and and by [3] (Theorem 3) fn,(d) = 2m for m > 3 and
3<d<2m-1.

Theorem 3. If d > 2m and m > 3 then

fm(d) < gd+ 3.

Proof. We shall confine ourselves to the case when d is an odd number (in
the case when d is an even number we can proceed in a similar way). It is
sufficient to show that the complete graph with @ vertices is decompos-
able into m factors with the diameter d. Denote the vertices of this complete
graph by symbols uy,us, ..., Usk, V1, V2, ..., Uk, W1, Wa, ..., Wk, t1,t2,..., Lk,
where k = %.

a) The factor F; for i =1,2,...,m — 3 will contain the path
Ui 1 UjUi4 22U 1 Uj4-3U5—2 « - Ui UG — 41,

where the subscripts j of wu; are taken as the integers
1,2,...,2k(mod2k) and the edges

U2i+105, uQH_le,j = 1, 2, Ce ey k‘,

U2i+2tj,j = 1,2, Ces ,k.
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b) The factor F,,_» will contain the path
VIV .. VpWL W2 . . . W
and the edges
v3laj, vsty, truzi—1, J=1,2,...,k.

c) The factor F,,,_; will contain
1) the edges

tsuzj—1, viugj, j = 1,2,...,k,
t3vj’ ] = 17254755'--7]6(]. 75 3)7
v1U3

2) and the path
(i) tite .. . trwiws ... WE_jwowy ... wy if k is even or
(11) tita ... tkw1w3 L WEW2WY . WE—1 if k is odd.

d) The factor F,,, will contain
1) the edges
tiugj 1, hiwj, wiusg, j = 1,2,...,k

2) and the path
(1) V3V5...0E—-1U2V4 .. .’l}k’l}1t1t3 N tk_1t2t4 “e tk if kis
even or
(11) V3Vs5...U0EU2V4 ... ’Uk_l’l)ltlt3 “e tkt2t4 “e tk—l if k is
odd.

Now consider the edges which so far we have not included into any
of the factors Fy, F>,...,F,,. Let those of them which are of the types
viwj, vitj, wit;, vivj, wiw;, tit; or u;t;, u;u; or uv; or uzw; belong to the
factor Fy or F,, - or F,,, 1 or F),, respectively. It is easy to check that the
factors Fy, Fy, ..., F,, have the diameter d and they form a decomposition
of the complete graph with 222 vertices.
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EDGE-LOCALLY HOMOGENEOUS GRAPHS

RoMAN NEDELA

ABSTRACT. In the paper we shall investigate the relationship between lo-
cally homogenerous graphs and edge-locally homogeneous graphs. A local
version of the well-known theorem establishing that an edge-transitive graph
is either vertex-transitive, or bipartite is proved. Further we aply the theory
of covering spaces to derive some general results on the family of edge-locally
Go graphs for a fixed graph Go.

INTRODUCTION

In 1986 Zelinka [11] introduced the concept of edge-locally homogeneous
graphs. It can be understood as an edge version of the concept of locally
homogeneous graphs (or graphs with a constant link, see [1,4]). Let G be a
graph and z be either a vertex, or an edge of G. Denote the subgraph of G
induced on the set of vertices at distance 1 from x by link(z,G). The graph
G is called locally homogeneous, or locally G , if there exists a finite graph
Gy such that for each vertex v of G link(v,G) = Gy . Similarly, the graph
G is called edge-locally homogeneous, or edge-locally Gy , if there exists a
finite graph Gy such that for each edge e of G link(e,G) = Gp . Two main
problems for edge-locally homogeneous graphs can be considered:

(a) For which finite graphs Go does there exist an edge-locally G graph?,

(b) For a fixed finite graph Gy what can be said about the set of all
connected edge-locally Gy graphs?

Zelinka in [11] showed some examples of edge-locally Gy graphs. A lot
of examples of such graphs can be obtained using the concept of edge-
transitive graphs. Further, it was proved in [11] that there is no edge-
locally C5 graph. This result was generalized by Froncek [2] by proving
that for n odd, n # 3, there is no edge-locally C,, graph. In contrast, it is
proved in [5] that a finite edge-locally C), graph exists for all the remaining
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values of n. Another result contained in [2] reads as follows: if G is a
complete multipartite graph then an edge-locally G graph exists if and only
if all parts of G contain the same number of vertices. In this paper we
shall investigate a connection between the locally homogeneous graphs and
edge-locally homogeneous graphs. Further we apply the concept of covering
spaces to derive some results analogous to those given in [7].

STRONGLY EDGE-LOCALLY HOMOGENEOUS GRAPHS

For a given graph G and its edge e denote by Link(e,G) the subgraph
of GG induced on the set of vertices at distance < 1 from e. That means e €
Link(e,d). Then the graph G will be called strongly edge-locally homoge-
neous if for any two edges e, f in G there is an isomorphism pLink(e, G) —
Link(f,G) mapping e onto f. The following observation is clear.

Proposition 1. If a graph G is strongly edge-locally homogeneous then G
is edge-locally homogeneous .

In fact we know no edge-locally homogeneous graph which is not strongly
edge-locally homogeneous as well. Thus the question, whether the opposite
implication in Proposition 1 holds true, is open. The following theorem can
be considered as a local version of the well-known theorem (see [3]) estab-
lishing that an edge-transitive graph is either vertex-transitive or bipartite.

Theorem 2. Let G be a strongly edge-locally homogeneous graph. Then
either G is locally homogeneous or bipartite.

Proof. Let e = uv be a fixed edge of G. Let f = xy be an arbitrary edge
of GG. Since G is strongly edge-locally homogeneous, there is an isomor-
phism @Link(f,G) — Link(e,G) mapping f onto e. Then either there
is an automorphism ¢ of Link(e,G) mapping u to v, or there is no such
an automorphism. In the first case either ¢, or ¢ maps link(z,G) onto
link(u,G). Since f, and consequently z, is chosen arbitrarily, G is locally
homogeneous in this case. In the second case the set of vertices of G splits
into two subsets U, V. A vertex x is in U (V) if and only if there is an
isomorphism mapping link(z,G) onto link(u,G) (or onto link(v,G), re-
spectively). Since there is no automorphism of Link(e, G) mapping u onto
v, UNV = @. Clearly, each edge of G joins a vertex from U to a vertex in
V', otherwise it would be an automorphism of Link(e, G) mapping u to v.
Thus G is bipartite. O

It was noted by Zelinka that if G is bipartite then the edge-local homo-
geneity of G implies the strong edge-local homogeneity of G. The following
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proposition shows further properties of strongly edge-locally homogeneous
graphs. A bipartite graph G is called biregular if the vertices in one part
of G have degree p while the vertices in the second part of G are of degree
q, for some integers p, ¢. An r-regular graph in which each edge lies in ¢
triangles and ¢ induced quadrangles will be called an (r,t, q)-graph.

Proposition 3. Let G be a strongly edge-locally homogeneous graph. Then
either G is an (r, t, q)-graph for some integersr, t, q, or it is a bipartite bireg-
ular graph.

Proof. Tt follows directly from the definition of strong local homogeneity
that each edge of G lies in the same number of triangles and in the same
number of induced quadrangles. According to Theorem 2 G is either locally
homogeneous, and consequently regular, or it is bipartite, and therefore
biregular. O

It follows from Proposition 3 that strongly edge-locally homogeneous
graph G containing at least one triangle is an (r,t,q) graph. Thus for
each vertex u of G link(u,G) is a t-regular graph on r vertices. Regular
graphs with regular links of vertices were investigated by Soltés in [9]. He
proved there that an r-regular graph G with t-regular links of vertices is
the complete (1 4 r/(r — t))-partite graph, whose each part contains r — ¢

vertices, if t <r <t+r/3(t—1)+3 .

COVERING SPACES OF EDGE-LOCALLY HOMOGENEOUS GRAPHS

Let G be a graph. Denote by AG the simplicial complex, whose 0-
simplexes are vertices of G, 1-simplexes are edges of G, 2-simplexes are
bounded by triangles and induced quadrilaterals of GG, and the incidence
relation is given by the subgraph inclusion. That means that A G arises
from G by gluing a 2-cell to each triangle and to each induced quadrangle
of G. The following three propositions are analogous to Propositions 3, 4
and 5 in [7]. They follow from Theorems 1.2 and 1.5 in [6].

Proposition 4. Let G be an edge-locally G graph, for some finite graph
G . Let (X,p) be a connected covering space of AG. Then there is an
edge-locally G graph H such that p~'(G) = H and X = A H.

Proposition 5. Let (G, ), be a permutation voltage graph and G be a
connected edge-locally Gy graph. Then G2 is edge-locally Gy if and only if
the product of voltages in each triangle and quadrangle of G is 1.
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Proposition 6. Let G be a connected edge-locally Gy graph. Let (G,T, a)
be an ordinary voltage graph. Then the derived graph G is edge-locally
G if and only if the product of voltages in each triangle and quadrangle of
G is 1.

The following proposition was motivated by the similar results of Vince
[10] for locally homogeneous graphs. Call a subgroup B of the automorphism
group Aut G of a graph G strongly discontinous if for each ¢ € B and each
vertex v of G the distance p(v, p(v)) > 5.

Proposition 7. Let G be edge-locally Gy , for some finite graph Gy . Let
I’ C Aut G be a strongly discontinous subgroup of Aut G. Then the regular
quotient G /T is edge-locally Gy .

Proof. Consider link([e], G/T) for some edge e in G. We show that the
restriction p' = p/link(e,G) of the covering projection mapping a vertex
v onto [v] is an isomorphism mapping link(e, G) onto link([e],G/T"). By
its definition p' is onto. Since Link(e,d) is a graph of diameter at most
3, by the assumption we have that p’ is a bijection on the set of vertices
of link(e,G). Clearly, if e = wv is an edge in link(e,G) then [u][v] is
an edge in link([e], G/T'). On the other hand, let [f] = [u][v] be an edge in
link([e], G/T), where f = vw is the edge of G incident with v and mapped by
p onto [u][v]. Suppose, on the contrary, that an edge uwv is not in link(e, G).
Then w # w, w € [u] and the distance pg(u,w) < 4, a contradiction with
the assumption. Thus p’ is an isomorphism of the graphs link(e, G) and
link([e], G/T), and G/T" is edge-locally Go . O

Note that if the graph G in Proposition 7 is strongly edge-locally G then
the graph G/I' is strongly edge-locally G as well. The following corollary
allows us to build edge-locally homogeneous graphs from groups.

Corollary 8. Let G be an edge-transitive graph. Let I' C AutG be a
strongly discontinous subgroup of the automorphism group AutG. Then
the regular quotient G/T" is strongly edge-locally homogeneous.

The following two theorems can be considered as edge variants of results
in [7].
Theorem 9. Let G be a finite graph and let the Euler characteristic
X(AG) <0. Then for each n > 1 there exists an n-fold cover of AG.

Proof. Denote by v, e, f3 and f; the number of vertices, edges, triangles
and induced quadrangles in G, respectively. The fundamental group 7(A G)
is generated by gen = e — v + 1 generators satisfying rel = f3 + f, relations.
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By the assumption we have rel = f3 + fs < e—v+ 1 = gen. Thus
7(A G) contains a subgroup of index n for each n > 1. It follows from the
well-known correspondence betweeen the covers of a topological space and
subgroups of its fundamental group that for each n > 1 there is an n-fold
cover of AG. 0O

Theorem 10. Let Gy be a finite graph. Let G be a finite connected edge-
locally G graph and let x(AG) < 0. Then

(a) for each n > 1 there exists a connected edge-locally Gy graph with
n.v(G) vertices,

(b) there exists an infinite connected edge-locally G graph.

Proof. Theorem 9 implies that there is an n-fold cover of A G for each n > 1.
The statement (a) now follows from Proposition 4. Consider the universal
cover X of AG. By Proposition 4 X = A G, where G is edge-locally Gy
, and moreover, G covers each the edge-locally Gy graph constructed in
the proof of part (a) of the theorem. Thus the number of vertices of G is
infinite. O

If G is strongly edge-locally homogeneous then the following proposition
enumerates the cases for which x(AG) <0.

Proposition 11. Let G be strongly edge-locally Go . Then x(AG) < 0
if and only if either G is an (r,t,s)-graph, where 0 < 4t 4+ 3s < 11 and
r > 24/(12 — 4t — 3s), or G is bipartite biregular, e(Go) = s < 3 and
e(G) 2 v(G)/(1 = s/4).

Proof. Let v and e be the numbers of vertices and edges in G, respectively.
Denote by f3 and f4 the numbers of triangles and induced quadrangles of
G, respectively. Then x(AG) = v —e+ f3+ fs . According to Proposition
3 @ is either an (7, s,t)-graph, or it is bipartite biregular. In the first case
we have e = vr/2, fs = et/3 = vrt/3, and fy = es/4 = vrs/8. Thus the
inequality x(A G) < 0 is equivalent to the inequality 24 +r(4t+3s—12) <0
implying the first part of the statement. In the second case f3 = 0 and the
inequality x(A G) < 0 is equivalent to the inequality v < e(1 — s/4), where
s=fi=e(G). O
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A NOTE ON REGULAR LANGUAGES

BOHUSLAV SIVAK

ABSTRACT. In this paper there are constructed two non-regular languages
satisfying the well-known necessary condition for regular languages and there
is modified this necessary condition. It is not known if the new modification
of the necessary condition is sufficient.

1. Introduction.

We are going to show that the wel-known necessary condition for regular
languages (here: Theorem 2) can be replaced (without any change in the
method of the proof) by certain more strong necessary condition (here:
Theorem 3).

We shall use the following notations:

N ...the set of all non-negative integers
T* ...the set of all strings of the form z1x5 ...z with k € N, x; € T,
including the empty string e.
We shall assume that the set T is finite. The subsets of T™*
are called languages.
wiws . . .(the concatenation) if w1 = 1 ... 2, and wo = Y1 - .. Ym,
then wyws = &1 ... TkY1 - .. Ym- (Special cases: ee = e,
ew = we = w.)
|w| ...the length of the string w (Je| = 0.)

a™ ...the string aa...a (n-times, a® =e).

1991 Mathematics Subject Classification. 68Q45.
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Remark. The notion of regular language can be defined by many ways. More
precisely, there are many possible (pairwise non-equivalent) definitions of
regular grammars. However, all these definitions yield the same class of
languages.

2. Two conditions for regular languages.

Theorem 1. (An easy consequence of Theorem 3.1 in [4], resp. Theorem
1.3.3 in [5]. See also [1].) Let T be a finite set and let L be a subset of the
set T™.
a) Put
Rp = {[z,y] | Ly = Ly}, where
L,={t|ztelL}.
(Here z,y,z,t € T*.) If the language L is regular then Ry, is a right con-
gruence on T™* such that L can be written in the form of the union of some
classes of the equivalence relation Ry and this equivalence relation has a
finite index.
b) If R is a right congruence on T* of a finite index and if the language
L can be written in the form of the union of some classes of R, then
L is regular.

Remark. For each finite set T, the set T with the operation of concatena-
tion is a free monoid over the set T. The ”right congruence” is an equiva-
lence relation R on the set T such that

xRy implies xzyRyz (z,y,z € T").
The index of any equivalence relation R is the number of R-blocks.

Example 1. (by [5], Example 1.3.6.) Put T' = {a,b}, L = {a"b"|n > 0}.
Applying Theorem 1, we shall prove that the language L is not regular.

If L is an union of certain classes of a right congruence R on {a,b}* of a
finite index p, then at least two of the strings

a,a®,a®, ..., aPtL.
are in the same class of R, say
a'Ra/,1<i<j<p+1.
Then (R is a right congruence!) it holds:
a'b'Ra’b’,
a contradiction (a’b’ € L but not a/b’ € L).
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Lemma 1. Put T = {a,b} and put
L, = {a"b"|n > 1},
Lo = {w|w € T*, #4(w) = #(w) > 0},
where #;(w) denotes the number of occurences of the symbol t in the string
w. Then it holds:
L, CLC Ly, = L is not regular.

Proof. Similarly as in Example 1, at least two of the strings a,as,as, ...,
ap+1 are in the same block of the right congruence R, say

a'Ra/,1<i<j<p+1.

Then it holds o
wi; = a'b'Ra’b’ = wa,

a contradiction. (Here wy € Ly but not wy € Ls.)

Theorem 2. (See [6], Theorem 3.6 with a fault in the last row.) Let L be
a regular language. Then there exists a constant p > 0 such that for every
w € L, |w| > p, the string w can be written in the form

w = wiwaws,

where 0 < |Ws| < p and for all i € N, wiws'w3 € L.

Remark. In Theorem 2, the case i = 0 is included. In the proof of this
Theorem there are used finite automata. The fundamental properties of
regular languages and finite automata can be found, for instance, in [1], [2],
[3]-

Example 2. Let Ls be a language from Lemma 1. We know that Lo is
not regular. However, the non regularity of this language can not be proved
by a direct application of Theorem 2. In fact, the necessary condition is
satisfied for p = 3. (Each string w € L, |w| > 3, contains a substring
identical to ”ab” or "ba” and this substring can be used in the role of w, in
Theorem 2.)

Remark. (See [5], Example 2.2.13.) It is known that the class of all regular

languages is closed to the operation of the intersection. Using this fact and

Theorem 2 we can easily prove the non-regularity of Ly. In fact, if we put
Lz = {a't’|i > 1},

then LoN L3z = L; and the non-regularity of L; can be proved by Theorem 2.
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3. A more strong condition of regular languages.

Theorem 3. Let L be a regular language. Then there exists a constant
p > 0 such that for every w € L, if lw| > p and w is written in the form

w = TuLs, [u| = p,
then the string u can be wrtitten in the form

u = y1vys, [v| >0,
in such a way that for each i € N, x1y,v'ys25 € L.

Remark. Theorem 3 can be proved by the same method as Theorem 2. We
are going to show that the necessary condition in Theorem 3 is more strong
than the necessary condition in Theorem 2.

Example 3. Let us continue the Example 2. The language L, is non-
regular but this fact can not be proved by a direct application of Theorem
2. On the other hand, it is possible to apply Theorem 3: it suffices to put

w=aPbt?’, x1 =a’,u=0, 25 = e.

Remark. By the same argument it can be proved the non-regularity of the
language Ly (see Lemma 1).

Example 4. Put T = {a,b} and put
L= {a™(ab)’b* :m >k >0,j > 0}.
First we shall try to apply Theorem 2. However, the necessary condition
is satisfied for p = 3. In fact, assume that
w = a®(ab)’b*,m >k > 0,5 >0,m+2j+k > 3.

There are 3 possibilities:
1) j > 1. Then it suffices to put

w1 = a™,ws = ab, w3 = (ab)j_lbk.
2) j=1,k>0. Then w = a™(ab)b*,m > k > 1 and it suffices to put
wy = a™, wy = ab, ws = bF.
3) j=1,k=0,m > 0. Then w = a™*b,m > 1 and it suffices to put

w; = e, w2 = a, w3z = ab.
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Therefore, it is impossible to prove the non-regularity of the language L by
a direct application of Theorem 2, but it suffices to apply Theorem 3 to the
strings

x1 = aP(ab),u = b, x5 = e,w = ap(ab)b®.

Remark. The language L from Example 4 is not regular but it is context-
free. In fact, it is generated by the following context-free grammar:

S — aSb|aS | R,

R — Rab | ab.
(Here S is the starting non-terminal symbol.) The author does not know if
the non-regularity of this language can be proved by a similar method as in
the remark after the Example 2.

4. Two open problems.

In [4] many unsolvable problems concerning context-free grammars and
languages can be found. For instance, it is unsolvable to decide if the
language generated by arbitrary context-free grammar is regular. Therefore,
at least one of the following two problems has the negative answer.

Problem 1. Is it possible (for an arbitary context-free grammar G) to
decide if the language generated by G satisfies the necessary condition from
the Theorem 37

Problem 2. Is it true that each context-free language satisfying the
necessary condition from Theorem 3 is regular?
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SUBDIRECT DECOMPOSITIONS OF DIGRAPHS

PavEL KLENOVCAN

ABSTRACT. Direct product decompositions of the covering graph C(G) of a
digraph G and direct product decompositions of G were studied in [1]. The

relations between a certain type of subdirect decompositions of C(G) and
subdirect decompositions of G will be studied in the present paper.

A graph G = (V,E) consists of a nonempty set V' of vertices together
with a prescribed set E of unordered pairs of distinct vertices of V. Each
pair {z,y} € E is an (undirected) edge of the graph G and shall be denoted
by zy.

A digraph G = (V, E) consists of a nonempty set V of vertices together
with a prescribed set E of ordered pairs of distinct vertices. Each ordered
pair (z,y) € E is a (directed) edge of the digraph G' and shall be denoted
by Ty.

Let I be a nonempty set and G; = (V;, E;), i € I be graphs. Let V be the
cartesian product of the sets V; (V' = [[;c; Vi). The elements of V' will be
denoted a = (a;), i € I, where a; = a(i) € V;. Let G be a graph whose set of
vertices is V' and whose set of edges consists of those pairs {z,y}, z,y € V
which satisfy the following condition: there is ¢ € I such that z;y; € F; and
xj; =y; for each j € I'\ {i}. Then G is said to be the direct product of the
graphs G;, i € I and we write G = [[,.; Gi-

The direct product of digraphs is defined similarly.

For all further notions concerning digraphs and graphs we refer the reader
to [2].

Let [[,c; G = (V, E). f W C V, then we denote O;(W) = {a;a € W}.

Let [],c; Gi = (V, E) be the direct product of graphs G; = (V;, E;) (i € I).
If W CV and O;(W) =V, for each i € I, then a graph G = (W, F'), where

1991 Mathematics Subject Classification. 05C20, 06 A06.
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F = {ab € Ea,b € W}, will be called a subdirect product of the graphs G;.
If G is a subdirect product of graphs G; we write G = (sub) Hie] G;.
Subdirect products of digraphs are defined similarly.

Remark. If W =V, then (sub) [[,c; Gi = [1;c; Gi-

The subgraph of a graph G = (V, E) induced by a set W C V will be
denoted by G(W).

Remark. Since a graph (sub) [[;c; G is in fact a subgraph of the graph
[I;c; Gi induced by a suitable set W with O;(W) = V; for each i € I, then

(sub) Hie[ Gi = (Hie[ Gi)(W).

If a mapping fV; — V5 is an isomorphism of a graph G; = (V4, Ey) onto
a graph Gy = (Va, E»), then we shall write G; é G- or shortly G, ~ Gs.

If g L (sub) [[;c; Gi then we shall say that (sub)[],.; G; is a subdirect
decomposition of the graph G (with respect to the mapping f).

In the present paper every subdirect decomposition (sub) [[,.; Gi, where
G; = (V;, E;), is supposed to be nontrivial (i. e. |V;| > 1 for each i € I).

Analogous terminology and notation are used for digraphs.

Let G = (V,E) be a digraph. By the covering graph of G we mean the
graph C(G) = (V, E) where ab € E iff ab € E.

The following two lemmas are easy to verify.

Lemma 1. Let El = (Vl,El), 32 = (‘/Q,EQ) be digraphs. Ifgl é 32 then
— £ —

Lemma 2. Let [[,.;G; = (V,E) be the direct product of digraphs G,

i €I andlet W C V. Then C((I1;c; Gi)(W)) = ([Licr C(Ga))(W).

Lemma 1 and Lemma 2 imply the following

Theorem 1. Let G, G;, i € I be digraphs and G L (sub) [T;c; Gi- Then
_ _
C(G) =~ (sub) Hie[ C(Gi)-

Definition. Let G = (V,F) be a digraph and let C(G) ~ (sub) [I,., G,
where G; = (V;, E;), i € I. We shall say that the subdirect decomposition
(sub) [T;c; G: of the graph C(G) induces a subdirect decomposition of the
digraph G if there exist such digraphs G; = (V;, E;) that C(G;) = G; for

each i€ I and G & (sub) IT;c; Gi-
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A subdirect decomposition of C(G) does not induce a decomposition of
G in general. The digraph G = ({a,b,c,d}, {ab,bc,cd,da}) is not isomor-
phic to the subdirect product of any two digraphs but its covering graph is
isomorphic to the subdirect (direct) product of two complete graphs K.

We are going to investigate when a subdirect decomposition of C(G)
induces a subdirect decomposition of G.

Let G = (V,E) be a graph. If there exists a four-element set W =
{a,b,c,d} C V such that G(W) = (W, {ab,bc,cd,ad}), then we say that
the graph G(W) is a square (in G) and we denote it by S(a,b,c,d). If G is
a digraph and C(G(W)) = S(a,b,c,d), then the digraph G(W) is called a
square (in G) and will be denoted by S(a, b, c, d).

An edge ab of a graph [];.; Gi ((sub)[];c; G:) will be called a k-edge
whenever a; = b; for each j € I'\ {k}.

We say that ordered pairs (a,b) and (¢, d) of vertices of a direct product
[I;c; Ui (subdirect product (sub) [[;c; G:) are r-equivalent and write (a, b) ~
(c,d) if ab and cd are r-edges and a, = ¢, b, = d,.

It is easy to see that if (a,b) ~ (c,d) then (b,a) ~ (d,c).

A square S(a,b,c,d) in [[;c;G: ((sub)]];c;G:) will be called an
r-square whenever all its edges are r-edges for some r € I. If such r € I
does not exist, it will be called a mized square.

Let C(G) L [Lic; Gi- We shall say that the edge ab of the digraph G

and the edge ab of the covering graph C(G) are k-edges (with respect to
the isomorphism f) if f(a)f(b) is a k-edge of the graph [];,.; G;. In an
analogous way the other notions concerning the direct product [],.; G; can
be introduced for the digraph G and the covering graph C(G).

In [1] it was proved that if S(a,b, ¢, d) is a mixed square, then there exist
r,s € I, r # s such that ab, cd are r-edges and bc, ad are s-edges (cf.
Lemmas 2, 3, 4 in [1]).

icl

Lemma 3 [1]. Let S(a,b,c,d) be a mixed square in [],.; Gi, where ab is
an r-edge and bc is an s-edge. Then (a,b) ~ (d,c), (b,¢) ~ (a,d).

Since (sub) [[;c; Gi = (IT;c; 9:) (W), the above mentioned facts hold also
for the subdirect products.

Let (sub) [[;c; Gi = (V, E) be a subdirect product of graphs G; = (V;, E;)
and let (a;), (b;)) € V, i € I. We shall say that the subdirect product
(sub) [[;c; G: is orientable if the following condition is fulfilled:

If agb, € E} then there exists a k-edge (a;)(b;) € E, i € I.

Example. Let G = ({a,b,c},{ab,bc}), G' = ({1,2,3,4},{12,23,34}) be
graphs. Let W = {(a,a),(a,b),(a,c),(b,a),(c,a),(c,c)} and W' =
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= {(1,1),(1,2),(1,3),(2,1),(3,1),(4,4)}. Then the subdirect product
(sub) [Tic1,0 Gi = (Ilieq1 .2y Gi) (W), where G; = G, i € {1,2}, is orientable
and the subdirect product (sub)[T;cqi 0y Gi = (Ilieqi 2y 9)(W'), where
Gi = ¢, i € {1,2}, is not orientable. Let us notice that
(sub) Hie{l,z} Gi ~ (sub) Hie{l,z} gi.-

All subdirect products considered in the next are assumed to be ori-
entable.

Lemma 4. Let C(G) ~ (sub) [I,., Gi, where G = (V, B) and G; = (Vi, Ey).
The subdirect decomposition (sub) [,.; i of C(G) induces a subdirect de-
composition of G if and only if for any two r-equivalent ordered pairs (a, b),

(¢,d) of vertices of G the following condition is fulfilled:

(1) ab€ E  ifand only if cd € E.

Proof. Tt suffices to define G; for each i € I by G; = (V;,E;), where
f(a);f(b); € E; if and only if there exists an i-edge ab € E.

A subdirect product (sub) [[;,;G; = (W, E) = G is said an I-product if
the following condition is fulfilled:
Ifa,b,c,d € W and (a,b) ~ (c,d), then there exist a nonnegative inte-
ger n and vertices 2° = a,z',..., 2" =c¢, y° =b,y',...,y" =deEW
such  that  G(z/,27T, ¢yt 43y is a  mixed  square
S(xd, 2Tt yITL yI) for each j € {0,1,...,n — 1}.

Remark. If G = [[;c; G is a connected graph, then the direct product
[I;c; Gi is an l-product (cf. Lemma 6 in [1]).
The following theorem is a generalization of a result from [1].

Theorem 2. Let C(G) % (sub) [I,., Gi, where G = (V, E) is a digraph and
(sub) [[;c; 9: is an I-product. The subdirect decomposition (sub) [];.; G
of C (3) induces a subdirect decomposition of G if and only if the following
condition is fulfilled:
(2) If S(a,b,c,d) is a mixed square in G, then there exists

i € {1,2,3} with S(a,b,c,d) ~ S;, where

S1 = ({a,b, ¢, d}, {ab,bc, dc, ad}),

Sy = ({a, b, c,d}, {ab, ba, be, cd, de, ad}),

S3 = ({a, b, c,d}, {ab, ba, bc, cb, cd, dc, da, ad}).

Proof. Let the subdirect decomposition (sub) [[;c; Gi of C'(G) induce a sub-
direct decomposition of G and S(a,b,c,d) be its mixed square. Then, by
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Lemma 3, there exist r,s € I, r # s, such that (a,b) ~ (d,c), (b,c) ~ (a,d)
and (b,a) ~ (¢,d), (¢,b) ~ (d,a). From Lemma 4 it follows that ab € E
iff de € E, bc € E iff ad € E and ba € E iff cd € E, ¢b € E iff
da € E. Thus there exists i € {1,2,3} with S(a,b,c,d) ~ S;. To prove
the converse implication, suppose that (2) is fulfilled. With respect to
Lemma, 4, it suffices to prove that if (z,y) ~ (u,v), then (1) holds. Since
(sub) [[;c; G: is an l-product, then there exist a nonnegative integer n and
vertices z° = z,z',..., 2" = u, y° = y,y',...,y" = v € V such that
G(xd, 271yt y7) is a mixed square S(z7,z/t! yit1 y7) in G for each
j€{0,1,...,n—1}. If n = 0, then (1) holds, since (z,y) = (u,v). If n =1,
then S(z,u,v,y) is a mixed square and from (2) it follows (1). Now it is
easy to complete the proof by induction on n.
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CHARACTERIZATION OF UNIVERSAL
QUASIGROUP IDENTITIES OF CANONICAL TYPE

GABRIELA MONOSZOVA

ABSTRACT. Quasigroup identities of canonical type are defined. Conditions
which are necessary and sufficient for such identities to be universal are
found.

In 1968 Belousov [1] posed the conjecture that the variety of quasigroups
is invariant under the isotopies if and only if it can be characterized by equal-
ities whose coresponding diagrams satisfy the following two conditions:

(1) they can contain only forks of the following three types

(2) if the numbers 1, 2 and 3 are assigned to the tops of the forks as
indicated below

1991 Mathematics Subject Classification. 20N05.
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then whenever an element x has a position ¢, ¢ = 1,2,3 in a fork
then the element = has the same position ¢ in any fork containing x.

In the present paper necessary and sufficient conditions for a class of
quasigroup identities to be invariant under the isotopies are given.

Let (@; A) be a quasigroup. The right or the left inverse operation to
the operation A will be denoted by "A or ' A, respectively. Using the unary
functors 7 and [, we can assign the set ¥4 = {4,7A, LA "L A" A " A} to
the quasigroup (Q; A). Here A := "('A) and similarly for "' A and " A.
Denote by ¢ the identity map. Since r2 = > = ¢ and rlr = Irl, the set
Y = {i,r,l,rl,lr,rlr} with the composition is a group isomorphic to the
group of all permutations of a three-element set. Hence for every o € X,
A(z,y) = z if and only if “ A(ox, 0y) = oz.

Throughout the paper X is a countable set of variables, T (X 4) is the set
of all terms of the language X4 over X and R(X4) is the set of all identities
of the language ¥ 4 over X. For w € R(X 4) let W,, be the set of all variables
contained in w and V,, the variety characterized by the identity w.

To every quasigroup identity w € R(X 4) a diagram can be assigned such
that to every operation from Y4 a vertex coresponds as shown in Fig.1.

VVVVVY

A(z,y) TA(z,y)  'A(x,y)  MA(z,y) TA(x,y)  TA(x,y)

Fig.1

Moreover, to every variable occuring in the identity w we can assign one
of the numbers 1, 2 and 3 according to Fig.2 (note that here the notation
of vertices plays an important role).

46



1 21 33 22 13 12 3
V\*/ * *

\ /\ /\ /\ /N /\ /

3 Qvlvs 2 N/

Fig.2

We give an example. Consider the identity

((z2) xy) " ()2 = (2\y)(2/2)

where (4) = (), ("A) = (\), ‘4) = (/), (""" A) = (%) (i.e., the multiplicative
notation is used). Then the diagram assigned to w is that in Fig.3.
z x Y oz ] z x

1

Fig.3
Definition 1. Every quasigroup identity w € R(X4) of the form

TVA(w, 72 A, -, T AT, Tg1)) 1) = T

where n € N, x,,%1,...,Znt1 € X, 01,092,...,0p € ¥ will be called an
identity of canonical type.

Definition 2. An identity w € R(X4) of canonical type will be called
optimal, if it satisfies the following three conditions

(i) w contains no terms of the forms
B(z,"B(z,1)),
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'B(z,"B(y, ),

where B € Y4, t € T(X4), T,y € Wy;
(ii) for every 4, j with 2 <14 < j < n there exists a quasigroup @ € Vy,
in which the identity

Ai(iﬂi,Ai+1($i+1, S 7An(xnaxn+1)) . ) =

= Aj(zj, Ajr1(Tjrr, o An(Tn, Tnga)) - - -)

does not hold;
(iii) for every 7 with 2 < i < n there exists Q) € V,, in which the identity

Ai(ziy Aigry o An(Tn, i) -2 ) = o
does not hold.

An optimal quasigroup identity will be called nontrivial if it contains
no isolated variable, i.e., if every variable € W, occurs at least twice in
the identity w. In the sequel only nontrivial quasigroup identities will be
considered.

Let (@1, B) and (Q2, A) be quasigroups. An ordered triple T = («, 3,7)
of bijections of the set ()1 onto the set ()2 is called an isotopy of the quasi-
group (@1, B) onto the quasigroup (@2, A) provided the following diagram
commutes

Q1 x Q1 £ Q1
axﬁl ’YJ{
Q2 x Qy —2— Qs
The quasigroup (Q2; A) is also called an isotope of the quasigroup (Q1; B)-

Let T'(¢1, 2, p3) be an isotopy of a quasigroup (@); B) onto (Q); A), (with-
out loss of generality we can assume that Q; = Q2 =: @, since Q1 = Q»).
An identity w € R(¥4) of the form

(W) 01A(1’1,02A(1‘2,...,O—"A(:L’n,;rn+1))...) = To

is called universal [2], if it is invariant under every quasigroup isotopy. In
other words, w is an universal identity if it holds in some quasigroup (Q; A)
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if and only if for any isotopy T = (¢1, 2, ¢3) onto quasigroup (@, A), the
identity

(Tw)

T A(Po1 1715 0012003 AlPaa1 T2, oy P 120557 AlPo 1Tns Py 2Tnt1)) - - ) =

= Y513%o
also holds in (Q; A).

Definition 3. We will say that the diagram of a quasigroup identity sat-

isfies the condition if all forks contained in the diagram are of the
following form (see Fig. 4):

Fig. 4

Here \/ denotes any of the vertices

oo N\
Here \/ denotes any of the vertices v or \6/
o

Here \// denotes any of the vertices

Definition 4. We will say that the diagram of a quasigroup identity sat-

isfies the condition if every variable occuring at a top of the diagram
has the same position in each of its occurences (see Fig.2).

Theorem 5. Let an identity w € R(X ) be nontrivial. If the diagram of

the identity w satisfies the conditions and then w is invariant
under the isotopies of quasigroups.

Proof. Let w € R(X4)
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(w) TVA(xq, 2 Az, .o, AT, Tig1)) L) = T

holds in a quasigroup (Q;%4) and let T' = (p1, ¥2, ¢3) be an isotopy onto
the qausigroup (@Q;X4). We are going to prove that also the identity

(Tw)

T A(Po1 171, 00120757 AlPra1 T2, - -, Pon 120557 AlPon 1Tns Pon2Tntt)) - - -

= 90«713550

holds in the quasigroup (Q;%4).
Write the identity 7w in the following more convenient form

(Tw)
Poi1 Poal Po,1  Pon2

@(712‘10;213 (pffn712(p;j3
A (2, 72A (T2, ..., A (Tny,  Tny1)) ...) =

Here the coefficients (i.e., the bijections) from the isotopy T'(p1, @2, @3)
corresponding to the variables occuring in the identity are written in the
first row. The second row contains the coefficients (i.e. compositions of two
bijections from the isotopy T'(¢1, @2, @3)) corresponding to the symbols of
binary operations.

By the assumption the diagram of the identity w satisfies the condition
. Thus every variable has the same position in each of its occurences.
Therefore we can omit the first row and write the identity w using only two
rOws.

Since the diagram of the identity w satisfies also the condition , we
have @52 = @o,,,3, 1. gogk2<p;k1+13 = for any k € {1,2,...,n — 1}.
Therefore also the second row can be omitted. Then the identities Tw and
w have the same form and so it is obvious that Tw holds in a quasigroup if
and only if w holds in it.

Theorem 6. Let w € R(X 4) be a nontrivial identity. If the diagram of the
identity w satisfies the condition and does not satisfy the condition
then w is not a universal identity.

Proof. Let w € R(X4) be a nontrivial identity and let T = (1, p2,¥3)
be an isotopy onto a quasigroup (Q); A). Write the identities w and Tw as
follows:
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(W) UlA(xlao-zA(w27' .- 7JnA(xn7wn+1)) - ) =T
(Tw)
Poil ) Poal . Pon1l  Po,2
@012(10;23 (pgn—lztp;n?)
A (2, 72A (T2, ..., A (Tny,  Tny1)) ...) =

Choose T' = (p1, 2, ¢3) = (1, 8,1). The diagram of the identity w satis-
fies the condition m For the same reasons as in the proof of Theorem 1
we can omit the first row in Tw to get

551 ﬁﬁz . ﬁﬁn
(Tw) (”lA (w1, A (53, .y A (@yTas)-.) = m)
Heree; =0 and ¢; € {—1,0,1} for i € {2,...,n}.

The ordered n-tuple < €1,€3, ...,y > is said to be the signature of the
identity Tw and every pair < ¢j,6j4m > with jym € {1,2,...,n — 1},
J+m < n a sign change in the signature provided ¢;.€j4, = —1 and
simultaneously €;41 = €j42 = - = €j4m—1 = 0.

We are going to show that there exist a permutation # and a quasigroup
@ such that the identity w holds in @ but the identity Tw where T' = (s, 3, 1),
does not hold in . Denote the number of sign changes in the signature
< €1,...,€n > of w by d and the number of non-zero elements of this
signature by p. Without loss of generality we can assume that, for example,

En=¢k, =1, €,1=0, epa2=¢k,_,=-1,...,e3=0, ea=¢p, =1

the signature has p non-zero elements
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Then the following table can be assigned to the identity Tw

7 A(Zn, Tny1) o T A(me, 7 A, P y))
0"72A(1'n727 UnilA(mnfly 1y))
Bz ty Py
Bl %y
Tab.

Here in the first row we have the arguments of the permutation 8 and in
the second row the arguments of the permutation 3~'. The values of 3 or
B~ 1 at these arguments are written in the third or fourth row, respectively.
Since we want 8 to be a permutation, from the table we can see that all
the values in the first and fourth row must be mutually different. Hence
we get (5) conditions. Similarly we get other () conditions by taking
into consideration that all the values in the second and third row must
be mutually different. We are going to define 3 so that it satisfies all the
mentioned conditions and, moreover, the condition

UlA(xlaﬁE2 U2A(m27 s >6€n JnA(mnamn+1)) . ) 7é To,

i.e.
UlA(xlapy) 7é To.

Exactly d conditions from all p(p-1)4+1 ones have the following form

(qr) ”iA(mi,...,”jA(mj,ky))...)#ky

Since the identity w is optimal, for every condition (¢x), k¥ € {1,...,d}
there is a quasigroup @ € V., and elements of this quasigroup for which
(qr) holds. By Birkhoff theorem, @ := Q1 X Q2 X --- X Qg4 € V4. Then it is
possible to define (we do not go into details) n+2 elements ay, as, ... ,ap41,
a, from the quasigroup @@ and a permutation 8 on ) such that

6917 Aar, 8272 Alaz, ..., 877" A, anin) ) # o

So the identity w holds in the quasigroup @ = Q1 X Q2 X - -+ X Qg4, but the
identity Tw, T = (1, 3,t) does not hold in this quasigroup. Therefore w is
not universal.
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Theorem 7. Let w € R({A,"A,'A}) be a nontrivial identity. If the dia-
gram of the identity w satisfies the condition and simultaneously does
not satisfy the condition then w is not universal.

Proof. If the diagram of the identity
TVA(xq, 2 Az, .o, AT, Tig1)) L) = T

satisfies the condition | B1], then for every o; € {1,7,1,} the following holds
-if o1 € {1,r}, then opy1 = rog, k=1,2, ... n-1;
-if o1 = [, then o9 = r and o}41 = roy, k=2,3, ... n-1.
Depending on o7 and parity of the length [(w) of the identity w we obtain
six possible forms of w (the multiplicative notation will be used):
1) if oy = ¢ and I(w) is an even number

(w) zi(z2\(z3(2a\ - \(@n-1(@n\Tn41)) - . .) = To;

2) if oy = ¢ and I(w) is an odd number
(wo) z1(z2\(z3(z4\ .. \ (@1 \(Tn.Tpy1)) ... ) = x5

3) if oy = r and I(w) is an even number
(ws3) zi\(z2(x3\ ... (@1 \(Tp-Zny1)) ... ) = To;

4) if oy = r and l(w) is an odd number
(wa4) i \z2(3\ .. N\ (@n—1(@n\Tnt1)) - .. ) = To;

5) if o1 =1 and I(w) is an even number
(ws) w1/ (z2\(z3(2a\ .. \(@n-1(2n\Tn41)) - ) = To;

6) if oy =1 and I(w) is an odd number
(ws) z1/(z2\(z3(z4\ - . . (B \(Tn.Tpy1)) ... ) = Tp.

By using transformations which transform the identities fulfilled or not
fulfilled in a quasigroup into the identities which are fulfilled or not fulfilled,
respectively, in it, one can get the identity w; from ws and the identity w2
from wg. So it suffices to prove that the identities wy, ws, ws and w, are

universal:
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la) If 2,41 # z,, then the diagram of the identity w; has the following
form:

Then there is at least one ¢ and at least one j, i,j € {1,2,...,n} such that
Z; = Tpy1 and x; = z,. Let, e.g., i=2 and j=3. Then

(Twy) azy (azo\(azs(azy . .. (@xp_1\y22))...) = yz3.

Choose a quasigroup ) from the variety V,,, and elements a;,as,...,a,,b €

Q@ such that b # as # ag # b. After substituting these elements into the
identity w; we get

ay (a2\(as(aq\ ... (an—1(as\a2))...) = as.
Choose the isotopy T'(¢,¢,7y) onto the quasigroup @ with
yas =b, vb = a3, ~vr =z, forall x € Q — {as3, b}.
Substitute these elements into
(Twy) z1(x2\(x3(xa\ . . . (Tpo1(Tp\V22)) ...) = Y23
to get
ay(az\(as(aq\ ... (an—1(an\az2))...) =0b.
Clearly, the identity 7wy does not hold in ). Therefore w; is not universal.

1b) If 41 = x, then we have the following diagram of the identity w;
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Since this diagram does not satisfy the condition , there is at least
onei € {1,2,...,n} with ; = zp41. Let, e.g. 2 = x4 = xy41. Then

(w) z1(z2\(z3\(22(z5\ - . . (T \22)) ...) = 22

(Twy) z1(x2\(23\(22(25\ . .. (Xp\V22))...) = Y22

where yzy =1y ¢ W, .

Denote the left-hand side of the identity w; by f and consider the free
quasigroup F' whose free generators are the elements of the set W, U {y}.
In the quotient quasigroup F' | o<f,zs> (Where the relation © < f,zs > is
the smallest congruence containing the element [f, z2]) the identity wy holds
whereas T'w; does not hold in it. Therefore w; is not universal.

2) The following diagram corresponds to the identity ws
Tl T2 I3 T4 Tn—1Tpn Tn+1

To

3
Consider quasigroup (Q;.,\,/) and take elements a,,a1,...,ap+1 € @ in
places of the variables ,, x1, . .., Zn+1. Choose an isotopy T'(¢, ¢,7y) onto the

quasigroup (Q;.,\,/) such that the permutation v on @ has the property:
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va, = b # a,. Then the identity Twy does not hold in the quasigroup
(Q;.,\,/) and so w- is not universal.

Analogously as in the case of the identity w; or ws one can prove that
the identity ws or wy, respectively, is not universal.

Theorem 8. Let w € R(X 4) be a nontrivial identity. If the diagram of the

identity w satisfies neither the condition nor the condition then
w is not universal.

Proof. Take w € R(X4)

(W) JlA(xlang(mQr"70nA(xn7wn+1))"') =T

By the assumption the diagram of the identity w does not satisfy the
condition . Then there is a variable z; € W,, which occurs in the dia-
gram in two different positions. Without loss of generality we may assume
that one of them is the position 2. Consider the variety V,, and choose a
suitable quasigroup @ € V,, (the choice will be specified later). Take an
isotopy T' = (1, 3,¢) onto @ (B will be specified later)

(Tw) |
ﬂs’l ﬂsé o ﬂs’n Ben 1 3o
/681 ﬂEz . ﬂEn

1A (z1, 2A (22, ..., A (Th, Tpt1)) -..)= T,

where ¢} € {0,1} and ¢; € {-1,0,1},4 =10,1,...,n+ 1, j =1,2,...,n.
Then n-tuple < £1,€9,...,&, > can be regarded as the signature of Tw.
Denote by p the number of non-zero elements of this signature and by d the
number of its sign changes. Now analogously as in the proof of Theorem
6 consider p(p-1)+1 conditions and substitute suitable chosen elements aq,
ag, ..., anpy1, a, from the quasigroup @ into the variables z1, x2, ... , 41,
T
Further, we get p(n+2) new conditions by requiring

tm 7 Qg, k=0,1,....n+1, m=12,...,p,

where 1, ta, ... ,t, are terms from the first and from the fourth row in
Tab. So together we have B := p(p — 1) + 1 + p(n + 2) conditions. Let d
of them have the (gi) form (see proof of Theorem 6). Then the wanted
quasigroup ¢ € V,, will be of the form @ := @1 x --- x Qg, where @1,

. ,Q7 are suitable quasigroups chosen from V, by using conditions (qx),
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k=1,2,...,d. Now we are going to define a permutation 3 on (). Take a
map [ satisfying the above mentioned P conditions as well as the conditions
Bay = ay, k=0,1, ... ,n+1. Then extend § to be a permutation on (). Then
Tw is not fulfilled in the quasigroup @ though w is fulfilled in it. Therefore
w is not universal, which finishes the proof.

From Theorem 5 and Theorem 8 it follows that is a necessary con-
dition for a quasigroup identity w € R(X4) to be universal. Similarly, from
Theorem 6 and Theorem 7 we get that is a necessary condition for a
quasigroup identity w € R({A,"A,'A}) to be universal.

Hence we have

Theorem 9. Let w € R({A,"A,'A)} be a nontrivial identity. Then the

diagram of the identity w satisfies the conditions and if and only
if the identity w is universal.

Recall that every quasigroup identity such that its length is at most 7
and neither it nor the identities obtained from it by any transformations
contain a square, can be transformed into an identity of canonical type
by using only transformations which do not change the universality of the
identities [3]. This fact enlarges the class of quasigroup identities for which
Theorem 8 gives a necessary and sufficient condition for the universality of
the quasigroup identities.
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