NOTES ON THE CONGRUENCE LATTICES OF ALGEBRAS

ALFONZ HAVIAR

ABSTRACT. From [1] and [3] it follows that for any algebra $\mathcal A$ there exists a groupoid $\mathcal G$ for which $Con\mathcal A+1\simeq Con\mathcal G$ (where $Con\mathcal A+1$ is the ordinal sum). In the paper we directly define the operation of groupoid $\mathcal G$ by using the operations of algebra $\mathcal A$. From this construction it follows that for any binary countable algebra $\mathcal A$ there exists a groupoid $\mathcal G$ for which $Con\mathcal A+1\simeq Con\mathcal G$ and moreover, $\mathcal G$ has no nontrivial subgroupoid and no nontrivial automorphism. We also present (in Theorem 3) some results related to the lattice of subuniverses and to the automorphism group of $\mathcal A$.

Throughout this paper Ord denotes the class of all ordinal numbers and N denotes the set of all natural numbers. An algebra (A, F) will be often denoted by \mathcal{A} . Further, $Con\mathcal{A}$, $Sub\mathcal{A}$ and $Aut\mathcal{A}$ denote the congruence lattice, the lattice of subuniverses and the automorphism group for the algebra \mathcal{A} , respectively.

Let (A, F) be a binary algebra

$$A = \{a_k; k < \alpha, k \in Ord\}, \quad \alpha \in Ord,$$

$$F = \{f_k; k < \beta, k \in Ord\}, \quad \beta \in Ord,$$

let γ be a limit ordinal such that $\gamma \geq max\{\alpha, \beta\}$ and let

$$M = \{k \in Ord; k < \gamma\}, \quad S = \{-3, -2, -1\} \cup M.$$

We consider the usual ordering

$$-3 < -2 < -1 < 0 < 1 < 2 < 3 < \dots$$

1991 Mathematics Subject Classification. 08A30, 08A35. Key words and phrases. congruence relation, subalgebra, automorphism.

on the set S. Now we put

$$G = \{(a_r, s); r < \alpha, r \in M, s \in S\}.$$

To define a groupoid operation o on G we consider the following cases for an element

$$\begin{array}{ll} (a_i,r)o(a_j,s), & i,j<\alpha, & i,j\in M, & r,s\in S.\\ \text{I.} & r=s. \text{ a}) & 0\leq r<\beta \end{array}$$

(1)
$$(a_i, r)o(a_j, s) = (f_r(a_i, a_j), r+1),$$

b) either
$$r \in \{-3, -2, -1\}$$
 or $r \ge \beta$

(2)
$$(a_i, r)o(a_i, s) = (a_i, r+1).$$

II.
$$r < s$$
. a) $r + 1 = s$

(3)
$$(a_i,r)o(a_j,r+1) = (a_i,-2),$$
 b) $r+1 < s$

(4)
$$(a_i, r)o(a_j, s) = (a_i, -3).$$

III.
$$r > s$$
. a) $s = -3$

(5)
$$(a_i, r)o(a_j, -3) = (a_j, r),$$
 b) $s = -2$

(6)
$$(a_i, r)o(a_j, -2) = (a_j, -3),$$
 c) $s = -1, \quad 0 \le r < \alpha$

(7)
$$(a_i, r)o(a_j, -1) = (a_r, -3),$$

d) otherwise

(8)
$$(a_i, r)o(a_j, s) = (a_i, r+1).$$

Lemma 1. Let (A, F) be a binary algebra and (G, o) be the groupoid whose operation is defined by (1) - (8). For any congruence relation Φ of (G, o) the following properties are satisfied:

(i)
$$(x,k)\Phi(y,k) \iff (x,s)\Phi(y,s)$$

for all $k, s \in S$,

(ii)
$$(x,k)\Phi(y,s), \quad k \neq s \quad \Rightarrow \quad \Phi = G^2.$$

Proof. (i). From $(x,k)\Phi(y,k)$ it follows $(x,k)o(x,k+2)\Phi(y,k)o(x,k+2)$, i.e., by (4)

 $(x,-3)\Phi(y,-3)$. Thus, $(x,s)o(x,-3)\Phi(x,s)o(y,-3)$ and so by (5) $(x,s)\Phi(y,s)$ holds for any $s \neq -3$.

(ii). Let $(x,k)\Phi(y,s)$, $k \neq s$. We may assume that k < s. By hypothesis

 $(x,k)o(x,s+1)\Phi(y,s)o(x,s+1)$, i.e., by (4) and (3),

(a)
$$(x, -3)\Phi(y, -2)$$
.

From (a) it follows that for all $s \in S$, s > -2 $(x, s)o(x, -3)\Phi(x, s)o(y, -2)$, i.e., by (5) and (6),

(b)
$$(x,s)\Phi(y,-3)$$
.

Furthermore, (b) implies $(x,s)o(x,-1)\Phi(y,-3)o(x,-1)$; thus, by (7) and (4),

(c)
$$(a_s, -3)\Phi(y, -3)$$

for all $s \in M$, $s < \alpha$. Then (c), (i), (b) and (a) yield $\Phi = G^2$.

Theorem 1. Let (A, F) be an algebra. There exists a groupoid (G, o) such that

$$Con\mathcal{A} + 1 \simeq Con\mathcal{G}$$

Proof. We can suppose that (A, F) is an algebra with binary operations. Let (G, o) be the groupoid whose operation is defined by (1) - (8). Define a mapping $F: Con \mathcal{A} \to Con \mathcal{G}$ as follows:

(9)
$$(x,k)F(\Theta)(y,s)$$
 iff $k=s$ and $x\Theta y$, $\Theta \in ConA$.

1. First, we prove that the mapping F is well-defined, i.e., $F(\Theta) \in Con\mathcal{G}$. Obviously, $F(\Theta)$ is an equivalence relation on G. It suffices to prove that $(x,k)F(\Theta)(y,k)$ implies

(d)
$$(x,k)o(z,r)F(\Theta)(y,k)o(z,r)$$

and

(e)
$$(z,r)o(x,k)F(\Theta)(z,r)o(y,k)$$

for every $(z,r) \in G$. We only prove (d), since (e) can be proved in a similar way.

If k = r and $0 \le k < \beta$, then from $x\Theta y$ it follows $f_k(x, z)\Theta f_k(y, z)$ and so

 $(f_k(x,z),k+1)F(\Theta)(f_k(y,z),k+1)$ holds. Therefore we get (d) by (1). In the other cases (d) is of the form

$$(x,m)F(\Theta)(y,m)$$
 or $(t,m)F(\Theta)(t,m)$

for some t, m. Hence, (d) obviously holds.

2. Let $\Phi \in Con\mathcal{G}$, $\Phi \neq G^2$. We define a relation Θ on A as follows:

(10)
$$x\Theta y \quad iff \quad (x, -3)\Phi(y, -3).$$

Obviously, Θ is an equivalence relation on A. Let $x\Theta y$ and let $k\in M, k<\beta$. Then by (i) (Lemma 1) we have $(x,k)\Phi(y,k)$. Therefore, we get $(x,k)o(z,k)\Phi(y,k)o(z,k)$, i.e.

 $(f_k(x,z),k+1)\Phi(f_k(y,z),k+1)$. Then again by (10) and (i) we have $f_k(x,z)\Theta f_k(y,z)$. Analogously, we get $f_k(z,x)\Theta f_k(z,y)$. Thus, $\Theta\in Con\mathcal{A}$ and obviously $F(\Theta)=\Phi$.

3. It is easy to check that

$$\Theta_1 \le \Theta_2 \quad iff \quad F(\Theta_1) \le F(\Theta_2)$$

for all $\Theta_1, \Theta_2 \in Con\mathcal{A}$. If we denote $F(A^2)$ by Ω , then we conclude that Ω is a unique dual atom of the lattice $Con\mathcal{G}$ and the mapping F is an isomorphism between $Con\mathcal{A}$ and the ideal $(\Omega]$ of the lattice $Con\mathcal{G}$. The proof is complete.

Corollary. Let L be an algebraic lattice. There exists a groupoid \mathcal{G} such that $L+1 \simeq Con\mathcal{G}$.

Theorem 2. Let (A, F) be an algebra with binary operations such that A, F are countable. Then there exists a groupoid \mathcal{G} having no proper subgroupoids and no nontrivial automorphisms such that

$$Con\mathcal{A} + 1 \simeq Con\mathcal{G}$$
.

Proof. Let (G, o) be the groupoid whose operation is defined by (1) - (8), with $\gamma = \omega$. Then $Con\mathcal{A} + 1 \simeq Con\mathcal{G}$ by Theorem 1.

a) Now we shall prove that \mathcal{G} has no proper subgroupoids. Let H be the subuniverse of the groupoid (G,o) generated by the element (a,p). Let $0 \le p < \beta$. Then we successively get that H also contains the elements $(a,p)o(a,p) = (f_p(a,a),p+1) = (b,p+1), \qquad (b,p+1)o(b,p+1) = (f_{p+1}(b,b),p+2) = (c,p+2), \quad \text{whenever } p+1 < \beta$ $(b,p+1)o(b,p+1) = (b,p+2) = (c,p+2), \quad \text{if } p+1=\beta,$ $(a,p)o(c,p+2) = (a,-3), \quad (a,-3)o(a,-3) = (a,-2), \quad (a,-2)o(a,-2) = (a,-1), \text{ etc.}$

For every $m \in S$ there exists an element $d \in A$ such that $(d, m) \in H$. Then for every $m, 0 \le m < \alpha$ we get

$$(d,m)o(a,-1) = (a_m,-3) \in H.$$

We also get

 $(d,n)o(a_m,-3)=(a_m,n)\in H,$ for every n>-3. Hence, H=G holds.

If either $p \in \{-3, -2, -1\}$ or $p \ge \beta$ we obtain H = G in a similar way.

b) It remains to prove that \mathcal{G} has no nontrivial automorphisms. Let g be an automorphism of \mathcal{G} . If g(a,-3)=(b,-2) for some elements $a,b\in A$, then

$$g(a,-2)=g((a,-3)o(a,-3))=g(a,-3)og(a,-3)=(b,-2)o(b,-2)=(b,-1)$$

but this contradicts the fact that

$$g(a,-2) = g((a,-3)o(a,-2)) = (b,-2)o(b,-1) = (b,-2).$$

We analogously check that g(a,-3)=(b,p) where p=-1 or $0 \le p < \beta$ or $\beta \ge p$ is impossible, too. Hence, for every element $(a,-3) \in G$ there exists an element $(b,-3) \in G$ such that

(f)
$$g(a, -3) = (b, -3)$$
.

But (f) implies

$$g(a,-2) = g((a,-3)o(a,-3)) = (b,-3)o(b,-3) = (b,-2).$$

Similarly, g(a,-1)=(b,-1), g(a,0)=(b,0) $g(f_0(a,a),1)=g((a,0)o(a,0))=(b,0)o(b,0)=(f_0(b,b),1),$ etc. One can prove by induction that for every $m\in S$ there exist elements $c,d\in A$ such that

$$g(c,m) = (d,m).$$

For any n, $O \le n < \alpha$, (g) yields

$$g(a_n, -3) = g((c, n)o(a, -1)) = (d, n)o(b, -1) = (a_n, -3).$$

Now, for any $m \neq -3$ we get

$$g(a_n, m) = g((c, m)o(a_n, -3)) = (d, m)o(a_n, -3) = (a_n, m).$$

Therefore, g is the identity on G, and the proof is complete.

Theorem 3. Let (A, F) be an algebra with binary operations such that A, F are countable. There exists a groupoid (G, o) such that

$$SubA \simeq SubG$$
, $AutA \simeq AutG$ and $ConA \simeq (\Omega]$,

where $(\Omega]$ is an ideal of $Con\mathcal{G}$ generated by some element $\Omega \in Con\mathcal{G}$.

Proof. Let (G,o) be the groupoid constructed in the same way as in the proof of Theorem 1 where

(7')
$$(a_i, r)o(a_j, -1) = (a_i, r+1)$$

holds instead of (7) (i.e., (8) also holds in the case s = -1).

1. We shall prove that $SubA \simeq SubG$. Let $\phi : SubA \to SubG$ be the mapping defined as follows:

(11)
$$\phi(A_1) = \{(a, n); a \in A_1, n \in S\}.$$

First, we shall show that ϕ is well-defined, i.e., that $\phi(A_1)$ is a subuniversum of the groupoid \mathcal{G} . Let $(a, n), (b, m) \in \phi(A_1)$.

If $0 \le n = m < \beta$, then $(a,n)o(b,m) = (f_n(a,b),n) \in \phi(A_1)$. In the

other cases we have (a,n)o(b,m)=(a,k) or (a,n)o(b,m)=(b,k) for suitable $k \in S$, so again $(a,n)o(b,m) \in \phi(A_1)$.

In order to show that ϕ is surjective, let H be a subuniversum of \mathcal{G} , and let

$$A_1 = \{a \in A; \exists n \ (a,n) \in H\}.$$

Further, let $a, b \in A_1$ and let $f_p \in F$. Then there exist m,n such that $(a,m),(b,n) \in H$. In a similar way as in the proof of Theorem 2 one can prove that $(a,-3),(b,-3) \in H$, and that for every n there exists d such that $(d,n) \in H$. This implies

 $(d,p)o(a,-3) = (a,p) \in H, \quad (d,p)o(b,-3) = (b,p) \in H,$

 $(a,p)o(b,p) = (f_p(a,b), p+1) \in H, \text{ i.e.}, f_p(a,b) \in A_1.$

Therefore, A_1 is the subuniversum of \mathcal{A} , and clearly $\phi(A_1) = H$.

Obviously, ϕ is one-to-one and

$$A_1 \subseteq A_2$$
 iff $\phi(A_1) \subseteq \phi(A_2)$.

Hence, ϕ is an isomorphism.

2. Now we shall prove that $AutA \simeq AutG$. Let $\phi : AutA \to AutG$ be the mapping defined as follows:

(12)
$$\phi(f)(a,n) = (f(a),n), \quad f \in Aut\mathcal{A}.$$

First, we shall again show that ϕ is well-defined, i.e., that $\phi(f)$ is an automorphism of the groupoid \mathcal{G} . Obviously, $\phi(f)$ is a bijection on G since f is a bijection on G. Let $(a,n),(b,m)\in G$. If $0\leq n=m<\beta$, then

 $\phi(f)((a,n)o(b,n)) = \phi(f)(f_n(a,b),n+1) = (f(f_n(a,b)),n+1) =$

 $= (f_n(f(a), f(b)), n+1) = (f(a), n)o(f(b), n) = \phi(f)(a, n)o\phi(f)(b, n).$

If $n \neq m$, n+1=m, then we have

 $\phi(f)((a,n)o(b,m)) = \phi(f)(a,-2) = (f(a),-2) =$

 $= (f(a), n)o(f(b), m) = \phi(f)(a, n)o\phi(f)(b, m).$

We analogously get

 $\phi(f)((a,n)o(b,m)) = \phi(f)(a,n)o\phi(f)(b,m)$ in every other case (i.e., if n+1 < m, or n > m).

In order to show that ϕ is surjective, suppose that g is an automorphism of \mathcal{G} . In a similar way as in the proof of Theorem 2 one can prove that for every element $(a, -3) \in G$ there exists an element $(b, -3) \in G$ such that g(a, -3) = (b, -3), and that for every $m \in S$ there exist elements $c, d \in G$ such that g(c, m) = (d, m). This yields that for any $m \geq -3$

$$g(a,m) = g((c,m)o(a,-3)) = (d,m)o(b,-3) = (b,m).$$

On the other hand

$$g(a,-3) = g((a,n)o(c,n+2)) = (b,n)o(d,n+2) = (b,-3),$$

whenever g(a,n)=(b,n) for some n. Therefore, for any automorphism $g\in Aut\mathcal{G}$ we can define a mapping $f:A\to A$ as follows:

 $f(a) = b \iff g(a,n) = (b,n) \text{ for every } n \in S.$

We shall prove that the mapping f is an endomorphism on A. Let $a, c \in A$, $0 \le n < \beta$. Then

$$(f(f_n(a,c)), n+1) = g(f_n(a,c), n+1) = g((a,n)o(c,n)) =$$

= $(f(a),n)o(f(c),n) = (f_n(f(a),f(c)), n+1)$

which implies $f(f_n(a,c)) = f_n(f(a),f(c))$.

Since g is the automorphism on G, we conclude that f is the automorphism on A, and obviously $\phi(f) = g$.

One can easily check that ϕ is one-to-one, and that for any automorphisms $f,g\in Aut\mathcal{A}$

$$\phi(fog)(a,n) = ((fog)(a),n) = (f(g(a)),n) = (\phi(f)o\phi(g))(a,n).$$

Hence, ϕ is an isomorphism.

3. We define a relation Ω on G as follows:

(13)
$$(a,m)\Omega(b,n) \quad iff \quad m=n.$$

Obviously, Ω is the congruence of groupoid (G, o). Let

 $F: Con\mathcal{A} \to Con\mathcal{G}$ be the mapping defined by (9) (in the proof of Theorem 1). In the same way as in the proof of Theorem 1, one can prove that F is an isomorphism between $Con\mathcal{A}$ and the ideal (Ω] of the lattice $Con\mathcal{G}$. The proof is complete.

References

- R. Freese, W. A. Lampe and W. Taylor, Congruence Lattices of Algebras of Fixed Similarity Type I, Pacific. J. of Math. 82 (1982), 59-68.
- [2] B. Jonsson, Congruence Varieties, Algebra Univ. 10 (1980), 355-394.
- W. A. Lampe, Congruence Lattices of Algebras of Fixed Similarity Type II, Pacific. J. of Math. 103 (1982), 475-508.
- [4] E. T. Schmidt, A Survey on Congruence Lattice Representations, vol. Bd 42, Teubnertexte zur Math., Leipzig, 1982.

DEPARTMENT OF MATHEMATICS, MATEJ BEL UNIVERSITY, TAJOVSKÉHO 40, 975 49 BANSKÁ BYSTRICA, SLOVAKIA

(Received January 6, 1992)