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NOTES ON THE CONGRUENCE
LATTICES OF ALGEBRAS

ALFONZ HAVIAR

ABsTRACT. From [1] and [3] it follows that for any algebra A there exists
a groupoid G for which ConA + 1 ~ ConG (where ConA + 1 is
the ordinal sum). In the paper we directly define the operation of groupoid
G by using the operations of algebra .A. From this construction it follows
that for any binary countable algebra A there exists a groupoid G for which
ConA+ 1~ ConG and moreover, G has no nontrivial subgroupoid and
no nontrivial automorphism. We also present (in Theorem 3) some results
related to the lattice of subuniverses and to the automorphism group of .A.

Throughout this paper Ord denotes the class of all ordinal numbers and
N denotes the set of all natural numbers. An algebra (A4, F') will be often
denoted by A. Further, ConA, SubA and AutA denote the congruence
lattice, the lattice of subuniverses and the automorphism group for the
algebra A, respectively.

Let (A, F) be a binary algebra

A={ar;k < a,k €O0rd}, «€Ord,

F={fi;k<pB,keOrd, BeoOrd,

let v be a limit ordinal such that ~ > maz{«a,3} and let
M ={keOrd;k <~}, S={-3,-2,—-1}UM.
We consider the usual ordering

-3<-2<-1<0<1<2<3<..,,
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on the set S. Now we put
G ={(ay,s);r < a,r € M,s € S}.

To define a groupoid operation o on G we consider the following cases for
an element

(ai,r)o(aj,s), i,j<a, i,jEM, r,s€S.

I. r=s.a) 0<r<g

(1) (ai,r)o(aj,s) = (fr(aiaaj)7T+1)7
b) either r € {-3,-2,-1} or r>p
(2) (aiaT)o(aj) S) = (CLZ',T + 1)

II. r<s. a) r+l=s

(3) (aiaT)O(ajﬂ r+ 1) = (aia _2)7
b)r+1<s

(6) (aiar)o(aj7_2) = (aja_3)7
c)s=-1, 0<r<a

(7) (aiar)o(ah 71) = (ara 73):
d) otherwise
(8) (ai,r)o(aj, s) = (ai,r +1).



Lemma 1. Let (A, F) be a binary algebra and (G, 0) be the groupoid whose
operation is defined by (1) - (8). For any congruence relation ® of (G, 0)
the following properties are satisfied:

(i) (z,k)®(y, k) <= (2,5)®(y,s)
for all k,s €S,
(i) (z,k)®(y,s), k#s = &=G".

Proof. (i). From (z,k)®(y, k) it follows
(z,k)o(z, k + 2)®(y, k)o(z, k + 2), i.e., by (4)
(x,-3)®(y,—3). Thus, (z,s)o(r,—3)®(z,s)o(y,—3) and so by (5)
(x,s)®(y,s) holds for any s # —3.

(i3). Let (z,k)®(y,s), k #s. We may assume that k¥ < s. By
hypothesis
(z,k)o(z,s +1)®(y, s)o(z,s + 1), ie. by (4) and (3),

(a) (z,-3)®(y, -2).

From (a) it follows that for all se€S, s> —2
(J?, S)O(JT, —3)<I)($, S)O(yv _2)7 i-e-a by (5) and (6)7

(b) (1’,S)¢(y, _3)

](F‘u)rthermore, (b) implies  (z, s)o(z, —1)®(y, —3)o(x, —1); thus, by (7) and
4),

© (@, -3 (5, ~3)

forall se€ M, s<a. Then (c),(i),(b) and (a) yield ® = G>.

Theorem 1. Let (A, F') be an algebra. There exists a groupoid (G, 0) such
that
ConA+ 1~ Cong

Proof. We can suppose that (A, F') is an algebra with binary operations.
Let (G, 0) be the groupoid whose operation is defined by (1) — (8). Define
amapping F:ConA — ConG as follows:

9) (z,k)F(O)(y,s) iff k=s and 20y, © € ConA.
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1. First, we prove that the mapping F' is well-defined, i.e., F(©) € Cong.
Obviously, F/(©) is an equivalence relation on G. It suffices to prove that
(z,k)F(©)(y,k) implies

(d) (z, k)o(z, ) F(©)(y, k)o(z,1)
and
(e) (z,7)o(z, k)F(©)(2,7)o(y, k)

for every (z,7) € G.  We only prove (d), since (e) can be proved in a
similar way.

Ifk=rand 0 <k <3, then from 2@y it follows fi(z,2)0 fir(y,z) and
0
(fe(z,2),k +1)F(©)(fr(y,2),k + 1) holds. Therefore we get (d) by (1).

In the other cases (d) is of the form

(2,m)F(O®)(y,m) or (t,m)F(O)(t,m)

for some t,m. Hence, (d) obviously holds.
2. Let ® € ConG, & # G%. We define a relation © on A as follows:

Obviously, O is an equivalence relation on A. Let x®y and let
ke M,k < . Then by (i) (Lemma 1) we have (z,k)®(y, k). Therefore, we
get  (z,k)o(z,k)®(y,k)o(z, k), ie.
(fe(z,2),k + 1)®(fr(y,2),k + 1). Then again by (10) and (i) we have
fr(x,2)0fr(y,2)-  Analogously, we get fi(z,2)0 fi(2,y). Thus,
© € ConA and obviously F(©) = 2.

3. Tt is easy to check that

0; <0 iff F(01)< F(0y)

for all ©;,0, € ConA. If we denote F(A?) by Q, then we conclude
that Q is a unique dual atom of the lattice =~ ConG and the mappping F'
is an isomorphism between ConA and the ideal (Q] of the lattice ~Cong.
The proof is complete.

Corollary. Let L be an algebraic lattice. There exists a groupoid G such
that L+ 1~ CongG.
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Theorem 2. Let (A, F) be an algebra with binary operations such that
A, F are countable. Then there exists a groupoid G having no proper sub-
groupoids and no nontrivial automorphisms such that

ConA+ 1~ Cong.

Proof. Let (G,0) be the groupoid whose operation is defined by (1) — (8),
with y =w. Then ConA+ 1~ ConG by Theorem 1.

a) Now we shall prove that G has no proper subgroupoids. Let H be
the subuniverse of the groupoid (G, 0) generated by the element (a,p). Let
0 <p< B. Then we successively get that H also contains the elements
(a,p)o(a,p) = (fp(a,a),p+1) = (b,p + 1), (b,p + L)o(b,p + 1) =
(fps1(b,b),p+2) = (c,p+2), whenever p+1 <
(b,p+1o(b,p+1)=(bp+2)=(cp+2), ifp+1=5,

(a,p)o(c,p + 2) = (a7 _3)7 (a7 _3)0(0'7 _3) = (a7 _2)7 (a7 _2)0((13 _2) =
(a,—1), etc.

For every m € S there exists an element d € A such that (d,m) € H. Then
for everym, 0<m<a we get

(d,m)o(a,—1) = (am,,—3) € H.

We also get

(d,n)o(am,—3) = (am,n) € H, for every n > —3.
Hence, H =G holds.

Ifeither pe {-3,-2,—1} or p>p weobtain H =G in a similar
way.

b) It remains to prove that G has no nontrivial automorphisms. Let g be
an automorphism of G. If  g(a,—3) = (b, —2) for some elements a,b € A,
then

9(a,—2) = g((a, =3)o(a, =3)) = g(a, =3)og(a, =3) = (b, =2)o(b, —2) = (b, —1)
but this contradicts the fact that

9(a,=2) = g((a, =3)o(a, =2)) = (b, =2)o(b, —1) = (b, —2).
We analogously check that  g(a,—3) = (b,p) wherep=—-1lorO<p<f

or 3 > p is impossible, too. Hence, for every element (a,—3) € G there
exists an element (b, —3) € G such that

(f) 9(a,=3) = (b, =3).
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But (f) implies

g(a7 _2) = g((a7 _3)0(0’3 _3)) = (ba _3)0(b7 _3) = (b7 _2)'
SimilarIY7 g(a7 _1) = (ba _1)7 g(a7 0) = (b7 0
9(fo(a,a),1) = g((a, 0)o(a, 0)) = (b,0)0(b,0) = (fo(b,),1), et

=(
One can prove by induction that for every m € S there exist elements
¢,d € A such that

(8) g(e,m) = (d,m).
Foranyn, O<n<a, (g)yields
g(an, =3) = g((c,n)o(a, —1)) = (d,n)o(b, =1) = (an, =3).
Now, for any m # —3 we get
9(an,m) = g((c,m)o(an, =3)) = (d,m)o(an, =3) = (an,m).

Therefore, g is the identity on G, and the proof is complete.

Theorem 3. Let (A, F') be an algebra with binary operations such that A,
F are countable. There exists a groupoid (G, 0) such that

SubA ~ SubG, AutA~ AutG and ConA ~ (],

where (€] is an ideal of ConG generated by some element 2 € Cong.

Proof. Let (G,0) be the groupoid constructed in the same way as in the
proof of Theorem 1 where

(7) (as,r)o(aj, —1) = (a;, 7+ 1)

holds instead of (7) (i.e., (8) also holds in the case s = —1).
1. We shall prove that  SubA ~ SubG. Let ¢ : SubA — SubG be
the mapping defined as follows:

(11) ¢(A1) ={(a,n); a€A, neS}

First, we shall show that ¢ is well-defined, i.e., that ¢(A;) is a subuniversum
of the groupoid G. Let (a,n), (b,m) € ¢(A1).

If0 <n=m< g, then (a,n)o(b,m) = (fn(a,b),n) € ¢(A1). In the
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other cases we have (a,n)o(b,m) = (a,k) or (a,n)o(b,m) = (b, k) for
suitable k € S, so again (a,n)o(b,m) € ¢(A;).
In order to show that ¢ is surjective, let H be a subuniversum of G, and
let
Ay ={a€ 4 3In (a,n) € H}

Further, let a,b € A; and let f, € F. Then there exist m,n such that

(a,m),(b,n) € H. In a similar way as in the proof of Theorem 2 one can

prove that  (a,—3),(b,—3) € H, and that for every n there exists d such

that (d,n) € H. This implies

(dvp)o(av _3) = (avp) € H7 (dvp)o(b7 _3) = (bvp) € Hv

(a,p)o(b,p) = (fp(a,b),p+1) € H, ie.,fp(a,b) € A;.

Therefore, A; is the subuniversum of 4, and clearly ¢(4;) = H.
Obviously, ¢ is one-to-one and

A C A iff d(Ar) C o(As).

Hence, ¢ is an isomorphism.
2.Now we shall prove that AutA ~ AutG. Let ¢ : AutA — AutgG
be the mapping defined as follows:

(12) ¢(f)(a,n) = (f(a),n), fe€ AutA.

First, we shall again show that ¢ is well-defined, i.e., that ¢(f) is an auto-
morphism of the groupoid G. Obviously, ¢(f) is a bijection on G since f is
a bijection on A. Let (a,n),(b,m) € G. If 0 < n=m < 3, then
¢(f)((a,n)o(b, n)) = ¢(f)(fn(a,b),n +1) = (f(fa(a,b)),n +1) =

= (fn(f(a), f(0)),n + 1) = (f(a),n)o(f(b),n) = ¢(f)(a,n)od(f)(b,n).

Ifn#m, n+1=m, then we have
¢(f)((a,n)o(b, m)) = ¢(f)(a,=2) = (f(a),=2) =
= (f(a),n)o(f(b),m) = ¢(f)(a,n)od(f)(b,m).

We analogously get
d(f)((a,n)o(b,m)) = ¢(f)(a,n)od(f)(b,m) in every other case (i.e., if
n+1<m,orn>m).

In order to show that ¢ is surjective, suppose that g is an automorphism
of G. In a similar way as in the proof of Theorem 2 one can prove that
for every element (a,—3) € G there exists an element (b, —3) € G such
that ¢g(a,—3) = (b,—3), and that for every m € S there exist elements
¢,d € G such that g(c,m) = (d,m). This yields that for any m > —3

g(a,m) = g((c,m)o(a, —3)) = (d,m)o(b, —3) = (b, m).
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On the other hand

g(a7 _3) = g((av n)o(c, n+ 2)) = (bv n)o(d, n+ 2) = (bv _3)7
whenever g(a,n) = (b,n) for some n. Therefore, for any automorphism
g € AutG  we can define a mapping f:A — A as follows:
flay=b <= g(a,n)=(b,n) foreveryn € S.
We shall prove that the mapping f is an endomorphism on A. Let a,c €
A, 0<n<p. Then

(f(fn(aa c)),n + 1) = g(fn(aac)an + 1) = g((a7 TL)O(C, ’Il)) =

= (f(a),n)o(f(c),n) = (fu(f(a), f(c)),n +1)
which implies  f(fn(a,c)) = fu(f(a), f(c)).
Since g is the automorphism on G, we conclude that f is the automor-

phism on A, and obviously ¢(f) =g.

One can easily check that ¢ is one-to-one, and that for any automor-
phisms  f,g € AutA

¢(fog)(a,n) = ((fog)(a),n) = (f(g9(a)),n) = (¢(f)od(g))(a,n).
Hence, ¢ is an isomorphism.
3. We define a relation 2 on G as follows:

(13) (@,m)Qb,n) iff m=n.

Obviously,  is the congruence of groupoid (G,0).  Let

F : ConA — ConG be the mapping defined by (9) (in the proof of
Theorem 1). In the same way as in the proof of Theorem 1, one can prove

that F' is an isomorphism between Con.A and the ideal (9] of the lattice
Cong. The proof is complete.
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