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THE LATTICE OF ORDER VARIETIES

ALrFONZ HAVIAR AND PAVEL KONOPKA

ABSTRACT. The list of all varieties of posets that cover the variety
C V A is given (C is the variety of all complete lattices and A is the variety
of all antichains). Some results on varieties of posets containing the variety
of antichains are established.

In the paper we obtain some new results on the lattice of varieties of
posets which was introduced in [1]. Notations and terminology correspond
to those from [1]. Throughout the paper the basic set of the poset is always
assumed to be nonempty.

A poset @ is a retract of poset P (written @ < P) if there are order-
preserving maps f :  — P (which is called a coretraction map) and g :
P — @ (called a retraction map) such that gof is the identity map of @ to
itself.

There is another characterisation of a retract: a subposet ) of a poset
P is a retract of P if there is an order-preserving map ¢ : P — @ which is
identical on Q.

Let K be a class of partially ordered sets. The class of all retracts of
posets from K will be denoted by R(K) and the class of all direct products
of nonvoid families of posets from K will be denoted by P(K).

An order variety is a class V of ordered sets which contains all retracts
of members of V and all direct product of nonvoid families of members of
V (i.e. V is order variety iff R(V)CV and P(V)CV).

For a class K of posets let K™ denote the smallest order variety containing
each member of K. A variety K™ is called the order variety generated by K.
In [1] it is proved that

K™ = RP(K).
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The collection of all order varieties is a complete lattice ordered by in-
clusion.

There are only two atoms in this lattice:

C - the variety of all complete lattices ( C = { 2}” where 2 denotes the

two-element chain )

A - the variety of all antichains (A = {2} where 2 denotes the two-
element antichain).

Any order relation on P induces the relation of comparability on P de-
fined by a ~ b if a < b or b < a. The relation of comparability is reflexive
and symmetric. We note that the transitive closure of a reflexive and sym-
metric relation is an equivalence relation. The blocks of this equivalence
relation are called connected components of the order relation. A poset P
is called a connected poset if it has just one connected component. K is a
class of connected posets if any member of K is connected.

Let {P; : i € I'} be a family of mutually disjoint posets. The cardinal
sum of the family { P; : i € I} (written ) P;) is the poset with the universe

i€l
P = 'UIPi and the order relation < on P defined as follows: a < b iff there
1€

exists an index i, € I such that a,b € P;, and a < b holds in P;, .

Let > K denote the class of all isomorphic images of the cardinal sums
of members of K.

It is easy to see that any poset is the cardinal sum of its connected
components.

Lemma 1. Let A=Y A; and B= ) B; be cardinal sums of nonvoid
i€l J€d

families { A;:i € I} and { Bj : j € J} respectively. If for every i € I there

exists j; € J such that A; <« B, and j;, = j;, implies i; = iz, then A< B.

Proof. Let ; : Bj; = A; be a retraction and
¢; + A; = Bj, be a coretraction for every i € I.
We define the maps g: Y B; = > A;
JEJ i€l
and f: Y A; = > B as follows:
i€l jeJ

pi(a) if a € By,
9(a) = { d otherwise

where d is any fixed element of Y A; and
i€l

F(b) = ¢i(b) if b € A;.
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The reader can straightforwardly verify that for every € 3 A; there are
iel
indices ¢, j; such that € A; and f(A4;) C By, and ((gof)(z) = (piod;)(x) =
z and f and g are order-preserving maps. This completes the proof of the
lemma.

Theorem 1. The variety A of all antichains is contained in a variety V iff

V=3 V.

Proof. a) If the poset P contains at least two connected components Py, Py
then choose two elements z € P, and y € P,. The map f : P — {z,y}
which maps each element u € P; to z and each element v € P — P; to y is
a retraction map with fixed points z and y. Thus
2 <P.This implies that if V contains at least one disconnected poset then V
contains A.If V="V then V contains a disconnected poset,so ACV.

b) Let ACV and P € ) V.Then P = ) P;, where P; € V for every i € I.

iel

This implies that []P; € V. Let I denote the antichain with the universe I
i€l

and let Q = (J][ P;)xI. Obviously @ is a member of V.(Note that I € A C

i€l
V.) We denote

Qj={r€eQ:x=(f,j) wheref € HPZ}

el

It is easy to see that @ = Y Q;. It is known that U;, < [] U; for any family

iel leL
of posets { U;: 1l € L} and for any I, € L. The posets P = > P; and
i€l
Q = > Q; satisfy the conditions from Lemma 1 and so P < Q. This implies
icl

that P € V. The converse inclusion is obvious.
Theorem 2. If V is an order variety then Y, V is also an order variety.

Proof. If there is a disconnected poset in V then the assertion follows from
Theorem 1. So assume that V contains no disconnected poset.

a) Let P< > P, and P; € V for any i € I. Denote by f a retrac-

iel
tion and by ¢ a coretraction corresponding to f. Let S; denote the set
{z € P:gy(x) € P} .Obviously, P = > S;. Let the subset J C I be given
il
by: je€ Jiff S; #0. Then P = ) S;. For every j € J the poset P; is
j€J

connected and so is the poset g(f(P;)). Hence g(f(P;)) C P;. Thus we get
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f(P;) €S for any j € J. On the other hand S; = f(g9(S;)) C f(FP;). It
implies that f(P;) = S; for any j € J. We have S; <« P; with f | P; as
a retraction and g [ S; as a coretraction. This implies that S; € V and
P € Y V. Therefore R(}, V)C > V.

b) Now we prove that P(>_ V)C > V. The proof is based on fact that

[~

iel jeJ;

> qIP)

fell Js i€l
i€l

and

are isomorphic posets. e pose f ) is the direct product of a fami
i phic posets. The poset [JP;¥(? is the direct product of a family

i€l
of connected sets from V and so HPif(i) € V. Hence
iel
> ([IR'?) € 3 V. This completes the proof.

fellJ; i€l
ier

Corollary 1. In the lattice of order varieties Y, V = AV V for any variety
V.

Theorem 3. If V is a variety which contains no disconnected poset, then
there is no variety W such that VCW C 3 V(i.e.,the variety V is covered

by V).
Proof. Suppose VCEW C > V. If every poset in W is connected then W=V.
Otherwise ACW,thus W= W and >V C Y} " W=W. Hence W=>_V.

Corollary 2. If the system V. of all connected posets of the variety V is
a variety, then V. is covered by Vor V. = V.

Proof. This follows from the fact that V=)V, or V=V,.

Theorem 4. If V and W are varieties of connected posets and V is covered
by W then YV is covered by Y W.

Proof. Obviously, VCW implies > V C Y W. Let V; be a variety such
that Y V C V; C Y W. Denote by K the system of all connected posets of
V1.Then VC K CW. It is easy to see that R(K)CW, P(K)CW, R(K)C V;,
P(K)C V;. This implies RP(K)C V; and RP(K)CW. So, for the variety
RP(K) generated by K we have VCRP(K)CW. If RP(K)=V then V; =
V. If RP(K)=W then V; = °W.
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Corollary 3. Let V and W be varieties which contain A and let V be
covered by W. Let V. and W, denote the systems of all connected posets
of V and W, respectively.If V. and W, are varieties, then V. is covered by
W..

Proof. If K is variety such that V. CK C W, ,V. £ K # W, then ) V. C
S>KCY> Weand Y Ve # > K #> W, a contradiction.

Let P,Q be ordered sets.We will denote by P & @ the ordinal sum of P
and Q. Further, let P? denote the dual poset of P.Let F; be the poset with
the universe { 1,2,3} and the order relation given by : 2<1, 3<1 and 2,3
are noncomparable elements (i.e.,Fj is a fence ).

Theorem 5 ([1]). In the lattice of order varieties each of the following
order varieties cover the variety C of all complete lattices

{o}7, {8YY, {a@p"), {BY, {BY, {B'oRY,
{ao R}, {B'ep’y, Y C,

where a and (3 are any regular ordinals. Moreover, the system of all varieties
which cover C consists just of the varieties in (L).

Theorem 6. In the lattice of order varieties the variety Y, C(= AV C) is
covered only by the varieties of the form Y, V for all V from the list (L)
except of V=73 C.

Proof. Theorem 4 implies that these varieties cover y C. Let V be variety
with Y7 C C Vand ) C # V. Then there exists a poset P such that P is not
a complete lattice, P is connected, P €V and {P}” CV. In [1] it is shown
(see proof of Theorem 7.1) that there is a poset () generating a variety from
the list (L) and @ is a retract of P. Thus, we get > {Q}" C Y {P}" C
V = V. This completes the proof.

Theorem 7. The system of all varieties of connected posets is the ideal of
the lattice of order varieties.

Proof. Let V and W be varieties of connected posets. Then VVW =
RP(VUW) (cf. [1]). If P € RP(VUW) then P @ x ()2, where @, €
P(V) and Q2 € P(W). This implies that ; and @), are connected and
@1 X Qo is also connected.Every retract of connected poset is also con-
nected.Let V and K be any varieties of posets.If V contains no disconnected
poset and KCV ,then also K contains no disconnected poset.

19



REFERENCES

[1] D.Duffus and L.Rival, A Structure Theory for Ordered Sets, Discrete Math., vol. 35,
1981, pp. 53-118.

DEPARTMENT OF MATHEMATICS, MATEJ BEL UNIVERSITY, TAJOVSKEHO 40,
975 49 BANSKA BYSTRICA, SLOVAKIA
E-mail address: konopka@fhpv.umb.sk

(Received January 22, 1992)

20



