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EDGE-LOCALLY HOMOGENEOUS GRAPHS

ROMAN NEDELA

ABSTRACT. In the paper we shall investigate the relationship between lo-
cally homogenerous graphs and edge-locally homogeneous graphs. A local
version of the well-known theorem establishing that an edge-transitive graph
is either vertex-transitive, or bipartite is proved. Further we aply the theory
of covering spaces to derive some general results on the family of edge-locally
G graphs for a fixed graph Go.

INTRODUCTION

In 1986 Zelinka [11] introduced the concept of edge-locally homogeneous
graphs. It can be understood as an edge version of the concept of locally
homogeneous graphs (or graphs with a constant link, see [1,4]). Let G be a
graph and z be either a vertex, or an edge of G. Denote the subgraph of G
induced on the set of vertices at distance 1 from x by link(z, ). The graph
@ is called locally homogeneous, or locally G, if there exists a finite graph
Gy such that for each vertex v of G link(v,G) =2 G . Similarly, the graph
G is called edge-locally homogeneous, or edge-locally Gy , if there exists a
finite graph Gg such that for each edge e of G link(e,G) = G . Two main
problems for edge-locally homogeneous graphs can be considered:

(a) For which finite graphs G does there exist an edge-locally Gy graph?,

(b) For a fixed finite graph Gy what can be said about the set of all
connected edge-locally Gy graphs?

Zelinka in [11] showed some examples of edge-locally Go graphs. A lot
of examples of such graphs can be obtained using the concept of edge-
transitive graphs. Further, it was proved in [11] that there is no edge-
locally Cs graph. This result was generalized by Froncek [2] by proving
that for n odd, n # 3, there is no edge-locally C,, graph. In contrast, it is
proved in [5] that a finite edge-locally C,, graph exists for all the remaining
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values of n. Another result contained in [2] reads as follows: if G is a
complete multipartite graph then an edge-locally G graph exists if and only
if all parts of G contain the same number of vertices. In this paper we
shall investigate a connection between the locally homogeneous graphs and
edge-locally homogeneous graphs. Further we apply the concept of covering
spaces to derive some results analogous to those given in [7].

STRONGLY EDGE-LOCALLY HOMOGENEOUS GRAPHS

For a given graph G and its edge e denote by Link(e, @) the subgraph
of G induced on the set of vertices at distance < 1 from e. That means e €
Link(e,@). Then the graph G will be called strongly edge-locally homoge-
neous if for any two edges e, f in G there is an isomorphism pLink(e,G) —
Link(f,G) mapping e onto f. The following observation is clear.

Proposition 1. If a graph G is strongly edge-locally homogeneous then G
is edge-locally homogeneous .

In fact we know no edge-locally homogeneous graph which is not strongly
edge-locally homogeneous as well. Thus the question, whether the opposite
implication in Proposition 1 holds true, is open. The following theorem can
be considered as a local version of the well-known theorem (see [3]) estab-
lishing that an edge-transitive graph is either vertex-transitive or bipartite.

Theorem 2. Let G be a strongly edge-locally homogeneous graph. Then
either G is locally homogeneous or bipartite.

Proof. Let e = uv be a fixed edge of G. Let f = xy be an arbitrary edge
of G. Since G is strongly edge-locally homogeneous, there is an isomor-
phism @Link(f,G) — Link(e,G) mapping f onto e. Then either there
is an automorphism 1 of Link(e,G) mapping u to v, or there is no such
an automorphism. In the first case either ¢, or ¥y maps link(z,G) onto
link(u, G). Since f, and consequently z, is chosen arbitrarily, G is locally
homogeneous in this case. In the second case the set of vertices of G splits
into two subsets U, V. A vertex z is in U (V) if and only if there is an
isomorphism mapping link(z,G) onto link(u,G) (or onto link(v,G), re-
spectively). Since there is no automorphism of Link(e,G) mapping u onto
v, UNV = @. Clearly, each edge of G joins a vertex from U to a vertex in
V', otherwise it would be an automorphism of Link(e, G) mapping u to v.
Thus G is bipartite. O

It was noted by Zelinka that if G is bipartite then the edge-local homo-
geneity of G implies the strong edge-local homogeneity of G. The following
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proposition shows further properties of strongly edge-locally homogeneous
graphs. A bipartite graph G is called biregular if the vertices in one part
of G have degree p while the vertices in the second part of GG are of degree
q, for some integers p, q. An r-regular graph in which each edge lies in ¢
triangles and ¢ induced quadrangles will be called an (r,t, g)-graph.

Proposition 3. Let G be a strongly edge-locally homogeneous graph. Then
either G is an (r, t, q)-graph for some integersr, t, q, or it is a bipartite bireg-
ular graph.

Proof. Tt follows directly from the definition of strong local homogeneity
that each edge of G lies in the same number of triangles and in the same
number of induced quadrangles. According to Theorem 2 G is either locally
homogeneous, and consequently regular, or it is bipartite, and therefore
biregular. O

It follows from Proposition 3 that strongly edge-locally homogeneous
graph G containing at least one triangle is an (r,t,q) graph. Thus for
each vertex u of G link(u,G) is a t-regular graph on r vertices. Regular
graphs with regular links of vertices were investigated by Soltés in [9]. He
proved there that an r-regular graph G with t-regular links of vertices is
the complete (1 + r/(r — t))-partite graph, whose each part contains r — ¢

vertices, ift<r<t+m/%(t71)+%_

COVERING SPACES OF EDGE-LOCALLY HOMOGENEOUS GRAPHS

Let G be a graph. Denote by AG the simplicial complex, whose 0-
simplexes are vertices of GG, l-simplexes are edges of G, 2-simplexes are
bounded by triangles and induced quadrilaterals of GG, and the incidence
relation is given by the subgraph inclusion. That means that A G arises
from G by gluing a 2-cell to each triangle and to each induced quadrangle
of G. The following three propositions are analogous to Propositions 3, 4
and 5 in [7]. They follow from Theorems 1.2 and 1.5 in [6].

Proposition 4. Let G be an edge-locally G graph, for some finite graph
G . Let (X,p) be a connected covering space of AG. Then there is an
edge-locally G graph H such that p~'(G) = H and X = A H.

Proposition 5. Let (G, ), be a permutation voltage graph and G be a
connected edge-locally Gy graph. Then G% is edge-locally Gy if and only if
the product of voltages in each triangle and quadrangle of G is 1.

29



Proposition 6. Let G be a connected edge-locally Gy graph. Let (G,T', )
be an ordinary voltage graph. Then the derived graph G¢ is edge-locally
G if and only if the product of voltages in each triangle and quadrangle of
Gis 1.

The following proposition was motivated by the similar results of Vince
[10] for locally homogeneous graphs. Call a subgroup B of the automorphism
group Aut G of a graph G strongly discontinous if for each ¢ € B and each
vertex v of G the distance p(v, p(v)) > 5.

Proposition 7. Let G be edge-locally G, , for some finite graph G . Let
T C Aut G be a strongly discontinous subgroup of Aut G. Then the regular
quotient G /T is edge-locally G .

Proof. Consider link([e], G/T") for some edge e in G. We show that the
restriction p' = p/link(e,G) of the covering projection mapping a vertex
v onto [v] is an isomorphism mapping link(e, G) onto link([e],G/T'). By
its definition p’ is onto. Since Link(e, @) is a graph of diameter at most
3, by the assumption we have that p’ is a bijection on the set of vertices
of link(e,G). Clearly, if e = wv is an edge in link(e,G) then [u][v] is
an edge in link([e], G/T). On the other hand, let [f] = [u][v] be an edge in
link([e], G/T), where f = vw is the edge of G incident with v and mapped by
p onto [u][v]. Suppose, on the contrary, that an edge uv is not in link(e, G).
Then w # u, w € [u] and the distance pg(u,w) < 4, a contradiction with
the assumption. Thus p' is an isomorphism of the graphs link(e, G) and
link([e], G/T), and G/T is edge-locally Go . O

Note that if the graph G in Proposition 7 is strongly edge-locally G then
the graph G/T is strongly edge-locally G as well. The following corollary
allows us to build edge-locally homogeneous graphs from groups.

Corollary 8. Let G be an edge-transitive graph. Let T' C AutG be a
strongly discontinous subgroup of the automorphism group AutG. Then
the regular quotient G /T" is strongly edge-locally homogeneous.

The following two theorems can be considered as edge variants of results
in [7].
Theorem 9. Let G be a finite graph and let the Euler characteristic
X(AG) <0. Then for each n > 1 there exists an n-fold cover of AG.

Proof. Denote by v, e, f3 and f4 the number of vertices, edges, triangles
and induced quadrangles in G, respectively. The fundamental group 7(A G)
is generated by gen = e —v + 1 generators satisfying rel = f3 + f4 relations.
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By the assumption we have rel = f3 + f4 < e—v+ 1 = gen. Thus
m(A G) contains a subgroup of index n for each n > 1. It follows from the
well-known correspondence betweeen the covers of a topological space and
subgroups of its fundamental group that for each n > 1 there is an n-fold
coverof AG. O

Theorem 10. Let Go be a finite graph. Let G be a finite connected edge-
locally Gy graph and let x(AG) < 0. Then

(a) for each n > 1 there exists a connected edge-locally Gy graph with
n.v(G) vertices,

(b) there exists an infinite connected edge-locally G graph.

Proof. Theorem 9 implies that there is an n-fold cover of A G for each n > 1.
The statement (a) now follows from Proposition 4. Consider the universal
cover X of AG. By Proposition 4 X = A G, where G is edge-locally Gy
, and moreover, G covers each the edge-locally G graph constructed in
the proof of part (a) of the theorem. Thus the number of vertices of G is
infinite. O

If G is strongly edge-locally homogeneous then the following proposition
enumerates the cases for which y(AG) <0.

Proposition 11. Let G be strongly edge-locally Gy . Then x(AG) < 0
if and only if either G is an (r,t,s)-graph, where 0 < 4t + 3s < 11 and
r > 24/(12 — 4t — 3s), or G is bipartite biregular, e(Go) = s < 3 and
e(G) 2 v(@)/(1 = s/4).

Proof. Let v and e be the numbers of vertices and edges in G, respectively.
Denote by f3 and f; the numbers of triangles and induced quadrangles of
G, respectively. Then x(AG) =v—e+ f3+ f1 . According to Proposition
3 @ is either an (r, s, t)-graph, or it is bipartite biregular. In the first case
we have e = vr/2, f3 = et/3 = vrt/3, and fis = es/4 = vrs/8. Thus the
inequality x(A G) < 0 is equivalent to the inequality 24 +7r(4t+3s—12) <0
implying the first part of the statement. In the second case f3 = 0 and the
inequality x(A G) < 0 is equivalent to the inequality v < e(1 — s/4), where
s=fi=e€(G). O
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