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SUBDIRECT DECOMPOSITIONS OF DIGRAPHS

PAVEL KLENOVCAN

ABSTRACT. Direct product decompositions of the covering graph C(G) of a
digraph G and direct product decompositions of G were studied in [1]. The

relations between a certain type of subdirect decompositions of C(G) and
subdirect decompositions of G will be studied in the present paper.

A graph G = (V, E) consists of a nonempty set V of vertices together
with a prescribed set E of unordered pairs of distinct vertices of V. Each
pair {z,y} € E is an (undirected) edge of the graph G and shall be denoted
by zy.

A digraph G = (V, E) consists of a nonempty set V of vertices together
with a prescribed set E of ordered pairs of distinct vertices. Each ordered
pair (x,y) € E is a (directed) edge of the digraph G and shall be denoted
by Ty.

Let I be a nonempty set and G; = (V;, E;), @ € I be graphs. Let V be the
cartesian product of the sets V; (V = [[;c; Vi). The elements of V' will be
denoted a = (a;), i € I, where a; = a(i) € V;. Let G be a graph whose set of
vertices is V' and whose set of edges consists of those pairs {z,y}, x,y € V
which satisfy the following condition: there is ¢ € I such that z;y; € E; and
z; = y; for each j € I'\ {i}. Then G is said to be the direct product of the
graphs G;, i € I and we write G = [[,c; Gi.

The direct product of digraphs is defined similarly.

For all further notions concerning digraphs and graphs we refer the reader
to [2].

Let [[;c;9i = (V,E). f W CV, then we denote O;(W) = {a;a € W}.

Let [T;c; Gi = (V, E) be the direct product of graphs G; = (V;, E;) (i € I).
If W CV and O;(W) =V for each i € I, then a graph G = (W, F), where
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F = {ab € Ea,b € W}, will be called a subdirect product of the graphs G;.
If G is a subdirect product of graphs G; we write G = (sub) [],c; Gi-
Subdirect products of digraphs are defined similarly.

Remark. If W =V, then (sub) [[;c; G = I1;c; G-

The subgraph of a graph G = (V, E) induced by a set W C V will be
denoted by G(WW).

Remark. Since a graph (sub) [[;c; G is in fact a subgraph of the graph
[1;c; Gi induced by a suitable set W with O;(W) = V; for each i € I, then

(sub) [Tier Gi = (ILier G)(W).

If a mapping fV; — V4 is an isomorphism of a graph G; = (V1, Ey) onto
a graph Gy = (14, E»), then we shall write G; é G» or shortly G ~ Gs.

If G L (sub) IT;c; Ui then we shall say that (sub) [],c; Gi is a subdirect
decomposition of the graph G (with respect to the mapping f).

In the present paper every subdirect decomposition (sub) [];c; Gi, where
Gi = (Vi, E;), is supposed to be nontrivial (i. e. |V;| > 1 for each i € I).

Analogous terminology and notation are used for digraphs.

Let G = (V,E) be a digraph. By the covering graph of G we mean the
graph C(G) = (V, E) where ab € E iff ab € E.

The following two lemmas are easy to verify.

Lemma 1. Let G; = (Vi, E}), Go = (Va, E») be digraphs. If Gy £ G- then
_ ot _
C(g1) >~ C(gz)

Lemma 2. Let [],, G; = (V,E) be the direct product of digraphs G;,
i€l andlet W C V. Then C((IT;c; Gi)(W)) = ([T;e; C(Gi))(W).

Lemma 1 and Lemma 2 imply the following

Theorem 1. Let G, G;, i € I be digraphs and G L (sub) [T;c; Gi- Then
_f _
C(G) = (sub) [],c; C(Gs)-

Definition. Let G = (V, ) be a digraph and let C(G) ~ (sub) [, Gs,
where G; = (V;, E;), i € I. We shall say that the subdirect decomposition
(sub) [1,c; Ui of the graph C(G) induces a subdirect decomposition of the
digraph G if there exist such digraphs G; = (V;, E;) that C(G;) = G; for

eachie T and G L (sub) [T;c; Gi-
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A subdirect decomposition of C(G) does not induce a decomposition of
G in general. The digraph G = ({a,b,c,d}, {ab, bc,cd,da}) is not isomor-
phic to the subdirect product of any two digraphs but its covering graph is
isomorphic to the subdirect (direct) product of two complete graphs K.

We are going to investigate when a subdirect decomposition of C(G)
induces a subdirect decomposition of G.

Let G = (V,E) be a graph. If there exists a four-element set W =
{a,b,c,d} C V such that G(W) = (W, {ab, bc,cd, ad}), then we say that
the graph G(W) is a square (in G) and we denote it by S(a,b,¢,d). If G is

a digraph and C(G(W)) = S(a,b,c,d), then the digraph G(IW) is called a
square (in G) and will be denoted by S(a, b, ¢, d).

An edge ab of a graph [],.; Gi ((sub)[];c; G:) will be called a k-edge
whenever a; = b; for each j € I'\ {k}.

We say that ordered pairs (a,b) and (¢, d) of vertices of a direct product
I1;c; Gi (subdirect product (sub) [];.; Gi) are r-equivalent and write (a, b) ~
(¢,d) if ab and cd are r-edges and a, = ¢, b, = d,.

It is easy to see that if (a,b) ~ (c,d) then (b,a) ~ (d,c).

A square S(a,b,c,d) in [];c;Gi ((sub)]];c;Gi) will be called an
r-square whenever all its edges are r-edges for some r € I. If such r € T
does not exist, it will be called a mized square.

Let C(G) L [Tic; Gi- We shall say that the edge ab of the digraph G
and the edge ab of the covering graph C(G) are k-edges (with respect to
the isomorphism f) if f(a)f(b) is a k-edge of the graph [[,.;G:. In an
analogous way the other notions concerning the direct product [];.; G; can
be introduced for the digraph G and the covering graph C(G).

In [1] it was proved that if S(a, b, ¢, d) is a mixed square, then there exist
r,s € I, r # s such that ab, cd are r-edges and be, ad are s-edges (cf.
Lemmas 2, 3, 4 in [1]).

Lemma 3 [1]. Let S(a,b,c,d) be a mixed square in [],.; Gi, where ab is
an r-edge and be is an s-edge. Then (a,b) ~ (d,c), (b,c) ~ (a,d).

Since (sub) [1;c; Gi = (I1;e; 9:)(W), the above mentioned facts hold also
for the subdirect products.

Let (sub) [[;c; 9 = (V, E) be a subdirect product of graphs G; = (V;, E;)
and let (a;), (b;) € V, i € I. We shall say that the subdirect product
(sub) [];c; i is orientable if the following condition is fulfilled:

If arby, € E) then there exists a k-edge (a;)(b;) € E, i € I.
Example. Let G = ({a,b,c},{ab,bc}), G' = ({1,2,3,4},{12,23,34}) be
graphs. Let W = {(aa (I), (a7 b): (aa C), (b7 a)a (C, (1), (Ca C)} and W' =
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= {(1,1),(1,2),(1,3),(2,1),(3,1),(4,4)}. Then the subdirect product
(sub) [Ticq1.0 Gi = (Ilieq1,0y Gi)(W), where G; = G, i € {1,2}, is orientable
and the subdirect product (sub)[[;cy 019 = (Ilieq1,0y Gi)(W'), where
G/ = ¢, i € {1,2}, is not orientable. Let us notice that
(sub) Hie{m} G; ~ (sub) Hie{1,2} gi.

All subdirect products considered in the next are assumed to be ori-
entable.

Lemma 4. Let C(G) L (sub) [1,c; Gi, where G = (V, E) and G; = (V;, E;).
The subdirect decomposition (sub) [,.; G; of C(G) induces a subdirect de-
composition of G if and only if for any two r-equivalent ordered pairs (a, b),

(¢c,d) of vertices of G the following condition is fulfilled:

(1) abe E  ifand only if cd€ E.

Proof. It suffices to define G; for each i € I by G; = (V;, E;), where
f(a);f(b); € E; if and only if there exists an i-edge ab € E.

A subdirect product (sub)[],.; G = (W, E) = G is said an l-product if
the following condition is fulfilled:
Ifa,b,c,d € W and (a,b) ~ (c,d), then there exist a nonnegative inte-
ger n and vertices 2% = a,z',..., 2" =c, y* =b,yt,...,y" =dEW
such  that  G(af, 27Tl ¢t ¢7)  is a  mixed square
S(zd, 27+t yi+L yJ) for each j € {0,1,...,n — 1}.

Remark. If G = [];c;Gi is a connected graph, then the direct product
I1;c; Gi is an l-product (cf. Lemma 6 in [1]).
The following theorem is a generalization of a result from [1].

Theorem 2. Let C(G) L (sub) [1;c; Gi, where G = (V, E) is a digraph and
(sub) [;c; G: is an I-product. The subdirect decomposition (sub) [];.; G
of C(G) induces a subdirect decomposition of G if and only if the following
condition is fulfilled:
(2) IfS(a,b,c,d) is a mixed square in G, then there exists

i €{1,2,3} with S(a,b,c,d) ~ S;, where

31 = ({av ba c, d}v {ab7 bC, dC, ad}),

S> = ({a,b,¢,d}, {ab,ba, be, cd, dc, ad}),

S3 = ({a,b,¢,d}, {ab, ba, be, cb, cd, de, da, ad}).

Proof. Let the subdirect decomposition (sub) [];.; Gi of C(G) induce a sub-
direct decomposition of G and S(a, b, c,d) be its mixed square. Then, by
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Lemma 3, there exist r,s € I, r # s, such that (a,b) ~ (d,¢), (b,¢) ~ (a,d)

and (b,a) ~ (c,d), (¢,b) ~ (d,a). From Lemma 4 it follows that ab € E

iff de € E, bc € Eiff ad € E and ba € E iff cd € E, ¢b € E iff
da € E. Thus there exists i € {1,2,3} with S(a,b,c,d) ~ S;. To prove
the converse implication, suppose that (2) is fulfilled. With respect to
Lemma 4, it suffices to prove that if (z,y) ~ (u,v), then (1) holds. Since
(sub) [],c; Gi is an l-product, then there exist a nonnegative integer n and
vertices z° = z,z',...,2" = u, ¥° = y,y',...,y" = v € V such that
G(xd, 27t ¢t yI) is a mixed square S(zf, 2/t 471 y9) in G for each
j€{0,1,...,n—1}. If n = 0, then (1) holds, since (z,y) = (u,v). f n =1,
then S(x,u,v,y) is a mixed square and from (2) it follows (1). Now it is
easy to complete the proof by induction on n.
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