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(1,1)-FORMS AND CONNECTIONS ON A VECTOR BUNDLE TM

ANTON DEKRET

ABSTRACT. In this paper the subset of the space of the (1,1)-forms on T'M on which there
exist natural operators over idpys transforming these forms into connections on T'M and all
these operators are determined.

INTRODUCTION

Let (2',2%) be a local map on the tangent bundle p : TM — M. A connection T' on
TM can be determined by its horizontal form hr that is a (1,1)-form on TM such that
Ty -hr =Ty, hr(Y) =0, Y € VI'M, where T, denotes the tangent map of p and VT M
is the vector bundle of all vertical vectors on T M. T; are called the Christoffel’s functions
in coordinates hp = dx* @ 8/8:1;i + P;(l‘, :z:l)d:zjj ® 8/8:1;§.

Let J = dz' ® 0/dx% be the canonical (1,1)-form on TM. Grifone [1], 1972, defined a
connection on TM as a such (1,1)-form ¢ on TM that ¢.J = —J, Jp = J. Its local form
is ¢ = dz' @ 8/8:1;i + (c,o;d:zjj — d:z;i) ® 8/8:1;§. Evidently ¢ +— %(c,o + idrry) = hr is a
bijection between the Grifone forms and the horizontal forms of connections.

Let (1,1) = C®T*TM @ TTM or CTM be the space of all smooth (1,1) forms or of all
connections on T M. In this paper we determine the domain of natural operators of zero
order from (1,1) into CTM and construct the list of these operators. We use the natural
bundle theory, see for example [2], [3].

OPERATORS OF ZERO ORDER FROM (1,1) INTO CTM

In the natural bundle theory the effort to determine all natural operators of zero order
from (1,1) into CTM over idrys is equivalent to the one to determine all smooth natural
transformations from the bundle T*TM @ TTM into CTM over Idrys. As the natural
bundles T*TM @ TTM and CTM are associated to the principal fibre bundle H2M of
the frames of second order on M with the type fibres S; = (T*TR™ @ TTR™)o and
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Sy = (CTR™)p, in order to determine all above mentioned transformations we need to
find all L? - equivariant maps from S into Sy, where L? is the differential group of the
second order.

Let ¥ = fi(2’) be a local diffeomorphism f : R™ — R™, f(0) = 0. Then TTf :
TTR™ — TTR™ is of the form.

T = f(al), T = flal, di' = fida), dF} = fja]det + fida]

where f]’ = w , f]’k = aagi’a(g?{‘ Then we find the action of L? on S; and on S5 as

follows; on Sy:

(1) T = fiaf,
i i s [k it 7k ops o o gi_ igd £ ifs _ g
aj_fsakj_ft kfsfuvxljv s_qusvfsfj_ 70
» 4 . N 4 . s E N
_ _— e E

on Sy :

. L . k5 Ak

where (2%, a%, b, %, k) or‘(:zjj,Tj) are coordinates on ‘Sl or on Ss.

Let o = (a?d:z;j + b}d:z;{) ® 8/8:1;i + (c}d:z;j + h;d:zj{) ® 8/8% be a (1,1)-form on TM.
Then JaJ = b;d:zjj ® 0/0x% is a L} -tensor. There are two cases

1. JaJ=0, ie b;=0.
We have two forms a := Ja = a?d:z;j ®8/0zt, h:=alJ= h;d:zjj ® 0/0zt. Denote S; the

subspace of Sy of such (1,1)-forms « for which Ja.J = 0.
Amap ®:5; — Sy : 7 =zl T; = @}(:pg,aq el hi) is L? -equivariant iff

p>Tprp
2) frat £} + i@t af cf, hf) = @5, @, ), By
ksT1Jj ks T, Ay, Cpy Iy GAT 1 Apy Cpy 1y )

where f?,ﬁg,q‘g,ﬁz are given by the equations (1). The equations (2) according to the
subgroup of homotheties f = (k(S; = }, ]Zk =0),k # 0, are of the form
®L(xd,al, el hl) = @}(kx?,aq el hl).

J p>pp p>Tprp

Therefore CI>§ are independent of (z7). Then the Ker n}-equivariancy, where 7% : L? — L1
is the subjet projection, gives

(3) fhiot + @4(al, et h) = Bh(al, el + f1 atak — hifa at, hY).

Remark 1. If « is semibasic with value in VT'M, i.e. if a = 0,h = 0 then (2) is not true.
Then there is not a natural operator of zero order from the space of semibasic (1,1)-forms
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with values in VTM into the space CTM. This coincides with the result of Janyska [2]
by which a (1,1)-form on M does not determine any linear connection.

It follows from (2) that g‘fql are constant on the Ker 7i-orbits the local equations of
P
which are as follows:

— i =i i =i i ik is TU g4 T B
(4) wl —$17 Cl]‘ —a]‘7 C]‘ —C]—I_Fka] _hSFj7 h] —h]7 Fk = ukwl.

There are two cases:
la) The map & : (y°) = (d¥a* — hgé’;’)y,i, ie. yr ya—hy,on (R™)*®@R™ is regular.

Then it follows from (4) that aaq); are independent of c¢I. Then

q
Cp

&L = A (al h)el + Bi(al,hl)

q°>°"p p>p

and the equation of the Ker n?-equivariancy of CI>§ is of the form
Fj = Aj(87ay — h16,)F}

1

ie. (A;‘é) are the coordinates of the map x~1. It is easy to see that ® is L2 -

equivariant iff :1;"7 = B;(ag, hi)is a L! -equivariant map from R™*@R™ x R™*QR™
into R™* @ R™.

Consider a map v on T*M @ T(TM) over idpyr defined by the rule v : z +—
za— oz, ’y(zjd:zjj ® d/0x" + njd:z;j ®d/0x}) = (Zéaj — aizj)dajj ® d/dx" + (—cizj +
néaj — hinj)dajj ® 0/0zt. When & is regular there is a unique horizontal form
20 = da' @ 9/0x" + n}d:z;j ® 8/0z! such that v(z9) = 0 in coordinates 77} = A"]‘j)cz

Denote by I',, the connection determined by zy. We have proved the following
proposition:

Proposition 1. All natural operators ® from the space of (1,1)-forms o on TM such that

JaJ = 0 and the map K, is regular into the space of connections on TM over idry; are
of the form

& =T, + B(a,h)

where B is a natural operator of zero order from C®[(T*M @ VT M)xra (T*M @ VT M)]
into C®(T*M @ VT M) over idryy.

1b) Let & be singular. The equations E; = c§ + (5261"; — h;5f)F,f of the Ker 7%-orbit can
be written in the form

e =cj+ (8la; — hiSH)F! -« + (Sha; — hiy 61V F™ + (61a] — hi83)Fy + ...
(5) s (61,05 = hi SO F 4+ (60T = hi, 8T, m = dim M

or shortly C =C + AF.
Let the rank of Kk be h = sm + k, £ < m,s < m. Suppose that the first h
columns of the matrix A are independent. Then the equations (5) are of the form

(6) C=C+AF 4. . +A,F"
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where Aq,..., A, denote the first A columns of the matrix A,

FI:FI‘I‘tiﬂH_lFm—i—l—I_'”—I—tilQ—thQ_h’ I:l,,h
F''=F, F*.=F, . F™ =F" C'==C! .., c" .=cC"
and t! are the coefficients of the linear combination of the column A, according

to the columns Aq,..., Ay. Without loss of generality we suppose that the first A
rows of the matrix A are independent. Using the first & equations of (6) we get

1E N
FC=AYC"—C"), n, £E=1,...,h.

Then the last m? — h equations of (6) give

6 ~ J—
C"=CP4+AJASC" —C™), B=h+1,...m"

Then the equations of the Ker 7?-orbits are of the form

C" — AlASCm = 0f — AZASCT, @ =dl, T

This means that
L 4 N
—2 =i (an, by, O — AJASCT),
Ocy

For cg = (C# we have

d} = /;/)jﬁ(av,hv,cﬁ—AgA%C")dCﬁ.

Then CI>§ = c,o;ﬁ(a, h)C'ﬁ—l—c,o}(a, h,C™yif ;/);ﬁ are independent of u? = C’ﬁ—A?flgC”
and .

CI>§ = G}(a, hyu) if ;/);ﬁ are dependent of u”. As 22@ are dependent of a, h,u only,
there is <p§ = c,o;g(a, h)C¢. We conclude CI>§ = c,o;(]]j(a, h)ch + G}(a, hyu).

Now, the Ker 7?-equivariancy leads to the equations

F} = ¢fi(a,h)[6)ay — hi6{]Fy

from which it follows that x must be regular. We have proved the following:

Proposition 2. If JaJ = 0 and « is singular then there is no connection on T M which
is determined by the natural operator of zero order from the space of (1,1)-forms « that
JaJ =0 and k is singular into the space of connections on T M.



Example In the case of a Grifone form a = 5’ hi = —51 JaJ =0, kK = 2id and so

I” = —c are the Christoffel’s functions of the connectlon T,

J

2) Let JaJ # 0. There are two cases: ‘
2a) Let JaJ be regular, det(b?) # 0. Consider Jo = (a?d:z;j + b}d:z;{) ® 8/8:1;§. Denote

by I', the connection the horizontal distribution of which is spanned on vectors
X, Ja(X) =0, ie. T; = —Z;};a"; are the Christoffel’s functions of T',. Then any
conection I on TM is of the form I'y + ¢, where ¢ = ¢'dz’ @ 0/0z} is a semibasic
(1,1)-form on TM with values in VT M. Now we find all natural operators ¢ of
zero order form C(T*TM @ TTM) into C®(T*M @ VT M), i.e. we find all Lfn—
equivariant maps from (T*TR™ @ T(TR™))o = Sy into (T*R™ @ VT R™ )y = S3.

In coordinates, we find all functions c,o;(a, b, c, h) which satisfy:

fiok(a.b.e.d)f; = ¢i(a,b,e,d),

where @,b,¢,d are determined by (1). In the case of the Ker 7?-equivariancy the
equations (7) are of the form c,o;(a,b,c,h) = c,o;(ﬁ,b,E, h). Therefore functions <p§
are constant on the Ker nf-orbits, the equations of which are

@ = ab — B F¥, @ = Fldb + ¢t — (Fibh + hi)FY
R, = Fibt + B, b = bi.

of the Ker nf-orbits. This means that the functions <p§ are constant on the Ker
n2-orbits iff they are of the form

el = (b, bIRL 4+ albl, ¢4 — hibjak).

tYp>

It is easy to see that these functions are L? -equivariant iff they are L! -equivariant.
Calculating

Ja] = (a bs —I—b’hs) dz? ®8/6:1;1,
a—ab 'Ta = (cj — hsbkaj) dz? @ 0/0x!

we can conclude:



Lemma 1. All natural operators of zero order from the space of the (1,1)-forms on TM
such that Ja.J is regular into the space of the semibasic (1,1)-forms with values in VI M
are of the form p(JaJ,Ja*J a — af~'Tra) where ¢ is an operator of zero order from

C(T*M @ VI M)xryT*M @ VIMaryT*M @ VTM)) into C*(T*M @ VTM).
It immediately gives:

Proposition 3. All natural operators of zero order from the space of the (1,1)-forms on
TM such that Ja.J is regular into the space of connections on T M are of the form

To +p(Jad, Jo* T a —aB ' Tryp)

where ¢ is the operator described in Lemma 1.

2b) Let Ja.J be singular, det(b}) = (0. We find all L? -equivariant maps
T; = @;(l"f, al, b, cg‘, hi) from Sy into Sy. It follows from the homothety subgroup
equivariancy that ®% are independent of 2% The condition of the subgroup Ker
m2-equivariancy is of the form

7 7 i /—qg 79 —¢g 794
Fi+ @j(ag,bq c? hg) = @<(ag,bp,cg,hp)

PP J

where Eg,EZ,Eg,EZ are determined by the equations (8) which are the equations of

. . . Pl
Ker ﬂ'%—orblts on Sp. It is easy to see that the functions 5.+ are constant on the
P

Ker w7-orbits. The equations (8) can be arranged in the form

g1 — qf _ 1T
ay = a; — bLF,

B =be, alhy + bihy = albk + bih? = HY

s p-:

be(Esh, + hyh,) +alH, = b1(cib, + hih') + ol H!

By the analogous procedure as in the case 1b) based on the equations @} =
al — blF,; we can deduce

Proposition 4. If a (1,1)-form is such that JaJ # 0 but singular then there is no con-
nection on TM which is determined by the natural operator of zero order from the space

of such (1,1)-forms o on TM that Jo.J # 0 but singular, into CT M.
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ON A CONGRUENCE LATTICE REPRESENTATIONS

ALFONZ HAVIAR

ABSTRACT. In [2] the following problem is formulated: Is it true that for every n-unary al-
gebra A (n finite), there exists a 2-unary algebra B with  ConA = ConB? This paper
contains contributions to the solution of this problem. Certain results concerning the men-
tioned problem can be found in [3]. In this paper some results of [3] are generalized. Moreover,
results for the lattice of subuniverses and the authomorphism group are presented.

Representations of congruence lattice have been considered by many authors. The
survay of basic results on this topic may be found in [1], [2] and [4].

In this paper the set of all positive integers will be denoted by N. Further, ConA, SubA
and AutA denote the congruence lattice, the lattice of subuniverses and the automorphism
group of an algebra A, respectively.

Let (A, fi,..., fn) be a unary algebra and let a be any (but fixed) element of A. We
define unary operations f, g on the set B = A x{1,2,....n+ 3} as follows:

(1) flz,k)=(x,k+1) for ke{l,2}, f(x,3)=(z,1),

() f(rrk) = (Foos(@) k) for ke (4t 3),
(3) g(:z;,l):(a,l), g(:z:,n—l—?)):(:z;,l),
(4) g(2) = (@2), gl k)= (@k+1) for ke {3 .nt2),
(5) gz, k) =(z,k+1) for x+#a, ke{2,...,n+2}

(see Fig.1)
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Fig. 1

Lemma 1. Let (A, fi,...,fn) be a unary algebra, a € A and (B, f,g) be the unary
algebra defined above, i.e., the operations f, g satisfy (1) — (5). For any congruence
relation ® of the algebra (B, f,g) the following holds:

(1) (z,p) ® (y,p) i (z,q9) P (y,q) for any p,q € {1,....,n+ 3},
(ii) (a,p) ® (y,q) and (a,p)# (y,q) imply (a,i)®(y,])

for all 1,5 € {1,....,n+ 3},
(iii) (z,p) ®(y,q) and p#q imply (a,1)® (y,1).

Proof. (i). Let (x,p)®(y,p). Then

(a) M, p)@f*(y,p)  and

(b) 9" (z,p)®g"* (y,p)  for anyk € N.

If pe{1,2,3} then from (a) we get

(c) (,8)B(y,s) for every s € {1,2,3).

Using (b), from (z,3)®(y,3) we get (c) for all s € {4,....,n+3}. If pe {4,...,n+ 3}

then from (b) we get (2,1)®(y,1) and then we proceed in the same way as in the previous
case.
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(i1). The assumption (a,p)®(y,q) implies

(d) fMa,p)®f*(y,q)  and

(e) 9" (a,p)®g"(y.q)  forany ke N.

Now we consider the following cases.

a) Let y=a (i.e., p#£¢q), p,q€{1,2,3}. Then we get (a,2)®(a,3) from (d); thus,
g*(a,2)®g*(a,3), k € N, and, consequently, (a,2)®(a,s) for all
s=3,4,...n+3,1,2.

b) Let y =a and p <3< gq. If p=2 then from (e) we get (a,2)®(a,1), i.e., the case
a). If p=1 thenfrom f(a,1)®f(a,q) weget (a,2)®(f,—3(a),q), g*(a,2)®g*(f,—3(a),q)
and (a,2)®(a, 1), respectively, i.e., the case a) again. For p = 3 we use f%(a,3)®f?(a,q),
and then we proceed as in the previous case.

¢c) Let y =a and p,q € {4,...,n 4+ 3}. Then we get the case b) using (e) since @ is
symmetric.

d) Let y # a, p,q € {1,2,3}. Then (d) implies (a,2)®(y,s) for some
s €{1,2,3}. Further, from ¢*(a,2)®g¢*(y,s), k € N, weobtain (a,2)®(a,1) and
then by a)

(f) (a,0)®(a,7) forall 4,5 € {1,....,n+ 3}
The assumption (a,p)®(y,q) together with (f) and (i) implies

(g) (a,))®(y,7) for 1,5 €{1l,....,n+ 3}.

e) Let y #a, p <3< gq From (d) we get (a,2)®(z,q) for some z € A. Thus, we
obtain  ¢*(a,2)®g*(2,q) foreach k& N andso (a,2)®(a,1), and then we proceed
as in the case d).

f) Let y # a and ¢ < 3 < p. We obtain (z,p)®(y,2) from (d) for some element
z € A. Thus, ¢¥(z,p)®g*(y,2) for each k € N and, consequently, (a,1)®(y,s) for some
s € {4,...,n + 3}, hence we have the case e).

g) Let y # a and p,q € {4,...,n+3}. Using (e) we obtain (a,s)®(y,1) or (a,1)®(y,s)

for some s, which are again the previous cases.

(iii). Let (z,p)®(y,q) and p # ¢q. For y = a the statement is evident; for x = a we
use (i1).

Now let @ # a, y # a. For p = 1 the assumption and the operation ¢ imply
(a,1)®(y,s), where s =¢+1 or s =1. Then by (i7) we get

(h) (a,1)®(y, 1).

If 1<p<gq then using the operation g we get (z,s)®(a,1) for some s. We obtain
(h) by using (i7) and the hypothesis. If ¢ < p then analogously we obtain (h) by using

(17).
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Theorem 1. Let (A, f1,..., fn) be a unary algebra. Let there exist a € A such that
(6) aOx and a # x imply aOfi(z), i=1,...n

for any congruence relation © € Con A and any element x € A.
Then there exists a unary algebra (D, f,g) such that ConA = ConD.

Remark. An algebra (A, fi,..., fn) satisfies the assumptions of Theorem 1 if one of the
following conditions holds:

(1) a is a fixed point of every operation f;, i = 1,2, ..., n.
(ii) If 2 # a then O(z,a) = V4

(V ameans the largest element of ConA).
(iii) Ifi € {1,...,n}and fi(a) # a then O(a, fi(a)) < O(a,x)

for every element x € A, = # a.

Proof. Let (B, f,g) be an algebra whose operations are defined by (1) — (5). We define a
mapping F : ConB — ConA as follows

(7) rF(®)y iff (z,1)®(y,1)

for any congruence relation ® € C'onB3.

a) We prove that the mapping F is well-defined, i.e., that F(®) € ConA. Obviously,
F(®) is an equivalence on A. Let xF(®)y. Then by (7) and (i) we get  (z,p)®(y,p)
for all p € {4,....n+3}. So, we get

Fap) ). (s (0 p)®(os) ) (Fpos(e). DE(fps() 1) (by (i)

and  fp_3(x)F(®)fp—s(y), respectively, for p=4,...,n+ 3.
Hence, F(®) € ConA.
b) Using Lemma 1 we have
dy < Py iff F(®,) < F(®2)
for any congruences &, P, € ConB.

Now we consider two cases.

cl) Let a be the fixed point of all operations fi,..., fn, i.e., f(a,p) = (a,p) holds for
all p=4,...,n+ 3. We define the relation {2 on B as follows:

(8) (2, p)2y.q) it (z.p)=(y,q) or z=y=a.

Obviously, 2 is a congruence relation of the algebra (B, f,g).
Now we prove that F' is a mapping of the interval [2,Vg] of the lattice ConB onto
ConA. Let © € ConA. We define a relation ® on B by the rule:
(z,p)®(y,q) iff Oy and (yOa or p = q).
It is easy to show that ® is an equivalence relation on B.
Let ©OyOa. Then by (6) we have
fi(2)Of;(y)©a for all 1,5 € {1,2,...,n},
and, consequently,  f(x,p)®f(y,q). Obviously, we also get ¢g(x,p)®g(y, q).

14



Let p=g¢q and 2Oy. Then, fi(2)Of;(y) for all ¢ € {1,...,n} which implies

(k) flz,p)®f(y,p)  forallpe{4,..n+3}

Obviously, (k) also holds for p € {1,2,3}. Further, it is clear that g(x,p)®g(y,p). Thus,
® € ConB and evidently ® > Q, F(®) = 0.

Assume that &, Py € [Q, V], &y # &3. Then there are (2,p),(y,q) € B such
that (2, p)®1(y,q) but (z,p)(B? — ®3)(y,q). We can suppose = #a #y. If p=gq
then zF(®)y but x(A? — F(®,))y by Lemma 1. If p # ¢ then

(l’, 1)(1)1 (av 1)(I)l(y7 1)
by Lemmal and hence xF(®q)aF(®y)y. If 2F(P2)aF(Py)y e,
(,1)®3(a,1)®Pa(y,1), then (z,p)P2(y,q), in view of Lemma 1(ii), since = # a # vy,
a cotradiction. Thus, the restriction of the mapping F to the interval [Q,Vp] is an
isomorphism, and, consequently, ConB/2 = ConA.  Hence, the statement holds for
the algebra (D, f,g) = (B/Q, f, g).

c2) Let f;, 1 <1 <mn, be such an operation that f;(a) =0b # a. Now we prove that
we can take (D, f,g) = (B,f,g). If a®x for some element = € A, x # a, then by (6)
aOfi(x), thus, aOf;(a), ie., a®Ob. Hence, ©O(a,b) < O(a,x) for every element
r €A x#a.

If (a,1)®(b,1), ® € ConB, then using Lemma 1 (ii) we get  (a,p)®(b,q) for all
p,q € {1,...n+3}. Conversely, from (a,p)®(a,q), p#q wehave (a,1)®(a,i+3)
using Lemma 1 (17). Hence we get  f(a,1)®f(a,i +3) and then (a,2)®(fi(a),i + 3).
Then by Lemma 1 (ii7) we obtain (a,1)®(fi(a),1), ie., (a,1)®(b,1). Using Lemma 1
again we conclude that F' is an injection.

To prove that F' is onto, suppose that © € ConA. If a®b we define a relation ® on B
as follows:

(z,p)®(y,q) iff 20y and (yOa or p=q).
In the other case, the relation ® is defined on B by the rule:

(x,p)®(y,q) iff p=gq and 20y.
One can prove in a similar way as in cl) that in both cases @ € ConB.  Obviously,
F(®) =0 by Lemma 1. Hence, F is the isomorphism between ConB and ConA.

Lemma 2. Let (A, fi,...,fn) be a unary algebra, a € A and (B, f,g) be the unary
algebra whose operations are defined by (1) - (5). If ¢ is an automorphism of the algebra
(B, f,g), then

(m) o(a,i) = (a,1) for all ie€{l,...n+ 3},

(n) o(x,1) = (y,j) yields i=jando(x,s) = (y,s)
for all s € {1,...,n + 3}.

Proof. (m). If ¢ € AutB, then there exist elements (x,7), (y,7) such that
¢(x.1) = (y,4),  (2,1) #(a,2) and (y,j) # (a,2).  Then

(p) ¢g"(,i) = g"(y,j)  forany k€N,
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which implies  ¢(a,1) = (a,1).  Thus ¢f(a,1) = f(a,1), ie., ¢(a,2)
similarly &(a,3) = (a,3). From ¢g¢*(a,3) = ¢¥(a,3) we obtain  ¢(a,i
all ¢ €{4,...,n + 3}.

(n). Let ¢(x,7) = (y,7) and 7 # j. Then = # a and y # a by (m). Then (p) is
valid and from (p) we conclude the existence of positive integer p such that

¢(x,p) = (a,1) or  ¢(a,1)=(y,p)

which contradicts (m).

If  o(x,0) = (y,2), « # a then y # a and of(x,i) = fF(y,i) and
dg*(x,i) = g (y, 1) imply  ¢(x,s) = (y,s) forevery s € {1,...,n+ 3}.

Theorem 2. Let (A, f1,...,fn) be a unary algebra, and a € A and (B, f,g) be the
unary algebra whose operations are defined by (1) - (5). Then

1) the group AutB is isomorphic to the subgroup of those automorphisms
¢ € Aut A having a as a fixed point and

2) the lattice SubB is isomorphic to the sublattice L of all subuniverses of the algebra
A containing the element a.

Proof. 1) Define a mapping F: AutB — AutA  as follows:

Flg)(z)=y it ¢(z.1) = (y,1)
for any ¢ € AutB and any x,y € A. Since ¢ is a bijection on B such that (n) holds,
we conclude that F(¢) is a bijection taking A onto A.By (m) we get F(¢)(a) = a. If
fi is an operation on A and F(¢)(x) =y, then é(x,14+3) = (y,2+3) by (n), which

implies

Qbf(xvl + 3) = f(yvi + 3)7 Qb(fl(x)vl + 3) = (fl(y)vl + 3)7
o(fi(x),1) = (fiy), 1),  F(o)fi(z) = fily) = fiF(o)(x),

thus F(¢) € AutA.
If ¢1 # ¢a, then F(¢1) # F(¢p2) by (n). It is easy to prove that  F(¢y o ¢g) =
F(¢1) 0 F(¢g) for any ¢1,02 € AutB.
If ¢ € AutA such that ¢(a) = a then one can easily verify that the mapping ¢ :
B — B satisfying the condition
o(x,1) = (y,7) forall 7€{1,...n+3} iff p(z) =y
is an automorphism of the algebra (B, f,g), and obviously  F(¢) = 1.
2) Let F:SubB — SubA be a mapping defined as follows:
F(S)={s€ A;(s,1) € S} for any subuniverse S € SubB.
a) We prove that F is well-defined, i.e., F(S) € SubA. Take s € F(S). From
(s,1) € S we get f¥(s,1) € S and ¢*(s,1) € S, k € N; therefore,
(s,i) € S and (a,1) € S
for all + € {1,..,n+ 3}. From (s,7 +3) € S, 1 <y
(fi(s),7+3)€S; thus, (fj(s),1) €S, ie., fi(s)€ F(9).
b) If Ay is a subalgebra of the algebra A such that a € Ay, then
By ={(s,1);s € Ay, i€41,...,n+3}}
is obviously a subuniversum of the algebra B and F(B;) = A;.

< n weget f(s,j+3) =
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¢) Clearly, F is one-to-one and
51 C 5 iff F(S,) C F(S2)
for any subalgebras Sy,82 € SubB, which completes the proof.

Remark 1. If a € A is a fixed point of the operations fi,..., f, then in Theorem 2 one
can replace the algebra (B, f,g) by the factor algebra (B/, f,q) where Q means the
congruence relation given by (8).

Corollary 1. Let (A, fi,..., fn) be a unary algebra. If there exists an element a € A
such that (6) holds and

(1) ¢(a) =a for every automorphism ¢ € AutA and

(ii) every subalgebra of the algebra A contains the element a

then there exists a unary algebra (D, f,g) such that
Con A= ConD, Aut A = AutD and SubA = SubD.

Although the propositions are stated for algebras with finitely many operations, it is
also true for algebras with countably many operations.

Theorem 3. Let (A, f1,..., fn,...) be a unary algebra and a € A an element such that
(9) a®r and a#zx imply a® fn(x)

for any congruence © € ConA, any element ¥ € A and any operation f,, n € N. Then
there exists an algebra (D, f,qg) such that

() ConD = ConA,
(i) AutD = Aut A’

where AutA’ is a subgroup of all automorphisms ¢ € AutA having the element a as a
fixed point.

(Jij) SubD = SubA"

where SubA" is a sublattice of all subuniverses of the lattice SubA containing the element
a.
Proof. We define operations f, g on the set B = A x N as follows (see Fig. 2) :
(1) flz, k) =(z,k+1)fork € {1,2} or kodd, k>25,
and £(r,3) = (,1)

2) P 2k) = (foea(e).2)  for > 1,

(3) o(z,1) = (a 1),

(4") g(x,2) = (x,1) for z # aandg(a,2) = (a,2)

(57) g(x, 2k + 1) = (2,2k + 3), ¢g(x,2k 4+ 2) = (z,2k)
for k > 1.
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Analogously, as in previous parts, one can show that f,(a) = a for any n € N yields the
crucial algebra (D, f,g) to be the algebra (B/Q, f,g), where € means the congruence
of the algebra (B, f,g) given by (8). If there exists n € N such that f,(a) # a then

(D, f.9) = (B, f,9).

Corollary 2. (Kogalovskij, Soldatova). For any unary algebra A with a countable system
of operations and a fixed point there exists a 2-unary algebra B for which

1. ConB = ConA and

2. it A is finite then so is B.

( ) \ fi fa
1 -® > [ ] o———0 - - -

(x,1) (2,2) (z,3) (x,4) (z,5) (2,6)

:

:

Fig. 2
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AFFINE COMPLETE STONE AND POST ALGEBRAS OF ORDER N

MIrROSL.AV HAVIAR

ABSTRACT. In this paper we characterize affine complete Stone algebras of order < n (n > 3)
and we show that the variety of Stone algebras of order < 3 is affine complete. We also prove
that each variety of Stone algebras of order < n (n > 2) is locally affine complete. Finally,
we show that the Post algebras (in the sense of [Ka-Mt 1972]) of order n (n > 2) are affine
complete.

1. Introduction.

G. Gréatzer in [G 1962] showed that every compatible function on a Boolean algebra
B (i.e. function preserving the congruences of B) can be represented by a polynomial of
B. Later on, in [G 1964] he characterized those bounded distributive lattices of which all
compatible functions are polynomials. These were the first results leading to the study of
affine complete algebras. By H. Werner [W 1971], an algebra A is called affine complete if
all n-ary compatible functions on A are polynomials (n > 1). Further, an algebra A is said
to be locally affine complete if any finite partial function in A™ — A (i.e. function whose
domain is a finite subset of A™) which is compatible (where defined) can be interpolated
by a polynomial of A (see e.g. [P 1972] or [Kaa-P 1987]; in [Sz 1986] or [Kaa-Ma-S 1985]
the notion ‘locally affine complete’ has another meaning).

G. Grétzer in [G 1968] (Problem 6) posed the problem of characterizing affine complete
algebras. It seems to be very hard to answer such a question in general. A list of particular
varieties in which all affine complete members were characterized was published in [C-
W 1981], and probably the most recent list of such varieties can be found in [Ha-P1 1994].

Much can be said about affine completeness if one is interested in varieties of algebras
of which all members are affine complete, i.e. affine complete varieties. Affine complete
varieties have been examined in [Kaa-P 1987] (see also [P 1972], [P 1979]). For a survey
of the most recent results concerning affine complete varieties see [P 1993].

In this paper we deal with a special class of Stone algebras - Stone algebras of order n.
We mainly deal with equationally definable Stone algebras of order < n (n > 2) introduced
by T. Katrindk and A. Mitschke [Ka-Mt 1972]. Stone algebras of order n represent one
of the best-known generalizations of the Post algebras of order n, which are the algebras
corresponding to n-valued propositional logic for n > 2.

1991 Mathematics Subject Classification. Primary 06D15, 06D30.

Key words and phrases. compatible function, (locally) affine complete algebra, Stone algebra of order
< n, Post algebra of order n.
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We first note that the Stone algebras of order < 2 are affine complete. Then we prove
that a Stone algebra L of order < n (n > 3) is affine complete iff its dense filter D(L) is an
affine complete Stone algebra of order < n—1 and some extension property holds for partial
compatible functions of D(L). We show that the Stone algebras of order < 3 are affine
complete, hence this variety can be added, as a new member, to the list in [Ha-P1 1994].
Afterwards we show that each variety of Stone algebras of order < n (n > 2) is locally
affine complete. In the last part of this paper we prove that the subdirectly irreducible
Post algebra (in the sense of [Ka-Mt 1972]) of order n (n > 2) is primal. By [Hu 1971]
this yields that each variety of Post algebras of order n (n > 1) is affine complete.

2. Preliminaries. A (distributive) p-algebra is an algebra L = (L;V,A,*,0,1) such that
(L;V,A,0,1) is a bounded (distributive) lattice and * is the unary operation of pseudo-
complementation defined by

a*=max{r € L|zAa=0} (a€lL).

A Stone algebra is a distributive p-algebra satisfying the identity a* VvV 2** = 1.

In any Stone algebra L, two subsets of L play an important role. The subset D(L) =
{r €L |a*=0}={xVa*|z € L} of all dense elements of L which forms a filter in L,
and the subset B(L) ={x € L |z =2} = {a* | # € L} of all closed elements of L which
is a Boolean subalgebra of L.

We first recall the definition of Stone algebras of order n (n > 1) as a subclass of the
Stone algebras (see [Ba-D 1975; p. 206]):

Let L be a Stone algebra. L is a Stone algebra of order 1, if L =1. L is a Stone algebra
of order n (n > 2),if L # 1 and D(L) is a Stone algebra of order n — 1.

Let L be a Stone algebra of order n (n > 2). We define

DO(L) =1L,
DYL) = D(D'"Y(L)) for i=1,...,n—1.
Hence

L=DYL)2D'(L)2 2D (L) =1
are Stone algebras. We shall denote the smallest element of D'(L) by d; for
i =1,...,n—1, hence D!L) = [d;). The chain dy < --+ < dp_1 = 1 is said to be
the chain of smallest dense elements of L.

Before giving the definition of the Stone algebras of order n (n > 2) as an equational
class, we recall some other necessary notions and results.

A Brouwerian algebra is an algebra L = (L;V, A, %) where (L;V,A) is a lattice, and *
is the binary operation of relative pseudocomplementation defined by the rule

r<yxz ff zAy<z forall z,y,z€ L.

One can show that L is distributive and has the greatest element = * # denoted by 1. The
class of all Brouwerian algebras is equational (see [Bi 1967] or [Ka-Mt 1972]).

A Brouwerian algebra satisfying the identity z*yVy*xz = 1is called a relative Stone alge-
bra. If a Brouwerian algebra L has the smallest element 0, then the algebra (L; V, A, *,0,1)
is called a Heyting algebra. Such algebra is also pseudocomplemented if one puts z* = x%0 .
The following rules of computation in Brouwerian (Heyting) algebras will be useful (see

[Ba-D 1975; p. 174]):
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(a) 2<y iff zxy=1

(b) y<azxy

(¢) (zVy)kz=(x*2)A(y=*z)

(d) z*(yAz)=(r*xy)A(x*2)

(e) (xxy) =a* Ay*.

Let L be a Brouwerian algebra and € be a congruence relation on L. The set Fy =
{r € L|x=1(6)}is afilter of L. Congruence relations of Brouwerian algebras can be
characterized as follows (see [Ne 1965]):

2.1 Proposition. Let L be a Brouwerian algebra. If 8 is a congruence relation on L, then
r=y (#) if xANd=yAd forasuitabled € Fy. If F is a filter on L, then the binary
relation 6(F') defined by
r=y (A(F)) if aAd=yAd forasuitabled € F

is a congruence relation on L.

Thus the lattice of congruences of a Brouwerian algebra L is isomorphic to the lattice of
all filters of L, hence it is distributive. Further, it is well-known that Brouwerian (Heyting)
algebras have a Congruence Extension Property (CEP).

In [Ka-Mt 1972], Stone algebras of order < n (n > 2) are characterized as follows:

2.2 Proposition ([Ka-Mt 1972; 5.2]). An algebra L = (L;V,A,*,¢q,...,€en—1) is a Stone
algebra of order < n (n > 2) with a chain ey < --- < e,_; of smallest dense elements if
and only if it satisfies the lattice identities and the following list of identities:

(1) axA[(zxAy)*z]=a A (y*z2)

(2) aAN[(yhz)*z]==x

(3) zA(x*xy)=zAy

(4) xxyVysar=e,

(5) €i+1 A €; = €4

(6) €41 ¥ € = €5

(7) xNep_1 =2

(8) z A €op = €0

(9) ei_H/\(:z;*ei)*ei:(x/\ei+1)\/ei (ZE{O,,TL—Q})

The lattice identities and (1)-(3) above characterize Brouwerian algebras. The identity
(4) guarantees that L is a relative Stone algebra. The identities (5), (7) and (8) establish
the chain 0 =¢y < --- < e,-1 =1 of smallest dense elements, while (6) and (9) state
that [e;41) is the filter of all dense elements of [e;).

It is known that the identity (4) is equivalent to the identity z*y V (x % y)*y = e,_1.
Thus putting z* = x* ey we immediately get =*Va** = e,_1 which means that a Stone
algebra of order < n can be considered as a Stone algebra as well. Hence in any Stone
algebra of order < n, the equation

(f) z=a"N(zVer)
holds. Further, the subsets B(L) of all ‘closed’ elements of L and D(L) = {zVa*; x € L}
of all ‘dense’ elements of L can be defined as above, and the formulas

(9) (@Ay) =2"Vy
and

(h) (zVyr=z*Ay*
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are true in L. If y is a closed element of a Stone algebra L of order < n then the element
x %y 1is also closed and

(J) z*xy=a*"Vy
holds (see [Ne 1965; Lemma 4.2]).

Finally, we mention the description of subdirectly irreducible Stone algebras of order
<n (n>2)given in [Ka-Mt 1972]. Let L={0=a¢ < -+ < am—1 = 1} (1 <m < n) be
an m-element chain. Obviously, L is a Stone algebra of order < n if one puts ¢; = q;
for 1=0,...,m—1and ¢ =1for 1 =m,...,n— 1. This algebra is usually denoted by

Sn(m).

2.3 Proposition ([Ka-Mt 1972; 5.10]). The only subdirectly irreducible Stone algebras
of order < n (n > 2) are the algebras Sp(m) where 1 < m < n.

There are several ways to define Post algebras of order n (see [Ba-D 1975]). In this
paper we use the equational definition of Post algebas of order n (n > 2) presented in

[Ka-Mt 1972; 5.3]:

2.4 Proposition. An abstract algebra L = (L,V,\,*,+,€g,...,€,—_1) is a Post algebra
of order n (n > 2) if and only if it satisfies the lattice identities, the identities (1)-(9) of
Proposition 2.2 and

(10) zV[(zVy)+z]=2V(y+2)

(11) aV[yVz)+z]==x

(12) zV(z4y)=aVy

(13) 24+yAy—+z=eco

(14) €n—2 t Epn—1 = €p—1.

Note that the identities (10)-(13) state that L is a dual relative Stone algebra, while
(14) guarantees that the order of L is just n.
The subdirectly irreducible Post algebras of order n are characterized as follows:

2.5 Proposition ([Ka-Mt 1972; 5.13]). Let L = (L,V,A,*,+,¢€0,...,€n—1) be a non-
trivial Post algebra of order n (n > 2). The following conditions are equivalent:

(1) L is subdirectly irreducible;

(2) L consists of n elements;

(3) L is a chain.

For these and other facts concerning Post algebras of order n see [Ka-Mt 1972] or [Ba-
D 1975].

Finally, recall that an algebra A is said to be primal, if it is finite and every function
on A is a term function of A. Further, an algebra A is called functionally complete if
every function on A is a polynomial of A. H. Werner in ([W 1970] showed that a finite
algebra A is functionally complete iff the discriminator is a polynomial of A. Recall that
the discriminator of an algebra A is the ternary function defined on A by the rule

z, ife=y
ey = {7 Y
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3. (Local) affine completeness.
We start with Stone algebras of order n as a subclass of Stone algebras having a smallest
dense element. We recall a result from [Be 1982]:

3.1. Theorem ([Be 1982; Theorem 4]). Let L be a Stone algebra having a smallest dense
element. Then the following are equivalent:

(1) L is affine complete;
(2) D(L) is an affine complete lattice;
(3) no proper interval of D(L) is Boolean.

Now let L = (L;V,A,*,0,1) be a Stone algebra of order n (n > 3). Then by its
definition, D"~%(L) is a Boolean algebra, thus D(L) contains a Boolean interval. By
Beazer’s characterization above we get the following:

3.2 Proposition. A Stone algebra (L;V,A,*,0,1) of order n is not an affine complete
Stone algebra for n > 3.

3.3 Example. Let L = {0,d,1} be a 3-element chain. Considering L to be a p-algebra,
L is a Stone algebra of order 3 with D(L) = {d,1}, D*(L) = {1}. By Proposition 3.2, L
is not affine complete. We shall find a unary function on L which is compatible but not
polynomial.

Take a function f' : D(L) — D(L) defined by f'(d) =1, f'(1) =d. Define f : L — L
by the rule f(z) = f'(xVvd),ie. f(0)= f(d)=1, f(1)=d. Obviously, f is compatible.
Suppose that f is a polynomial function of L. Using the formulas (g) and (h), and the fact
that 2* = 0, ** =1 for « € D(L), we get that f' = f [ D(L) is a polynomial function
of the lattice D(L), thus an order-preserving function. This is, of course, a contradiction,
hence f cannot be a polynomial function of the algebra L. [

Next we shall deal with equationally definable Stone algebras of order < n (n > 2) (see
Proposition 2.2). First we present some preliminary lemmas.

3.4 Lemma. Let L = (L;V,A,*,¢€0,...,en—1) be a Stone algebra of order < n and let
L' = (L;V, A, %) be its Brouwerian reduct. Then L and L' have the same congruences.

The proof is straightforward.

3.5 Lemma. Let (L;V,A,*,¢0,...,e,-1) be a Stone algebra of order < n (n > 2) and let 8
be a congruence of L. Then 6 | D(L) is a congruence of the algebra
(D(L)7 \/7 /\7 Ky €1yenny en—l)-

Proof. Evidently 6 | D(L) is a Brouwerian congruence as D(L) is a Brouwerian subalgebra
of L. The statement now follows from Lemma 3.4. O

3.6 Lemma. Let (L;V,A,*,e0,...,en—1) be a Stone algebra of order < n (n > 2) and

let s(X) be a polynomial of L. Then the function s1(X) : D(L)" — D(L) defined by
$1(X) = s(X) V ey is a polynomial function of the algebra (D(L);V, A, *,€1,...,€n_1).

Proof. We use induction on the length of the polynomial s(x). If s(X) is a variable or a
constant symbol, then the statement is obvious. Now suppose that the statement holds
for all polynomials s(X) of a length less than &k (k > 1) and let s(X) be of the length k. If
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s(x) = p(x) V q(x) (8(%) = p(x) A ¢(x)) for some polynomials p(x), ¢(x), then by induction
hypothesis the statement is obviously true. Now let s(x) = p(X)*¢(X). Gradually applying
(f), (d), (j), (¢), and (a) from Section 2, and the distributivity of L, we get

)
= [p(X) * (%) A p(X) * (¢(X) Ver)] Ve
= [(p(X)" V(X)) A (p(%) V er) * (q(X) Ver)] Ve
= [(p(X)* V1) V(q(x)™ Ve ) Al(p(X) V er) * (q(%) Ver)]

By induction hypothesis, p(x) V e; and ¢(X) V e; are polynomials of the algebra D(L).
Using (g), (h) and (e) from Section 2, we can transform p(x)* and ¢(X)** into polynomials
of the Boolean algebra (B(L),V,A,” , o, €n—1), i.e. into forms

() Vo (i) A A A i)
(71,..-,2n)E{1,2}7
(see e.g. [Ba-D 1975; p. 92]) where 2! and 2? denote 2} and x¥*, respectively, a(i1,...,i,)

€ B(L) and the join \/ is taken over all n-tuples (i1,...,7,) € {1,2}". Since the function
$1(x) is defined on D(L), we have in () 27 = €9, 27* = e¢,—y for any z; € D(L), i =

7

1,...,n. Thus p(x)*, ¢(X)** can be represented by some constants p,q € B(L). This means
that in (k) we get a polynomial of the algebra D(L). The proof is complete. O

3.7 Lemma. Let (L;V,A,*,¢eg,...,en_1) be a Stone algebra of order < n (n > 2). Let
6p be a congruence of the algebra (D(L);V,A,*,e1,...,€,_1). Then the equivalence 6 on

L defined by
(m) x =y (0) iff tVey =yVey (p) anda* Ve, =y*Vey (Op) andaz** Ve = y**Vey (6p)
is a congruence of the algebra L.

Proof. Using the formulas (g) and (h) one can easily verify that 6 is a congruence of the
lattice L. Now let @; = y; (0), =;,y; € L, 1 = 1,2. Similarly as in (k) of Lemma 3.6 we
get

(v *22) Ver =[(27 Ver) V(a3 Ver)]A(x1 Ver)*(z2Ver)
=[(yr Ver) V(g Ve )] Allyr Ver)*(y2 Ver)]
= (y1 *y2) Ver (6p).

Using (e) we have

(v1 *29) Ve = (27" Aay) Ve = (7" Ver)A(z5Ver)

= Ve )Ny Ver)=(y1*y2)" Ver (6p),
and applying (g), (h) to this, we finally get

(v1 *29)  Ver =[(z7 Va3 ) ANen—1] Ve = (x] Ver)V (255 Ver)
=(yr Ve V(" Ver)=(y1 xy2)" Ver (6p).
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Hence 1 % 22 = yy *y2 () which completes the proof of Lemma 3.7. O

In the following, %, x* and xVe; will be abbreviations for (z1,...,2,), (z},...,2)) and
(x1Ver,...,xnVey), respectively. Analogical meanings will have x* Ve, X** and X** Ve;.
Futher, if we write e.g. X*Ve; =7 Vey (0), we mean that 27 Ve, =y Ve (), i =1,...,n.

The following condition defines an extension property for certain partial compatible

functions of D(L):

3.8 Definition. Let (L;V,A,*,€q,...,en_1) be a Stone algebra of order <n (n > 2). We
shall say that L satisfies a condition

(D) if for any compatible function f : L™ — L of the algebra L, the partial function
f': D(L)*™ — D(L) such that
fl(XVe, Ve, " Ve )= f(X) Ve (X€L™)
and f' is undefined elsewhere can be extended to a total compatible function of
the algebra (D(L);V, A, *,€1,...,€n_1).

3.9 Remark. Let us verify that f’ is a well-defined partial function which preserves the
congruences of the algebra (D(L); V, A, *,€1,...,e,_1) where defined. If 6 is a congruence
of the algebra D(L) and (XV e1,x* Ve, x** Ve ) =(yVer,y Ve, Ver) (0p), then
X =¥ () where 6 is the congruence associated to 6p in Lemma 3.7. Now f(x) = f(¥) ()
since f is compatible, thus f(X)Ve; = f(y)Ver (6p). Hence f/(xVey,x* Ve, x**Vey) =
f' (¥ Ve, v Ve, v** Ver) (Ip) what was to be proved. Using the same procedure with
fp = Ap(r), the smallest congruence on D(L), one can show that f’ is a well-defined
partial function on D(L). O

3.10 Proposition. A Stone algebra L = (L;V, A, *, eg,e1) of order < 2 is affine complete.
Proof. The Boolean algebra Ly = (L;V,A\,*,eg,e1) is affine complete (|G 1962]). We

shall show that L and Ly have the same congruences. Obviously, every congruence of
the Heyting algebra L is also a congruence of the p-algebra Ly. Conversely, let 6 be a
congruence of the p-algebra Ly and z; = y;(0), x;,y; € L, i = 1,2. Since all elements of
Ly are closed, we get @y * 29 = 2] V 23 = y7 V y2 = y1 * y2(0), thus 0 is a congruence of
the algebra L too. Hence a function f : L™ — L preserving the congruences of the algebra
L also preserves the congruences of Ly, thus f can be represented by a polynomial of the
algebra Ly. This polynomial, of course, can easily be rewritten as a polynomial of the
algebra L replacing each 2* (a*) by @ * eg (a*¢eg). O

We get a characterization of affine complete Stone algebras of order < n (n > 3):

3.11 Theorem. Let (L;V,A,*,€eq,...,¢n_1) be a Stone algebra of order < n (n > 3).
Then L is affine complete if and only it (D(L);V,A,*,€e1,...,e,_1) Is an affine complete
Stone algebra of order n — 1 and (D) holds.

Proof. Let L be affine complete and f' : D(L)" — D(L) be a compatible function on the
algebra D(L). We define a function f: L™ — L as follows:

flar,..o,xn) = fl(wr Ver,...,xn Ver).
Clearly, f | D(L)" = f'. Using Lemma 3.5 one can show that f is compatible on
L. So by the assumption, the function f can be represented by a polynomial s(x) =
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s(x1,...,2y,) of the algebra L. Since in fact f : L™ — D(L), we have for any x € D(L)",
fl(x) = f( ) = f(X) Ve = s(X) Ve, ie f'isa polynomial function of the algebra
(D(L);V,A,*,€1,...,€n—1) by Lemma 3.6.

To show (D), let f : L™ — L be a compatible function of the algebra L and let f’ :
D(L)*™ — D(L) be the associated partial compatible function from Definition 3.8. Since
L is affine complete, f(x1,...,2,) can be represented by a polynomial p(z1,...,2,) of L.
Define a function f; : L™ — L by

fi(x) = fl(X Ve, x* Ve, X Ver)=p(x)Vey.

Let ay,...,am be all constant symbols appearing in p(x). Then p(x) can be meant as a
term #(X,a) = t(21,...,&n,a1,...,amy) of the algebra Ly = (L;V, A, *,a1,...,a,) where
Hax1y oy Tptm) IS a term of the Brouwerlan algebra (L;V, A, *). Using the distributivity
of L and the formula (zxy) Ve = [(2*Ver)V(y*™ Ver)]A[(xVer)*(yVer)] (see the proof
of Lemma 3.6), one can transform #(X,a) Ve to a term #1(XVe1,X* Ve, X**Ver,aVey) of
the algebra (L;V, A, %%, a1,...,am,e1) where t1(x1,...,T3n4m) is a term of the algebra
(L;V, A, *). Hence for any x € L™ we have

flxVe,x* Ve, x™ Ve ) =p(x) Ve =t(x,a) Ve =t(XVer,x* Ve, X" Ve,aVer)
= p1(X Ve, X Ve, X Ve) for some polynomial pl(xl,...,xgn) of the algebra
(D(L);V,A,*,€1,...,€en—1). This polynomial obviously represents the required total com-
patible function of the algebra (D(L);V, A, *,€1,...,6,_1) extending the partial function
f.

Conversely, let (D(L);V,A,*,e1,...,en—1) be affine complete and (D) holds. Let f :
L™ — L be a compatible function of the algebra L. Using () we can write

(m)  F(x)=FE)TA(fF)Ve).

We replace ‘f(X)**” in (m) by a polynomial of L. First we show that for any x € L”,
f(x)*™* = f(x**)*. For any variable x; we have
i N (2 Voal)=a A(a; Var),

whence by Proposition 2.1, @; = a* (#(D(L)) where 6(D(L)) denotes the (Brouwe-
rian) congruence associated to the filter D(L). Since f is compatible, we have f(x) =
f(x**) (8(D(L))), thus by Proposition 2.1 again, there exists an element d € D(L) such
that f(X) Ad = f(x**) Ad. So we get f(X)* = (f(X) Ad)™ = (f(Z) ANd)*™* = f()
what was to be proved.

Now we define a function f; : B(L)" — B(L) by the rule fi(x) = f(x)**. To show
that fi is compatible on the algebra (B(L);V, A, *,€eg,€en—1), let Op be a congruence of
B(L) and 2; = y; (0B), 25,y € B(L), 1 = 1,...,n. Obviously, (B(L);V,A,*,eg,€n—1) is
a Heyting subalgebra of the Heyting algebra (L;V, A, *,eq,e,—1). Since Heyting algebras
have CEP, there exists an extension 67 of the congruence p to the Heyting algebra L.
Obviously, 61, is a congruence of the algebra (L;V,A,*,¢eg,...,en—1) too. Hence z; =

yi (01), 1 =1,...,n, therefore f(x) = f(¥)(01) since f preserves the congruences of the
algebraL It follovvs f( ) = f(y)*(0B), thus fi is compatible on B(L). By Proposition
3.10, (B(L); V, A, *,e0,€en—1) is affine complete, thus f; can be represented by a polynomial
p(:z;l, ...,y ) of the algebra B(L). Hence in (m), f(x)* = f(x**)* = f1(x**) = p(x**) for
any X € L". Finally, in the polynomial p(x**) we can put a* = (z;%eg)*eq, it = 1,...,n,
in order to get a polynomial of the algebra (L;V, A, *,eq,...,€n—_1).

To replace ‘f(X) V ey’ in (m) by a polynomial of L, take the partial function f’ from
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Definition 3.8. By (D), f’ can be extended to a total compatible function of the algebra
D(L), which can be represented by a polynomial g(x1, ..., 23,) of D(L) since D(L) is affine
complete. Hence in (m) f(X)Ve; = f'(xVer,x*Ver,x*Vey) = ¢(xVey,Xx*Vey,x** Vey) for
any X € L". Putting in ¢(XVey,X* Ve, X** Vey) again @} = x;%eg, v/ = (v;%eq)*eq, i =
1,...,n, we get the required polynomial of the algebra L. The proof is complete. O
We have shown that the Stone algebras of order < 2 are affine complete (Heyting)
algebras. Now we prove that the Stone algebras of order < 3 are affine complete too.

3.12 Proposition. Any Stone algebra (L;V, A, *,eq, €1, e3) of order < 3 satisfies the con-
dition (D).

Proof. Let D(L) # 1 and let S denote the domain of the partial compatible function f,
ie.

S={(xVe,x*Ve,x*Ve); x€ L"} C D(L)*".
We define a polynomial function p : D(L)*" — D(L) as follows:

(n) p(ey,...,230) = \ (f'(ar, .. asn) Ayt A=+ ANysn),

5650{61762}3”‘
{xi*el, fa; =€
X, if a; = eq.
We show that f' = p on SN e, e} Let ¥ € SN{ep,en}?”. For a = X we have
@Ay A ANysn = f1(X)ANea = f/(%). Now take a € SN {er,ea}*", a# x and a;j # z;
for some j, 1 < 5 < 3n. Then
_{:z:j*elzel, ifa; =e
i r; =eq, if a; = ea,
thus (&) Ayr A -+ Aysn = f'(2) A ey = e1. Hence in (n) we get p(z1,...,23,) =
f'(x1,...,23,) what was to be proved. We assert that f' = p identically on the whole set
S, thus that p(x1,..., 23, ) is the required total compatible extension of the partial function
f'. To show this, suppose on the contrary that there exists a 3n-tuple (dy,...,ds,) € S such
that f'(dy,...,dsn) = a # b= p(dy,...,ds,). Since a,b € D(L) and D(L) is a subdirect
product of copies of 2 = {0,1}, there exists a ‘projection map’ h : D(L) — {0, 1}, which
is a 0, I-homomorphism between the algebra D(L) and some algebra 2 = {0,1}, such that
h(a) # h(b). Denote h(S) = {(h(z1),...,h(z3n)) € {0,1}*" | (21,...,23,) € S}. Now
define functions f5, ph : h(S) N {0,1}*" — {0,1} by the following rules:
fah(x1), ... h(xsn)) = h(f (21, .., 230)),
ph(h(xr), ... h(xsn)) = h(p'(z1,...,230))
where (z1,...,23,) € S. To show that fi, p) are well-defined, suppose that h(xy) =
h(y1)s ..., h(xsn) = h(ys, ) for some (21,..., 230 ), (Y1,...,Yysn) € S. Since f' (p') preserves
the kernel Ker h = 6p of the homomorphism h where defined, we get f'(x1,...,25,) =
1y ysn) (Op), thus fi(h(xr),..., h(z3n)) = fo(h(y1),...,h(ysn)) (analogously for
ph). Obviously, fi = pb identically on h(S) N {0,1}3", because f' = p’ identically on
SN {er,ex}?™ and h(ey) = 0, h(ez) = 1. Therefore
h(a) = h(f/(dlv SR 7d3n)) = fé(h(dl)v SR 7h(d3n)) = p/Z(h(dl)v SR 7h(d3n)) =
h(p'(dy,...,dsn)) = h(b), a contradiction. Hence f’ = p’ identically on S and the proof is
complete. [

where y; =
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3.13 Theorem. A Stone algebra (L;V, A, *,eq,e€1,€e3) of order < 3 is affine complete.
Proof. Tt follows from Theorem 3.11 and Propositions 3.10 and 3.12. O

3.14 Remark. In Example 3.3 we illustrated the fact that a 3-element chain considered
as a p-algebra is not an affine complete Stone algebra of order 3. This means that it
has too little polynomials ‘to cover’ all its compatible functions. Of course, if we replace
in a Stone algebra of order n the operation * by * , the number of its polynomials will
increase considerably. Theorem 3.13 says that for n < 3 they already ‘cover’ all compatible
functions, i.e. the 3-element chain is an affine complete Heyting algebra. Note that the
function f from Example 3.3 can be represented simply by the polynomial p(x) =z * d.

By Theorems 3.11 and 3.13, a Stone algebra of order < 4 is affine complete iff L satisfies
the condition (D). In general, we get the following result:

3.15 Corollary. A Stone algebra L of order < n (n > 4) is affine complete if and only if
D'(L) satisfies (D) for all 1 =0,...,n —4.

The condition (D) above might actually be superfluous - we still do not know an example
of a Stone algebra of order < n in which (D) is not satisfied. Therefore we pose the following
problem:

3.16 Problem. Find an example of a Stone algebra of order < n in which the condition
(D) is not satisfied or show that (D) in the characterizations above is superfluous.

The latter case would, of course, automatically mean that the variety of Stone algebras
of order < n is affine complete for n > 3 too.

However, we can show that each variety of Stone algebras of order < n is locally affine
complete (n > 2):

3.17 Theorem. Every Stone algebra (L;V,A,*,€g,...,ep_1) of order < n (n > 2) is
locally affine complete.

Proof. For n = 2 the result is well-known (see e.g. [P 1972]). Now let n > 3. Let L be
locally affine complete and f' : S — D(L) be a partial compatible function of the algebra
D(L) where S C D(L)™ is finite. One can easily verify that f = f’ is a finite partial
compatible function of the algebra L too. So by hypothesis, f can be interpolated in all
elements of S by a polynomial s(X) = s(xy,...,2,) of the algebra L. For any X € S we
consequently have f'(x) = f(x) = f(X) Ver = s(X) V e1, thus by Lemma 3.6, f' can be
interpolated on S by polynomial function of the algebra (D(L);V, A, *,€1,...,€n_1).

Conversely, let (D(L);V,A,*,e1,...,e,—1) be locally affine complete and let f : S — L
be a finite partial compatible function of the algebra L. Using (f) we can write again

(m)  FE) = R AR V) (€S
Analogously as in the proof of Theorem 3.11 one can show that f(X)** can be interpolated
in all x € S by a polynomial of the algebra (L;V, A, *,€eqg,...,€n_1).

To replace ‘ f(X)Vep” in (m) by a polynomial of L for all x € S, take the partial function
f! defined by  f'(xVey,x* Ve, x** Vey) = f(X) Ve forallx € S. Since f' is a finite par-
tial compatible function of the locally affine complete algebra (D(L);V, A, *,€1,...,€n_1),
it can be interpolated by a polynomial of (D(L);V,A,*,e1,...,€,—1). The proof is com-
plete. [
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In the last part of this paper we show that for each n > 2, the variety of Post algebras
of order n is affine complete. (As there are various definitions of Post algebras of order n
in the literature, for some varieties of Post algebras of order n such result might already be
known). Here we make use of the result of T.K. Hu [Hu 1971] which yields that a variety
generated by a primal algebra is affine complete. First we show that the discriminator
function on the subdirectly irreducible Post algebra L of order n is a polynomial of L:

3.18 Proposition. Let (L,V,A,*,+,¢e0,...,en—1) be the subdirectly irreducible Post
algebra of order n (n > 2). Then the discriminator is a polynomial of L.

Proof. Define a binary function b(x,y) on L as follows:
ba,y)=(x*xy ANy*x)+en_1.
Obviously,

b =
(z,9) { En—1, if x #£y.

One can easily verify that
d(x,y,z) = [blz,y) Nx] V [b(b(x,y), en—1) A z].
Hence the discriminator is a polynomial of L. [

€o, ife=y

3.19 Theorem. The variety of Post algebras of order n (in the sense of [Ka-Mt 1972])
is affine complete.

Proof. From Proposition 3.18 it follows that the subdirectly irreducible Post algebra L of
order n (n > 2) is functionally complete and from the fact that all constants eq,...,en—1
are the nullary operations of L we get that L is primal. Hence by Hu’s result, the variety
of Post algebras of order n is affine complete. O
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THE EDGE DISTANCE IN SOME FAMILIES OF GRAPHS

PAVEL HRNCIAR AND GABRIELA MONOSZOVA

ABSTRACT. The edge distance between graphs is defined by the equality d(G1,G2) = |E1| +
|E2| — 2|Ev,2] + ||[Vi| — |V2|| where |A] is the cardinality of A and Ej o is an edge set of the
maximal common subgraph of i and G». Further, diam F}, ; = maz{d(G1,G2);G1,G2 €
Fp 4} where F, ; denotes the set of all graphs with p vertices and ¢ edges. In this paper we
prove that for p > 10 diam F}, 41 = 2p — 8 and diam F), 42 = 2p — 6. At the end of the
paper we give the answer to a problem recently posed by M. Sabo.

1. Preliminaries

A graph G = (V, E) consists of a non-empty finite vertex set V and an edge set E. In
this paper we consider undirected graphs without loops and multiple edges. A subgraph H
of the graph G is a graph obtained from G by deleting some edges and vertices; notation:
H C G. By A(G) we denote the maximal degree of vertices of the graph G. A graph G
is a common subgraph of graphs Gy, G if there exist graphs Hy, Hy such that H; C Gy,
Hy, C Gy and Hy 2 G, Hy, 2 G. A maximal common subgraph is a common subgraph
which contains the maximal number of edges.

A distance of the graphs Gy = (Vi, Ey) and Gy = (Va, Ey) is defined (see [2]) by
(1) d(G1,Ga) = |Er| + [Ea| — 2|E1 2| + [[Vi] — V2]

where |E1|, |Ez|, |[Vi|, |V2| are the cardinalities of the edge sets and the vertex sets re-
spectively, and |E o] is the number of edges of a maximal common subgraph of Gy and
Gs.

Throughout this paper, by Fj, , we denote the set of all graphs with p vertices and ¢
edges, ¢ > 1. Further, diam F, , := max{d(G1,G>); G1,G, € F, ,}. lf diam F, , = d(G, H)
and ¢, 4 1s the number of edges of the maximal common subgraph of the graphs G, H,
then

(2) diam F}, , = 2¢ — 2¢,p .

We denote by v a firmly chosen vertex of the maximal degree in the considered graph
G and by vy,vq,...,v; the vertices adjacent to v (if A(G) = k). We denote U :=

1991 Mathematics Subject Classification. 05C12.
Key words and phrases. Subgraph, edge distance.
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{vi,v9,...,v} and U" := V — {v,v1,...,vr}. The subgraph of the graph G induced
by the vertex set X (X C V) we denote by G(X) and the set of its edges by E(G(X)) or
briefly by E(X). The subgraph of the graph G which contains all edges with one vertex
in the set U and the other in the set U’ we denote by G(U,U") and the set of its edges by
EU,U").

2. Diameters of F, ,41 and F, , -

Lemma 1. IfG € F, ,41,p 2 10 and A(G) = 3 then G contains at least two of the graphs
Hl, Hz, H3 (Flgl)

L] !

H1 HZ H3

Fig.1

Proof. Since G has at least 11 edges and A(G) = 3 then |E(U’)| 2 2 from which it follows
that GG contains at least one of the graphs Hy and Hy. Further we show that if G contains
exactly one of the graphs Hy and H, then G contains also the graph Hs. In fact, if G
does not contain the graph Hy then G(U’) has at most 3 edges. If G does not contain the
graph Hs then G(U') has at most [%] edges. In both cases |E(U,U’)| = 2 holds. Since
|E(U")| 2 2 then from these facts it follows easily that G contains Hj.

Lemma 2. If G € F, ,41,p 2 10 and A(G) = 3 then G contains at least one of the graphs

H, and Hy (Figs.1,2).

H,
Fig.2

Proof. If G does not contain Hy then G(U') has the vertices of degree at most 1. It
follows |E(U)| 4 |E(U,U")| 2 5 and this is possible only if |E(U)| = 1 or |[E(U)| = 0 (since
A(G) = 3). The considered statement is easy to verify in both cases. In fact, if some vertex
from U’ has the degree at least 2 in G(U,U’) then G contains Hy. Otherwise G contains
H,.
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Lemma 3. If G € F, ,41,p = 10 and A(G) = 3 then G contains at least one of the graphs
Hs and Hjs (Figs.1,3).

Hs

Fig.3

Proof. Obviously, G has a component H in which there are less vertices than edges. So,
in H there is a vertex of degree 3 and we choose it as the vertex of degree 3 in the desired
subgraph Hs resp. Hs. Now it is sufficient to realize that H has at least 5 edges and G
has at least 11 edges.

Lemma 4. If G € F, p41 and A(G) = 3 then G contains at least one of the graphs in
Fig. 4.

T LSS

Fig.4

Proof. The graph G must have a component which has more edges than vertices. Obvi-
ously, this component contains a connected subgraph with five edges and with a vertex of
degree 3. Since all such possibilities are listed in Fig. 4 the proof is finished.

Lemma 5. Let G € F, 41,p 2 10 and A(G) = 4. If G contains neither the subgraph Hg
nor the subgraph H; (Fig. 5) then G contains at least one of the graphs in Fig. 4.

H6 H?

Fig. 5

Proof. If G contains neither the subgraph Hg nor the subgraph H; then |E(U")| = |U'|+2.
So, the graph G(U’) must have a component having more edges than vertices. This
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component cannot have any vertex of degree 4, since otherwise the graph G would contain
the subgraph Hg or H7, a contradiction. Then, by the same argument as in the proof of
Lemma 4, the considered component contains at least one of the graphs in Fig. 4.

Lemma 6. Each subgraph G of the graph K¢ with at least 11 edges contains the graphs
Hg and H; as well as each of the graphs in Fig. 4.

Proof. Tt is sufficient to take into account that any vertex of a minimal degree in G has
the degree at least 1 and the subgraph of the graph G induced by the set of the remaining
vertices is the graph K5 without at most two edges.

Lemma 7. If G;,G2 € F, ,41,p = 10 and at least one of the graphs Gy, G2 has a single
non-trivial component which is a subgraph of the graph Kg then |E; 2| 2 5.

Proof. Let, say, GG; has the property that after removing its isolated vertices we get a
subgraph of Kg. Let H be a component of the graph G5 with more edges than vertices. If

A(H) 2 5 then H contains Hg and it is sufficient to use Lemma 6. If A(H) < 4 then the
statement is a consequence of Lemmas 4.,5,6.

Theorem 8. If Gi,Gs € F), p41,p 2 10 and A(Gy) = a(G2) = 3 then |Ey 5| 2 5.
Proof. According to Lemma 1, the statement is obvious.
Theorem 9. Let Gi,Gy € F), p11,p 2 10, a(Gy) = 3 and A(G2) = 4. Then |E; 5| 2 5.

Proof. If U" = {) in the graph G2 then |E(U)| = 2 and the considered statement is a
consequence of Lemmas 1 and 2. So, in the sequel we suppose that U’ # (). We distinguish
three cases.

I. Let E(U) # () and E(U") # (. We get the considered statement by Lemma 3
(obviously, the graph G5 contains the graphs Hs and Hs).

II. Let E(U) =0 and E(U') # 0. Further we distinguish two subcases.

a) If E(U,U") =0 then |[E(U")| = |U'| + 2 and G2(U’) has a vertex of degree at least
3 and also two independent edges. Then the considered statement follows from
Lemma 1.

b) Let E(U,U’) # (. First of all we show that Gy contains the subgraph H,. If
A(Gy) 2 5 the statement follows from the fact that there is a vertex in U’ which
has the degree at least 2 (since |E(U,U")| 4+ |E(U")| = |U'| +2). If aA(G2) = 4
the statement, obviously, holds if there is a vertex of U having the degree at least
3. In the opposite case it holds |E(U")| = |U'| — 2 and since |U'| — 2 > HQJ, the
graph G2(U’) has a vertex of degree at least 2. So, G5 really contains the graph
H,. Further it is possible to verify that G5 contains at least one of the graphs Hj
and Hy. The considered statement follows from Lemmas 1 and 2.

III. Let E(U") = 0.

a) Let A(G2) = 5. If there is a vertex of U’ having the degree at least 2 then Gy
contains Hy and Hy, so the statement follows from Lemma 2. Further we can
suppose that each vertex of U’ has the degree at most 1. We get that |E(U)| = 2.

ay) First we suppose that A(G2) = 6. If there are two adjacent edges in G2(U) then
the considered statement follows from Lemma 2. In the opposite case it is sufficient
to use Lemma 3.
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az) Now, we suppose that A(Gz) = 5. If E(U,U’) = () then the considered statement
follows from Lemma 7. If E(U,U’) # () then there is an edge from E(U) and an
edge from E(U,U’), which are not adjacent. We get the considered statement by
Lemma 3.

b) Let A(Gz) = 4. According to Lemma 7 we can assume that there are at least
two vertices from U’ having non-zero degrees. If |E(U)| = 2 then Gy contains the
subgraphs Hs and Hs and the considered statement is a consequence of Lemma
3. If [E(U)| £ 1 then some vertex of U has the degree at least 2 in the graph
G2 (U,U') and some vertex of U’ has the degree at least 2 in the graph G2 (U,U").

So, G5 contains the graphs Hy and H4 and according to Lemma 2 the proof is
finished.

Lemma 10. If G € F, ,41,p 2 10 and o(G) = 4 then G contains at least one of the
graphs Hg and Hg (Figs. 5,6).

=S

Fig. 6

Proof. 1t is sufficient to take into account that G has at least 11 edges and a graph with
5 vertices can have at most 10 edges.

Lemma 11. If G € F, ,41,p 2 10, o(G) = 4 and G without its isolated vertices is not

a subgraph of the graph Kg then G contains at least one of the graphs Hy and Hg (Fligs.
1,6).

Proof. If G does not contain the subgraph Hg then E(U’) = (). Further, if there is a vertex
from U having the degree at least 2 in G(U,U’) then G contains Hs. In the opposite case
each vertex from U has the degree at most 1 in G(U,U’), i.e., |E(U,U’| £ 4. To finish the
proof it suffices to consider all possible numbers of edges in E(U,U’).

Theorem 12. If G1,Gy € Fp ,41,p 2 10 and A(G1) = a(G2) = 4 then |E; 5| 2 5.
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Proof. The statement holds if both the graphs Gy, GG3 have the subgraph Hg and also if
they have the subgraph Hg. Then, without loss of generality we can assume that G does
not contain Hg and G does not contain Hg. Let us consider the graph H; in Fig. 5. If
both the graphs GGy, G5 contain Hy, the statement holds again. There are two possibilities
in the opposite case:

a) Gy contains H; and G5 does not contain H7. According to Lemma 10, the graph Gy
has the subgraph Hs which is also contained in the graph Gy because |E(U,U’)| =
|U'| 4+ 2 and so G2(U,U’) contains two independent edges.

b) G; does not contain H7. According to Lemma 10, Gy has the subgraph Hg. Fur-
ther, the graph Gy contains Hs, because |[E(U")| = |U'|4+2 and so G1(U") contains

a vertex of degree at least 3. Now it is sufficient to use Lemmas 7,11.

The proof is finished.

Theorem 13. If G1,G2 € Fp ,41,p 2 10, a(G1) = 4 and A(G2) 2 5 then |E; 5| 2 5.

Proof. We can assume (according to Lemma 7) that neither the graph Gy without its
isolated vertices nor the graph G2 without its isolated vertices is a subgraph of the graph
Kg. Obviously, Gy contains the graph Hg. If (G5 does not contain the graph Hg then
|E(U)| =0 and also |E(U,U")| =0. We get |E(U")| = |U'| + 2 and, obviously, G3(U’) has
a vertex of degree at least 3. This means that GGy contains H. To finish the proof it is
sufficient to use Lemmas 10 and 11.

Theorem 14. diam F), ,41 = 2p — 8 for p = 10.

Proof. By Theorems 8, 9, 12 and 13 it suffices to find two graphs G1,G2 € F) 41 with
|Eq,2] = 5. Such graphs are depicted in Fig. 7.

Gy G :

Fig. 7

Theorem 15. diam F), ,42 = 2p — 6 for p = 10.

Proof. By Theorem 14 for any two graphs Gy, G2 € F) ,4 it holds |Ey 2| 2 5 (if p = 10).
Now it is sufficient to find two graphs Gy, G2 € F} p42 for which |Ey 2| = 5 and the proof
will be finished. Such graphs are depicted in Fig. 8.
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Remark. By [1] diam F), p41 = 2p — 6, if 5 < p < 9. Further, obviously, diam Fy 5 = 0.
These facts together with Theorem 14 mean that we know diam F), ,1 for every p (there
are graphs with p vertices and p + 1 edges only for p = 4). If we consider Theorem 15
and the following three values: diam Fy ¢ = 0, diam F5 7 = diam F5 3 = 2, diam Fs 3 =
diam Fs 7 = 6 (see [1] and [2]) then there are unknown diam F), ,4, only for p € {7,8,9}.
In these cases diam F}, ,12 € {2p — 6,2p — 4}.

Fig. 8

3. |Eip]=2
The following theorem gives the answer to the problem 6b which is listed in [2]. We
denote the star with n edges by S, (Fig. 9), the path with n edges by P, and the circle
with n edges by C,,.

Fig. 9

Theorem 16. If Gy € F),, 4, and G2 € F), 4, then

1,41
d(G1,G2) =q + @2+ |pr —p2| — 4

if and only if the graphs Gy, G2 satisfy one of the following three conditions (we do not
pay attention to the isolated vertices; there can be any finite number of them):
1. A(Gl) = A(Gz) =1
and one of the graphs G, G2 has exactly two edges and the other one has at least
two edges;
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Proof.

. A(Gl) > 1, A(Gz) > 1

and at least one of the following conditions holds:

one of the graphs Gy, G5 is S3,

one of the graphs Gy, G4 is S, for n 2 3 and the other one is a graph G for which
a(G) =2,

one of the graphs Gy, G2 is the graph K3 and the other one is a graph which does
not contain Cj,

one of the graphs G, G5 is P; or Cy and the other one is a graph which does not
contain Py (i.e., each of its non-trivial components is K3 or Sy, ),

one of the graphs Gy, G2 is one of the graphs in Fig. 10 and the other one is a
graph having only components of type S, forn < 2;

- a(Gi) =1, 8(G) > 1 ({1,5} = {1,2})

and one of the following conditions holds:

|E(G;)| = 2 and G has at least two independent edges (i.e., G; has at least two
non-trivial components or has a component which is different from K3 and S,,),
|E(Gi)| 2 3 and G has exactly two non-trivial components and each of them is
Ks or S,,

|E(Gi)| 2 3 and G has only one non-trivial component which is a subgraph of Kj
containing Py or G is one of the graphs in Fig. 11 (the graphs in Fig. 11 contain
all line edges and an arbitrary subset of pointed edges).

The case 1 is trivial. In Case 2 it is sufficient to take into account that at least one

of the graphs Gy, G does not contain the graph in Fig. 12 (and so, this graph is S, or
a subgraph of Ky). In case 3 the graph G}, obviously, can have at most two non-trivial
components if |[E(G;)| =2 3. If G; has exactly one non-trivial component (denote it by
H), we will distinguish two cases. The case |V(H)| < 6 is trivial. In the opposite case
([V(H)| = 6) it is sufficient to distinguish whether H contains P or not (obviously, H
must contain Ps and cannot contain Ps).

Fig. 10
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PRODUCTS OF STATES ON SOME KINDS OF TENSOR PRODUCTS

VLADIMIR JANIS

ABSTRACT. We study states on tensor products B ® P, where B is a horizontal sum of an
arbitrary set of Boolean algebras and P is a bounded orthocomplemented poset. Such tensor
products exist and they are (in a slightly more general case) constructed in [2]. Tt is shown
that each pair of states on B and P generates a state (a product state) on B ® P which in a
certain way corresponds to these states.

It has been shown in [2] that for a horizontal sum ({0; 1}-pasting) B of an arbitrary set
of Boolean algebras and for a poset (P,0,1, L) there exists a tensor product B ® P and
its construction has been given as well. We study states in such tensor products.

We will present the result of the above mentioned construction after a few neccessary
definitions. By the abbreviation OCP we will understand a bounded orthocomplemented
poset. In fact all the results of this work remain valid also in a little bit more general case,
when P is only a bounded quasi-orthocomplemented poset. Since the differences are not
substantial, we restrict ourselves to the more usual case of an OCP.

We recall, that if P is an OCP, a,b € P, then a is orthogonal to b (we denote a L b) iff
a < bt.

Definition 1. Let P,Q, R be bounded OCPs. A mapping §: P x ) — R is said to be a

bimorphism if the following conditions are satisfied:

(1) for each orthogonal pair a,b € P and for any ¢ € @ there is
B(a,c) and ((b, ¢) are orthogonal,

and
BlaVvb,c)=p(a,b) VB(a,c),
(2) for each orthogonal pair ¢,d € ) and for any a € P there is
B(a,c) and ((a,d) are orthogonal,

and
ﬁ(avc \ d) = ﬁ(avc) \ ﬁ(bv d),
(3) B(1,1) = 1.

1991 Mathematics Subject Classification. 03G12,81P10.
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A tensor product for a horizontal sum (a {0, 1}-pasting) of Boolean algebras and a OCP
will be defined in a similar way to the tensor product of orthoalgebras used in [1].

Definition 2. Let B be a horizontal sum of an arbitrary set of Boolean algebras and let
P be an OCP. Then a pair (T, 7) consisting of an OCP T and a bimorphism 7: Bx P — T

is said to be a tensor product of B and P iff the following conditions are satisfied:

(1) Each element of T is a finite join of mutually orthogonal elements of the form
7(a,b), where a € B,b € P,

(2) If L is an OCP fulfilling the previous property with the bimorphism 3: Bx P — L
then there is a morphism ¢ : T'— L such that § =¢ o .

A morphism in the previous definition is understood in the usual way, i.e. it maps joins
on joins and a unity element on a unity element. If no misunderstanding could occur, we
will use T" as a notation for the tensor product instead of (T, 7).

The construction of the tensor product B® P is based on the same idea as the construction
of a sum for a Boolean algebra and a quantum logic which was introduced in [5].
Let S be a set consisting of all the elements of the type

{(al,bl), (az,bz), ceey (an,bn)},

where n is a natural number, a; € B,b; € P and for each a; the set of all a; compatible
with a; (i.e. those from the same block of the horizontal sum) is an orthogonal partition of
unity in B. We define a binary relation < and an operation L on § in the following way:

{(al,bl), (az,bz), ceey (an,bn)} S {(Cl,dl), (Cz,dz), ceey (Cm,dm)}
iff b; < d; whenever a; A ¢; # 0, and

{(a1,b1), (az,by), ..., (an, b))} = {(a1,b1), (az, b5 ), ..., (an, b))}

As the next step we identify those p,q € S for which both p < g and ¢ < p hold. The
set of all the equivalence classes obtained by this identification will be denoted by T and
its elements will be writen in square brackets. A routine verification shows that T is an
OCP. The properties of this structure in case when B is a single Boolean algebra and
P an orthomodular lattice is studied in [3] where there are results concerning mostly its
completeness and in [4], where states and homomorphisms are studied.

Later we will make use of the following: If the elements

[(al,bl), (az,bz), ceey (an,bn)] and [(Cl,dl), (Cz,dz), ceey (Cm,dm)]

in T are mutually orthogonal, then without a loss of generality we may suppose that
a1,as,...,0p,C1,C2,...,¢q are from the same block of B, while all the remaining pairs
ai,c; are from different blocks. If we assume this, then their least upper bound is the
element

[(ai A C]‘,bl‘ vV d]), (Clp_|_1,bp+1), ceey (an,bn), (Cq+1,dq+1), ceey (Cm,dm)] y

where 1 =1,2,....,pand j =1,2,...,q.
The following propositions are proved in [2]:
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Proposition 3. The mapping 7 : B x P — T such that 7(a,b) = [(a,b),(a*,0)] is a
bimorphism.

Proposition 4. Let B, P,T and 7 have the same meaning as above. Then (T,7) is a
tensor product of B and P.

The tensor product of B and P will be denoted by B ® P. Our aim is to study states
on it. A state is understood in the usual way, i.e. a state on a bounded poset K is a
mapping s : K — [0;1] such that s(1) = 1 and for each orthogonal pair a,b € K there is
s(aVb) = s(a)+ s(b).

Proposition 5. Let B, P,T and 7 have the same meaning as above, let s; and sy be

states on B and P respectively. Then there is a state s on T such that s(7(a,1)) = s1(a)
and s (7(1,b)) = s5(b) for each a € B,b € P.

Proof. Similarly to [5] we define the state S by the following rule:

n

s([(a1,b1), (az,b2), ..., (an,by)]) = Z s1(ai)s2(b;).
=1
As the unity element in T is [(1,1)], we immediately have s([(1,1)]) = 1. Let now
[(a1,b1),(az,b2),...,(an,by)] and [(c1,d1), (e2,d2),...,(¢m,dn)] be orthogonal elements
of T. Again we will suppose that ay,as,...,a,,¢1,¢2,..., ¢4 are from the same block of B,
while all the remaining pairs a;,b; are from different blocks. Then (see the remark before
Proposition 3) we have

S ([(al,bl), (az,bz), ceey (an,bn)] vV [(Cl,dl), (Cz,dz), ceey (Cm,dm)]) =
=S ([(ai A cjvbi Vv dj)v (ap-l-lvbp-l-l)v ce (anvbn)v (cq-l-lvdq-l-l)v ce (cmvdm)]) =

P q n m

=3 silai Aey)sabi Vi) + Y si(ai)sa(bi)+ Y si(ei)sa(di).
=1 j=1 1=p+1 1=q+1

Making use of the additivity of s, and the fact that the sets {aq,az,...,a,} and {c1, ¢2, ..., ¢4}

are partitions of unity we obtain that the term on the right-hand side is further equal to

31(a1)32(bi)‘|‘231(Ci)32(di)‘|‘ Z s1(a;)s2(bi) + Z s1(ei)s2(d;) =
i=1 i=1 i=p+1 i=q+1

=S ([(al,bl), (CLQ, bz), ceey (an, bn)]) + s ([(Cl, dl), (CQ, dz), ceey (Cm, dm)]) .
Hence s 1s a state on T
Moreover, if a € B, then due to Proposition 3 we have 7(a,1) = [(a,1),(at,0)] and
evidently s(7(a,1)) = s1(a). If b € P, then 7(1,b) = [(1,b)] and also in this case we have
s(1(1,b)) = s2(b).
Therefore s is the state on B® P with the required properties and the proofis completed.

We have shown that each pair of states on B and P generates a corresponding state (a
product state) on their tensor product B @ P. In fact there exist also states on B @ P
that are not generated by any such pair of states, even in the case when B is a Boolean
algebra. For more details about states and homomorphisms on that structure see [4].
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THE DISTANCE POSET OF POSETS

PAVvEL KLENOVCAN

ABSTRACT. In [3] a distance between isomorphism classes of ordered sets was introduced.
Let F be a set of all (non-isomorphic) posets on a finite set P. For (P, R), (P,S) € F, we
define (P, R) < (P, S) if and only if there exists a bijective isotone map f of P onto itself. We
will study the distance poset (F, <).

1. Introduction

In [4], [5] and [6] some properties of the distance graphs for some type of a metric for
graphs and posets were investigated. In this paper some analogous results will be derived
for a metric introduced in [3].

Throughout this paper all partially ordered sets are assumed to be finite. Let (P, R) be
a partially ordered set (shortly poset). If a,b € P, b covers a, then we will write a <g b.

In [3] a metric on a system of isomorphism classes of posets, which have the same
cardinality, is defined. Without loss of generality we can suppose that all posets are
defined on the same (finite) set P. We will often write a poset R instead of a poset (P, R).

Let B(P) be the set of all bijective maps of P onto itself. For any f € B(P) and posets
(P,R),(P,S) we denote by ds(R,S) the number defined by

(1) dg(R,S) = [f(R)\ S|+ [S\ fF(R)],
where f(R) = {[f(a), f(b)]; [a,b] € R} (cf. [3]). Since the posets (P, R) and (P, f(R)) are

isomorphic, then

) 45(R,S) = |R| +|S| — 2/f(R) N S|.
The distance of the posets (P, R), (P, S) is defined by

3) A(R,S) = min{ds(R,S); | € B(P)}

If we identify isomorphic posets, then (3) defines a metric on the set of all (finite,
non-isomorphic) posets defined on the same set P.

If amap f € B(P) is an isotone map of a poset (P, R) onto a poset (P, S), then f(R) C S
and d(R,S) =d¢(R,S) =|5| — |R| (cf. Remark 2 in [3]).

The following lemma is easy to verify (cf. Lemma 1 in [3]).

1991 Mathematics Subject Classification. 06 A07, 05C12.
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Lemma 1.1. For any posets (P, R), (P, S) and any maps f,g € B(P) the following prop-
erties are satisfied:

(i) df(R,S) = dy(R,S) iff [f(B)NS|=|g(R)nS],
(i) df(R,S) < dy(R,S) iff [f(R)NS|>|g(R)NS],
(i) [f(R)n S| =IRNOfH(S).

The following three lemmas are obvious.

Lemma 1.2. Let (P, R),(P,S) be posets and f € B(P).

a) If S\ f(R) # 0, then there exists [a,b] € S\ f(R) such that a <g b.
b) If f(R)\ S # 0, then there exists [u,v] € R such that [f(u), f(v)] € f(R)\ S and
U <R V.

Lemma 1.3. Let (P, R) be a poset. If for a,b € P, a <r b, then (P, R\ {[a,b]}) is also a
poset.

Lemma 1.4. Let (P,R) be a poset. If a,b € P, a <r b, then d(R, R\ {[a,b]}) =

Let (P, R),(P,S) be posets and let f € B(P). If d¢(R,S) = d(R,S), f is said to be an
optimal map of (P, R) onto (P,S) (cf. Definition in [3]). From Lemma 1.1 it follows that
f is an optimal map if and only if |f(R) N S| is maximal. Any isotone map f € B(P) is
optimal (cf. Remark 2 in [3]).

Lemma 1.5. Let (P,R),(P,S) be posets and let f € B(P) be an optimal map of (P, R)
onto (P,S). If a <5 b, [a,b] ¢ f(R), then f is an optimal map of (P, R) onto (P, S\ {[a,b]})
and d(R.5\ {a.]}) = d(R.S) -

Proof. Since [a,b] € S\ f(R), then
df(R,S\ {[a,b]}) =d¢(R,S)—1=4d(R,S)— 1.

Now it is sufficient to prove that d(R, S\ {[a,0]})
that there exists a map ¢ € B(P) with d (R, S\
two cases:

a) If [a,b] ¢ g(R), then dy(R, S\ {[a,b]}) =d,(R,S)—1 and so dy(R,S) <d(R,S)—1,
a contradiction.

b) If [a,b] € g(R), then dy(R, S\ {[a,b]}) = dy(R,S)+ 1 and so d,(R,S) < d(R,S) —

a contradiction. O

> d(R,S) — 1. Suppose on the contrary
{[a,b]}) < d(R,S) — 2. We distinguish

A map f € B(P) is an optimal map of (P, R) onto (P, S) if and only if f~! is an optimal
map of (P, S) onto (P,R) (cf. Lemma 1.1, (iii)). From this the next lemma follows (see
Lemma 4 in [3]).

Lemma 1.6. Let (P,R),(P,S) be posets and let f € B(P) be an optimal map of (P, R)
onto (P,S). If a <pg b and [f(a), f(b)] ¢ S, then f is an optimal map of (P,R \ {[a,b]})
onto (P,S) and d(R \ {[a,b]},S)

d(R,S) —
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2. The distance poset

Let F,, n € N, be a set of all (non-isomorphic) posets on a set P of cardinality n. For
(P,R),(P,S) € Fy, we define

(P,R) < (P,S) if and only if there exists an isotone map f € B(P).

A binary relation < is a partial order on F,,. The poset (F,, <) will be called the distance
poset (of n-element posets). We shall study this poset.

Example. The following figure depicts the poset (Fy, <). Cy is a four-element chain and
Ay 1s a four-element antichain.

Lo
S

A @I@

AN O @
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Lemma 2.1. Let (F,, <) be the distance poset and let (P,R),(P,S) € F,, n € N. Then
d(R,S)=1if and only if (P,R) < (P,S) or (P,S) < (P, R).

The proof is simple; it will be omitted.

Lemma 2.2. Let (P,R),(P,S) € F,,n € N, (P,R) < (P,S) and d(R,S) =m, m € N.
Then all maximal chains from (P, R) to (P, S) have the length m.

Proof. Let f € B(P) be an isotone map of (P, R) onto (P, S). Since the posets (P, R) and
(P, f(R)) are isomorphic, then d(R,S) = m = |S| — |R| = |S\ f(R)|. Thus, by Lemma
2.1, for each maximal chain from (P, R) = (P, f(R)) to (P, S) there exists a sequence of
ordered pairs [ay,b1], ... [am,bn] € S such that

¢ = ((Pv S)? (va\{[alvbl]})v (va\{[alvbl]v [a2762]})7 SRR (va\{[alvbl]v R [amvbm]}))

O

Now we recall some further notions and facts concerning posets and graphs.

If a poset (P, R) has the least element Op, then we define the height h(a) of an element
a € P as the length of the longest chain from Op to a. If a poset (P, R) has the least
element and all maximal chains between the same endpoints have the same length, then
we say that (P, R) is a graded poset. A poset (P, R) is said to have length n, denoted
by I[(P) = n, if the length of the longest chain in (P, R) is n. If (P, R) has the greatest
element 1p, then I[(P) = h(1p).

A graph G = (V, E) consists of a nonempty finite vertex set V together with a prescribed
edge set E of unordered pairs of distinct vertices of V. Every edge can be written in the
form ab, where a,b € V.

Let 6(a,b) denote the distance from a to b (i.e. the length of the shortest path from a
to b in a connected graph G = (V, E)), and let diam G = max{d(a,b); a,b € V} denote
the diameter of G. The function § is a metric. The covering graph C(P) of a poset (P, R)
is the graph whose vertices are the elements of P and whose edges are those pairs ab,
a,b € P, for which a covers b or b covers a. For elements a,b of a poset (P, R), d(a,b) shall
denote the distance from a to b in the covering graph C(P) of (P, R).

From Lemma 2.2 we immediatelly obtain

Theorem 2.1. The distance poset (F,,<) is a graded poset with the least element 0r, =
A, (an n-element antichain) and the greatest element 15 = C,, (an n-element chain).

The following lemma is a part of Lemma 2.1 in [2].

Lemma 2.3. Let (P, R) be a graded poset and let a,b € P. Then
d(a,b) = h(a) — h(b) if and only if [b,a] € R.

Clearly, if a poset (P,R) € F,, n € N, then h(P,R) = |R| — n. From Lemma 2.3 we

have

Lemma 2.4. Let (P,R),(P,S) be posets from F,,n € N. If (P,R) < (P,S), then
§(R,S)=d(R,S).

The following theorem was motivated by the similar results of Zelinka in [5] and [6].
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Theorem 2.2. Let (F,,<), n € N be the distance poset. If (P,R),(P,S) € F,, then
d(R,S)=46(R,S),
where §(R, S) is the distance of vertices (P, R), (P, S) of the graph C(F,).
Proof. Let (P,R),(P,S) € F,. Then there exists a map f € B(P) such that
d(R.S) =ds(R,S) = [f(R)\ S|+ [S\ f(R)].
Since f(R)NS C f(R), f(R)NS C S, then
(P, f(R)NS) < (P, f(R)) = (P,R) and (P, f(R)NS)<(P5).
From the triangle inequality for § and from Lemma 2.4 it follows that
§(R,S) <R, f(R)NS)+6(f(R)NS,S)=dR,f(R)NS)+d(f(R)NS,S) =
—d(f(R), (R) N )+ d(f(R) 1 5,5) = |f(R)\ (F(R) " S)| + S\ (F(R) N S)| =
=[f(R)\ S|+ 5\ f(R)| = d(R,S).
Thus
(a) I(R,S) <d(R,S).

Let
R: R117R127---7R1i1 - R217R22,...,R2i2,...,le,R]‘Q,...,R]‘Z‘j - S

be a shortest path from (P, R) to (P,S) in C(F,), where {Ry1, Ria, ..., Rri, } is a chain
in (F,,<) forall k € {1,2,...,5}. From Lemma 2.4 and from the triangle inequality for
d it follows that

S5(R,S)=0(R,Ryi,) + 6(R21,Raip) + -+ 0(Rj1,5) =
=d(R,R1;,) + d(R21, R2i,) + - +d(Rj1,S5) > d(R, 5).
Thus
(b) d(R,S) > d(R,S).
From (a) and (b) we have §(R,S) =d(R,S). O
A simple induction yields the following corollary.

Corollary 2.1. Let (F,,<), n € N be the distance poset. If (P,R),(P,S) € F,, then
h(P,R) — h(P,S) = d(R,S) (mod 2)

The next lemma is implicit in Alvarez [1].

Lemma 2.4. Let (P, R) be a graded poset with the greatest element. Then
diam C(P) =4§(0p,1p) = I(P).

From Lemma 2.4, Lemma 2.3 and Theorem 2.1 we immediately get
Corollary 2.2. Let (F,,<), n € N be the distance poset. Then
n(n—1)

diam C(F,) = 5
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A VECTOR LATTICE VARIANT OF THE MARTINGAL THEOREM

PETER MALICKY

ABSTRACT. The purpose of this paper is to give a variant of the martingal theorem for
random variables with values in a vector lattice. The following theorem is known as the
inverse martingal theorem, see [5,p.360]. The direct martingal theorem we do not use, because
its generalization for vector lattice valued random variables is more difficult.

1. Introduction

Theorem 1.1. (inverse martingal theorem) Let (2, S, P) be a probability measure space,
{Sk} be a decreasing sequence of o-subalgebras of S and S be the intersection of {S}.
Then for any random variable € : Q — R with a finite expectation E(¢)

(i) E(¢|Sk) — E(€|Sx) almost certainly and
(ii) E|E(£|Sk) — E(£]Ss)| — 0.

The present paper generalizes the inverse martingal theorem for vector lattice valued
random variables. The proof of the main result is very similar to the proof of the ergodic
theorem published by author in [3] and it might be omitted. However, we give the proof
for the sake of completness of results. Similarly as in [3] we use results of [2] about mean
value and conditional mean value for vector lattice valued variable. Similar results for
mean value were established in [6] under stricter conditions.

2. Vector lattices

More complete information about vector lattices may be found in [1] and [4].

A real vector space V is called a vector lattice if it has a partial ordering < such that
(V,<) is a lattice and:

Ve,y,z€V:ie<y = rz+z2<y+=z

Ve,y e V:A>0:2 <y = Az < \y. Lattice operations are denoted by symbols V
and A.

If @ € V then the symbol |a| denotes the element a V (—a).

A vector lattice V' is called o-complete if every sequence {a,} C V bounded from
above has a least upper bound which is denoted by the symbol \/__, a, ( or equivalently,
every sequence {a,} bounded from below has a greatest lower bound which is denoted by

/\20:1 an).

1991 Mathematics Subject Classification. 06 A07, 05C12.
Key words and phrases. Partially ordered set, distance, metric, distance poset.

51



Definition 2.1. Let V be a o-complete lattice. A sequence {a,} C V is called decreasing
to 0 if:

Vn:apt1 < a, and /\2021 an, = 0. We write a, \,0 in this case.

A sequence {z,} C V is called converging to x € V if there is a sequence {a,} C V
decreasing to 0 such that |z, — x| < a, for all n. We write ,, — 2 (n — 00) in this case.

Proposition 2.2. Let V be a o-complete vector lattice.

(1) A sequence {x,} C V converges to x € V if and only if {z,} is bounded and
T = /\?:1 \/szn Tm = \/1;.021 /\i:n x

(i1) an 0, bp \\ 0 = (an +b,) (O

) an N 0,0 >0 = Aan N\, 0

W) 2n =22,y 2>y = (Tn+yYn) = (x+y)

(V) @y = = Ax, — M.

The following lemma will be important in the proof of the main result in this paper.

Lemma 2.3. Let V' be a o-complete vector lattice and {a,} C V,{b, 1} C V be sequences
such that:

Vn,k:b,r >0

Vn b,k — 0 (k— o)

an N\ 0 (n — 00).

Put ¢, = N\._(an + by k). Then Vk : ¢, >0 and ¢, — 0 (k — o00).

Proof. The inequality ¢; > 0 for all k£ is obvious. The sequence {ci} is bounded because
0 <cp <ay+byforall kand by — 0 (k — o). It means that the element A, /e

1=k €j
exists. We have:
(o)

Voei=V A+ < A\ V(an+bas)

=k j=kn=

.
—
3
I
—_
.
kol

and

k=1 3=k k=1n=1 ]:k n=1k=1 ]:k
= Nan+ A\ Vouj)= N\an+0) =\ an=0
n=1 k=1 j=k n=1 n=1

VoA an 6oy < AV (an + 0 j)
1=k n=1 n=1 j=k

and



3. Integral and conditional mean value of vector lattice valued functions

In this section we give a summary of results of author’s paper [2].

Let (2, S, P) be a probability measure space and V' be a o-complete vector lattice. The
symbol F(Q,V) denotes the set of all functions f : & — V. Obviously, F(Q,V) is a
o-complete vector lattice under natural operations and ordering.

Two functions f,¢g € F(Q2,V) are called equivalent if there exists a set A € S such that

PAy=0and Vw € Q\ A : f(w) = g(w).

The set of all equivalence classes is denoted by F(2,S, P,V) and it is a o-complete vector
lattice under natural operations and ordering. A function f € F(Q,V) is called simple if
flw) = a; for w € Al, where {A;} is a finite measurable partition of Q and a; € V. We
put

f JdP(w Z P(A;)a; in this case.

A class v € F(Q, S P V') is called simple if it contains some simple function f. We put
E(p) = o pdP = [, f(w)dP(w) in this case.

The set of all simple functions is denoted by Lg°(Q2,S, P,V) and the set of all simple
classes is denoted by L£5°(92,S, P, V).

Let {fn} C F(2,V) and f € F(2,V). We say that a sequence {f,} converges to the
function f uniformly almost everywhere if there exist A € S, {a,} C V such that:

P(A)=0

Vo e Q\A:Vn: |folw) — f(w)] <an

an — 0 (n — o0).

Obviously, the condition a,, — 0 may be replaced by a stronger one a, \, 0. We write
fn — fuae. (n — o0) in this case.

Let {¢n} C F(Q,8,P,V) and ¢ € F(Q,S,P, V). We say that the sequence {p,}
converges to a class ¢ uniformly almost everywhere if f,, — f u.a.e. for some f,, € ¢, and
f € ¢. We write ¢, = ¢ w.a.e. (n — o) in this case.

Let M be a system of all vector subspaces of F(£,S,P, V) which contain the set
LF (2,8, P, V) and are closed with respect to the convergence which was described above.
Obviously, M has the minimal element with respect to inclusion. This vector space is

denoted by L>(2,S,P, V).

Theorem 3.1.
(i) L>(Q,8,P,V) is a vector sublattice of F(Q,S, P,V'), which is closed with respect

to u.a.e. convergence.
(ii) There exists a unique nonnegative linear extension E of the set E onto L=(Q, S, P
— E(¢ )

which is continuous in the following sense: ¢, — ¢ n.a.e. => E(p,) —

Remark. We shall write E(p) or [, ¢dP for ¢ € L>(Q,S, P, V) instead of E(yp).

In a similar way a condltlonal mean value operator can be constructed. Let (£, S, P)
be a probability measure space, Sg be a o-algebra of § and E(.|Sp) be a conditional mean
value operator for real functions. Take ¢ € L5°(, S, P, V);¢ is an equivalence class of
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n
some simple function f of the form Z Y 4i;. Denote by ¢ the equivalence class of the
=1

function ZE(XAi|SO)ai' In this case ¢» € L=(Q,S,P, V).
=1
Putting E(¢|So) = ¥ we obtain a linear nonnegative operator
E(.|So): LF(Q,S,P,V) — L=(Q,S,P, V).

Theorem 3.2.

(i) There exists a unique nonnegative linear extension
E(.|S) : LZ(Q,8,P,V) = LZ(Q,80, P,V) of E(.|So).

(ii) The operator_F(.|So) is continuous in the following sense: ¢, — ¢ uw.a.e. =—
E(¢n|So) = E(p|So) u.a.e.

Remark. We shall write E(¢|Sp) instead of E(¢|So).

We shall also use the pointwise convergence.

Let {fn} C F(,V) and f € F(Q,V). We say that the sequence {f,} converges to
f almost everywhere if there exists a set A € § such that P(A) = 0 and Vw € Q\ A :
falw) = f(w) (n — o). We write f, — f a.e. in this case.

If{on} CF(Q,S,PV)and ¢ € F(Q,S, P, V) then the notation ¢, — ¢ a.e. (n — o0)
means that f, — f a.e. (n = o) for some f, € ¢, and f € .

4. The inverse martingal theorem for vector lattice valued random variables

Theorem 4.1. Let (2, S, P) be a probability measure space, V be a o-complete vector
lattice, {Si} be a decreasing sequence of o-subalgebras of S and S, be the intersection of
{Sk}. Then for all ¢ € L>(Q,S,P,V)

(i) E(p|Sk) = E(¢|S) a.e. and

(i) BlIE(p|Sk) = E(¢[Sos)| — 0.

Proof. Denote by M the set of all ¢ € L>(Q2, S, P,V), for which (7) is true. The martingal
theorem for real functions implies that M contains L°(2,S, P, V). It is sufficient to prove
that M is closed with respect to u.a.e. convergence. Let {¢,} C M be a sequence which
converges to ¢ € F(,8,P,V) ua.e.. Obviously, ¢ € L(Q2,S,P,V) and E(¢,|Sk) —
E(¢n|Ss) a.e. when k& — oo for all n.

Let fn, f,9n,9, hnr and h be representants of the following equivalence classes ¢, ©,
E(¢n|Sx), E(¢|Sx), E(¢n|Sk) and E(p|Sk). There is a set A € S with P(A) =0 and a
sequence {a,} C V with a, \, 0 such that |f,(w) — f(w)| < a, for all w € Q\ A. Since
conditional mean value preserves ordering and constants, there are sets By and B € S
with P(Bjy) = 0 and P(B) = 0 such that

lgn(w) — g(w)| < ay, for all w € @\ B and

|hnk(w) — h(w)| < a, for all w € Q\ By.
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By assumptions hni(w) — gn(w) a. e. when k — oo for any n; the exceptional w form
>0

a set C, with P(C,) = 0. Denote D = Al U By | U U Cp |. Forw € Q\ D denote
k=1 n=1
bk = |hnk(w) — gn(w)|. We have

hk(w) = g(w)] < [hr(w) = hnr(@)] + [hnk(w) = gn(@)] + [gn(w) = g(w)] <

< an + bnk + an = 2a, + bpp.

Put ¢ = /\ (2an + by k).

n=1
Then |hr(w) — g(w)| < ¢k and ¢ — 0 by lemma 2.3. The proof of (7) is complete. Part
(17) can be proved by the same idea (it is not necessary to use the representants).

REFERENCES

[1] Luxemburg,W.A.J. - Zannen,A.C., Riesz Spaces I., North-Holland, 1971.

[2] Malicky,P., Random wvariables with values in a vector lattice, Acta Math.Univ.Com. 52-53 (1987),
249-263.

[3] Malicky,P., A wector lattice variant of the ergodic theorem,, Supplemento ai Rendiconti del Circolo
Matematico di Palermo Serie 1T 14 (1987), 391-397.

[4] Peressini,A.L., Order topological vector spaces, Harper & Row Publishers, New York.

[5] Stépan,J, Teorie pravdépodobnosti, Academia, Praha, 1987.

[6] Vrédbelova,M., On the conditional expectation in a regular ordered space, Math.Slovaca 38, no. 2,
159-166.

DEPT. OF MATHEMATICS, FACULTY OF HUMANITIES AND SCIENCES,
MATEJ BEL UNIVERSITY, TAJOVSKEHO 40, 975 49 BANSKA BYSTRICA, SLOVAKIA

E-mail address: malicky@fhpv.umb.sk

(Received October 21, 1994)

55



56



Acta Univ. M. Belii
Math. no.2(1994), pp.57-66

FUNCTIONALLY COMPLETE ALGEBRAS

BOHUSLAV SIVAK

ABSTRACT. It is known that every funtionally complete algebra has the k-interpolation prop-
erty for k& > 1. We will prove that for each integer k > 2, every k-element algebra with the
k-interpolation property is functionally complete.

1. Introduction

The polynomial function of an algebra (A, F) is represented by some ”correctly ar-
ranged” string containing (possibly) the variables, the symbols ”(”, ”7)”, the constants
(from A), and the symbols of the operations (from F'). The algebra (A, F') is function-
ally complete iff every function A" — A is polynomial.

The algebra (A, F') has the k-interpolation property iff for every integer n > 0, every
k-tuple
(@f,as,....at) € (A")*

of pairwise distinct vectors and every k-tuple
(bi,by, ..., by) € A*
there exists a n-ary polynomial function F' such that
F(ai)=by, F(a3) =by, ..., F(ai) = by.

A lot of interesting information on the functional completness and the interpolation
properties can be found in [1] or [2]. Further we will use the Composition theorem (Wille
+ Werner). By this theorem, if there exist two different elements 0,1 € A, two binary
polynomial operations ”+” and ”7-” satisfying the identities

xr+0=2, 0+2x=2,2-1=2, 2-0=0

and several unary polynomial functions (the unary functions ¢g for which one value of ¢ is
equal to 1 and all other values of g are equal to 0), then (A, F) is functionally complete.
(It is assumed that A is finite.) Further we will study only k-element algebras with the
k-interpolation property, consequently, all unary functions will be polynomial. Moreover,
each k-element algebra with the 2k-interpolation property is functionally complete because
the identities for 74”7 and ”-” determine at most 2k values of each operation.

1991 Mathematics Subject Classification. 08A40.
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Lemma 1.1. Assume that (A, F) has the (m + 1)-interpolation property. Then (A, F)
has the m-interpolation property, too.

Example 1.1. Let (A, F) = (Z2,+) be the additive group of the 2-element field. This
algebra is not functionally complete (every unary function is polynomial but it is easy to
prove that among 16 binary functions there are only 8 polynomial functions). It can be
proved that this algebra has the 3-interpolation property (we leave it to the reader).

2. Three-element algebras

Assume that A = {0, 1,2} and the algebra (A, F) of any type has the 3-interpolation
property. Every function M : A2 — A can be represented by the following 3 x 3 matrix:

M(0,0) M(0,1) M(0,2)
M = |M(1,0) M(1,1) M(1,2)
M(2,0) M(2,1) M(2,2)

Using such matrices, we can simply write the ”"interpolation polynomials”. For example,
the (possibly not existing) binary polynomial function G satisfying the equalities

G(0,0) =0, G(0,1) =1, G(1,2) =2, G(2,0) =1

will be represented by the following matrix (”*” denotes the non-determined value):

*

o

0
G= %
1

*

and we will say that the matrix G is polynomial iff it represents some binary polynomial
function G.

Lemma 2.1. Every unary function on (A, F') is polynomial.

Lemma 2.2. Every 3 x 3 matrix over the set {0, 1,2, *} containing at most 3 numbers is
polynomial.

Lemma 2.3. For 3 x 3 matrices K, L, M over the {0,1,2,%}, let us define the matrix
K LM by the following way:

KLM(z,y) = K(L(z,y), M(z,y)).

(The value KLM (x,y) is not determined in the following three cases:

- the value L(x,y) is not determined,

- the value M(x,y) is not determined,

- the values L(x,y) = a, M(x,y) = b are determined, but K(a,b) is not.) If the matrices
K, L, M are polynomial, then the matrix K LM is polynomial, too.
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Lemma 2.4. Let M be a polynomial matrix. Then the matrix K defined by

K(z,y) = M(y,z)

is polynomial, too.

Lemma 2.5. Every matrix of the form

G —

o o Q
o o Q
o o Q

(resp. the transposed matrix) is polynomial.

Proof. Let us define the unary function

F0) =a, f(1) =0, f(2) =e.

By Lemma 2.1, the function f is polynomial. Moreover, G(z,y) = f(x).
Lemma 2.6. Assume that M is a polynomial matrix and that the matrix K can be
obtained from M by one of the following operations:

1) some permutation of the rows (columns),
2) replacing of some row (column) by any other row (column).

Then the matrix K is polynomial, too.

Proof. For example, we wish to exchange the first two rows of the matrix M. By Lemma
2.1, the unary function

F0)=1, f(1) =0, f(2) =2
is polynomial. Moreover, it holds M (x,y) = M(f(z),y).

Another example - we wish to replace the column 0 by the column 2. It suffices to use the
function

F0)=2, f(1) =1, f(2) =2
and the equality M(z,y) = M(z, f(y)).

Lemma 2.7. Let M be a polynomial matrix and let f be an unary function. Then the
matrix fM defined by

fM(x,y) = f(M(x,y))
is polynomial, too.

Lemma 2.8. The algebra (A, F) is functionally complete iff the following two matrices
are polynomial:

0 2 0 0
2 * 0 2
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Proof. Apply Lemma 2.1 and the Composition theorem. (The matrix S corresponds
to ”+” and the matrix P corresponds to 7-”.) Here we assume that (A, F) has the 3-
interpolation property.

Remark. In the following theorem, we will explicitly write all assumptions.

Theorem 2.1. Assume that A = {0, 1,2} and that the algebra (A, F) has the 3-interpolation
property. Then (A, F) is functionally complete.

Proof. We are going to prove that the matrices S, P (Lemma 2.8) are polynomial. By
Lemma 2.2, the matrices

0 0
Sl — ]_ y Q = 2
* *
are polynomial. Applying Lemma 2.6, we succesively obtain the following polynomial
maftrices:
0 1 = 0 0 0 1 0
So=11 * x|, S3=1|1 % 1|, S;=10 0
0 1 = 0 1 0 1 * 1
Applying Lemma 2.4 and Lemma 2.6, we obtain the polynomial matrices
0 0 1 0 0 1
Ss=11 1 *|, Seg=|0 0 1
0 0 1 1 1 =

Direct calculations give (see Lemma 2.3)

0 1 2
QSGS;; =11 * *|=9
2 %k
0 0 =
Proposition 2.1. The matrix P’ = |0 1 x| is polynomial.
Xk ok

Let us continue in the proof of Theorem 2.1. By Proposition 2.1, Lemma 2.6 and Lemma
2.3, we obtain the polynomial matrices

0 0 =« 0 0 =
Plz 0 1 =« R P2: 0 0 =« R P:QP2P1
0 0 = 0 1

It remains only to prove Proposition 2.1. We know that the matrix Q) is polynomial. The
value Q(1,1) is not determined and it is easy to see that at least one of the following three
maftrices is polynomial:

0 1 = 0 1 = 0 1
P3:2 0 =x* R P4:2 1 =% R P5:2 2
k% k% * ok
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By Lemma 2.7, at least one of the following two matrices is polynomial:

1 =% 1
P6: 0 = s P7: 0
* *

* O O
* O O

It suffices to apply Lemma 2.6.
Theorem 2.2. Assume that A = {0,1,2} and that the algebra (A, F') has the following
properties:

1) every unary function is polynomial,
2) there exists a binary polynomial function () such that

Q(0,0) =0, Q(0,1) =1, Q(1,0) = 2.

Then (A, F) is functionally complete.

Proof. The binary function @) corresponds to the matrix ) in the proof of Theorem 2.1.
Starting from @, it is possible to derive Sy and P, (apply Lemma 2.6 and Lemma 2.7).

Corollary. Assume that A = {0,1,2} and that the algebra (A, F) has the following
properties:

1) among unary polynomial functions there exist at least one transposition, at least
one 3-cycle and at least one function with exactly 2 values,
2) among binary polynomial functions there exists a function G and there exist

a,b,c,d € A such that

{G(a,c), G(a,d), G(b,c), G(b,d)} = A.

Then (A, F) is functionally complete.

3. Four-element and ”big” algebras

In the case of 4-element algebras we can assume that A = {0,1,2,3} and the binary
functions will be represented by 4 x 4 matrices. The results above (Lemma 2.1 — Lemma
2.8) must be modified (it is easy). The fundamental matrices in the modification of Lemma

2.8 will be

0 1 2 3 0 0 * =«
1 * * = 0 1 % =
5_2 * ok k| ] P_O 2 % x
3 x *x % 0 3 x =«

Theorem 3.1. Assume that A = {0,1,2,3} and that the algebra (A, F) has the 4-
interpolation property. Then (A, F) is functionally complete.
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Proof. Starting from the "fundamental” polynomial matrix

0 1 = =
2 3 * %
Q= * ok ok k|
% % k%
we successively obtain the polynomial matrices
0 0 * =« 0 0 % = 0 0 * =«
0 1 * = 0 1 % =% 0 0 * =«
P1_>|<>|<>|<>|<’P2_00>|<>|<’P3_01>|<>|<’
* %k k% 0 1 *x =« 0 1 *x =%
P=QP;P,,
0 1 * = 0 1 * = 0 0 1 1
1 % * % 0 1 * =* 0O 0 1 1
Sl_****’SZ_l***’S3_11**’
* ok k% 1 * *x x% 1 1 * =
0 1 0 1 01 2 3
1+ 1 = 1 % 3 =
Si=1lg 1 ¢ 1| BTEHS=], 5
1 + 1 =% 3 * *x %

Trivially, S is a special case of S5.
Theorem 3.2. Assume that A = {0,1,2,3} and that the algebra (A, F') has the following
properties:

1) every unary function is polynomial,
2) there exists a binary polynomial function () such that

Q(0,0) =0, Q(0,1) =1, Q(1,0) =2, Q(1,1) = 3.
Then (A, F) is functionally complete.
Corollary. Assume that A = {0,1,2,3} and that the algebra (A, F') has the following
properties:

1) among unary polynomial functions there exist at least one 4-cycle, at least one
3-cycle and at least one function with exactly 3 values,
2) among binary polynomial functions there exists a function G and there exist

a,b,e,d € A such that {G(a,c), G(a,d), G(b,c), G(b,d)} = A.
Then (A, F) is functionally complete.
Remark. The method of the proof of Theorem 3.1 can be applied more generally.

Theorem 3.3. Assume that A = {0,1,2,...,k — 1},k > 5 and that the algebra (A, F)
has the k-interpolation property. Then (A, F) is functionally complete.

The idea of the proof. First modify the results above (Lemma 2.1 — Lemma 2.8) and
prove that there exists an integer m such that the following inequalities are satisfied:

m? >k, 2m < k.
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The fundamental polynomial matrix ) can be defined by the following way:
Qz,y)=max+y, e <m, y<m, me+y <k.

(All other values are not determined.) We leave the details to the reader. This method is
not convenient in the case k& = 5 because there exists no integer m satisfying the inequalities

m? > 5, 2m < 5.
Example 3.1. Put £ = 7. The inequalities
m? >7, 2m <7

have the solution m = 3. Here the matrices S, P are:

01 2 3 4 5 6 0 0 * x x x *
1 % % x % % =% 0 1 * *x *x =* =x
2 % ok ok kx k% 0 2 *x *x *x * =x
S=13 % * % *x *x x|, P=|0 3 *x % * x x
4 % % % % * % 0 4 *x *x *x * =x
5 % % % % *x % 0 5 * x *x % *
6 % * % x * % 0 6 * *x *x x *

and the fundamental polynomial matrix is:

* X ¥ ¥ O WO
R R I N
* X ¥ ¥ X CU N
* X K K X K K
* X K K X K K
* X K K X K K
* X K K X K K

The derivations of S, P from @ we leave to the reader. (Use the same method as in the
case k = 4.)
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4. Five-element algebras

Theorem 4.1. Assume that A = {0,1,2,3,4} and that the algebra (A, F') has 5-interpolation
property. The (A, F) is functionally complete.

Proof. The fundamental matrices in the modification of Lemma2.8 will be

01 2 3 4 0 0 * * =«
1 % * *x x 0 1 * * =*
S=12 % * % x|, P=]0 2 % * =«
3 % % % % 0 3 x x %
4 % *x *x % 0 4 * * =*

By the 5-interpolation property the following two matrices are polynomial:

0 1 2 % =% 0 1 2 % =%
3 4 *x *x x 1 % * % x
Q=|* *x *x % x|, R=|2 % *x % %
* ok ok ok %k * ok ok ok %k
* ok ok ok %k * ok ok ok %k
From ) we derive polynomial matrices
0 1 % * =% 0 1 % * =% 0 0 0 1 1
1 % % * % 0 1 % * =% 0 0 0 1 1
Si=1*% * % *x x|, Sy=1]0 1 % *x *x|, S3=/0 0 0 1 1
%k ok k% 1 * *x *x % 1 1 1 %+ %
%k ok k% 1 * *x *x % 1 1 1 %+ %
and from R we derive polynomial matrices
0 1 2 x =x 01 2 0 1
1 % *x % = 1 *x x 1 =«
Si=12 * * *x x|, Ss=12 *x x 2 x
0 1 2 x =x 01 2 0 1
1 % *x % = 1 *x x 1 =«

The matrix )53955 is a special case of S. It is more difficult to derive the matrix P. By
the 5-interpolation property, the matrices

* 0 *x *x % 0 * * *x %
0 1 * *= = * 1 3 %

_ r_
Pr=10 2 % x x|, @Q =|x 4 2 x x
* % % %k * ok ok ok ok
* % % %k * ok ok ok ok
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are polynomial. From P; we derive polynomial matrices

* 0 * x % * 0 * x
0 1 % x =% 0 1 % *x =«
Pob=10 2 % % *x|, P3=10 2 % *x x
0 1 % x =% 0 2 % *x =«
0 2 % % % 0 1 % *x =«
Direct computations give
* 0 *x * %
0 1 * * =«
P4:Q/P2P3:0 2 ok k%
0 3 * * =«
0 4 * * =«

In the case Py(0,0) = 0, the proof is finished (P, = P). All other cases are equivalent and
we can assume that P,;(0,0) = 1. Then we have the polynomial matrix

1 0 * * =%
0 1 * * =«
P5:0 2 * * *
0 3 * * =«
0 4 * * =«

By the 4-interpolation property, the matrices

0 0 * * = 0 2 % *x =«
0 1 * * =« 3 1 % % =«
Ps=|*x x * *x x|, U=/|% % % *x x
* ok ok ok %k * ok x k%
* ok ok ok %k * ok x k%

are polynomial. From Ps we derive the polynomial matrices

0 0 * * = 0 0 % % =
0 1 * = = 0 1 *x * =
P;=|0 0 « *x x|, Pg=]0 1 % % =x
0 1 * = = 0 0 = * =
0 0 * * = 0 0 % % =
Direct computations give
Py =UP; Py =

* K K X X
* K K X X
* K K X X

oo oo o
S W NN = O



By the 5-interpolation property, the matrix

PlOZ

= % % O %
R S e
* X DN ¥ ¥
* W ¥ ¥ *
* X K ¥ X

is polynomial. From P we derive the polynomial matrix

0 1 * *= =
0 1 * *= =
Pi=|x x 2 x %
* ok k3 %
4 *x % k%
and direct computations give: P = Py{PsPy.
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