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ON A CONGRUENCE LATTICE REPRESENTATIONS

ALFONZ HAVIAR

ABSTRACT. In [2] the following problem is formulated: Is it true that for every n-unary al-
gebra A (n finite), there exists a 2-unary algebra B with ConA 2 ConB? This paper
contains contributions to the solution of this problem. Certain results concerning the men-
tioned problem can be found in [3]. In this paper some results of [3] are generalized. Moreover,
results for the lattice of subuniverses and the authomorphism group are presented.

Representations of congruence lattice have been considered by many authors. The
survay of basic results on this topic may be found in [1], [2] and [4].

In this paper the set of all positive integers will be denoted by N. Further, ConA, SubA
and AutA denote the congruence lattice, the lattice of subuniverses and the automorphism
group of an algebra A, respectively.

Let (A, f1,..., fn) be a unary algebra and let a be any (but fixed) element of A. We
define unary operations f, g on theset B =A x {1,2,....n+3} as follows:

(1) f(a,k) =(x,k+1) for ke{l,2}, f(z,3)=(x,1),

( ) ( ) (fk*3($)7k) for ke {47"-7n+3}7
(8) gla,1) = (a,1), glz.n+3) = (x,1),
(1) ga.2) = (@.2) gla k)= (ak+1) for ke {3 .nt2),
(5) g(x, k) = (x2,k+1) for a#a, ke{2,.,n+2}
(see Fig.1).
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Lemma 1. Let (A, f1,...,fn) be a unary algebra, a € A and (B, f,g) be the unary
algebra defined above, i.e., the operations f, g satisfy (1) — (5). For any congruence
relation ® of the algebra (B, f,g) the following holds:

(1) (z,p) @ (y,p) iff (x,q) P (y,q) for any p,q € {1,...,n+ 3},
(ii) (a,p) ® (y,q) and (a,p) # (y,q) imply (a,i) ®(y.))

for all 1,7 € {1,...,n+ 3},
(iii) (z,p) ®(y,q) and p#q imply (a,1)®(y,1).

Proof. (1). Let (x,p)®(y,p). Then

(a) r.p)@f (y,p)  and

(b) 9" (x,p)®g"* (y,p)  for anyk € N.

If pe{1,2,3) then from (a) we get

(c) (x,5)®(y,s) forevery se€{1,2 3}

Using (b), from (z,3)®(y,3) we get (c) for all s € {4,....n+3}. If pe {4,...,n+3}

then from (b) we get (x,1)®(y, 1) and then we proceed in the same way as in the previous
case.
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(ii). The assumption (a,p)®(y,q) implies

(d) ffa.p)@f*(y.q)  and

(e) .gk(aap)q’gk(y,q) for any k& N.

Now we consider the following cases.

a) Let y=a (e, p#4q), p,q€{1,2,3}. Then we get (a,2)®(a,3) from (d); thus,
g*(a,2)®g*(a,3), k € N, and, consequently, (a,2)®(a,s) for all
s=3,4,....,.n+3,1,2.

b) Let y =a and p <3 <gq. If p=2 then from (e) we get (a,2)®(a, 1), i.e., the case
a). If p=1 thenfrom f(a,1)®f(a,q) weget (a,2)®(f,—3(a),q), g¥(a,2)®g*(f,—3(a),q)
and (a,2)®(a,1) , respectively, i.e., the case a) again. For p = 3 we use f%(a,3)®f*(a,q),
and then we proceed as in the previous case.

¢) Let y =a and p,q € {4,...,n 4+ 3}. Then we get the case b) using (e) since ® is
symimetric.

d) Let y # a, p,q €{1,2,3}. Then (d) implies (a,2)®(y,s) for some
s €1{1,2,3}. Further, from ¢*(a,2)®¢*(y,s), k € N, we obtain (a,2)®(a,1) and
then by a)

(f) (a,0)®(a,j) forall 4,7€{l,....,n+3}
The assumption (a,p)®(y,q) together with (f) and (i) implies

(2) (a,0)®(y,j) for i,7€{l,....n+ 3}

e) Let y # a, p <3< gq From (d) we get (a,2)®(z,q) for some z € A. Thus, we
obtain  ¢*(a,2)®g*(z,q) foreach k&€ N andso (a,2)®(a,1), and then we proceed
as in the case d).

f) Let y # a and ¢ < 3 < p. We obtain (z,p)®(y,2) from (d) for some element
z € A. Thus, g*(z,p)®g¢*(y,2) for each k € N and, consequently, (a,1)®(y,s) for some
s € {4,...,n+ 3}, hence we have the case e).

g)Let y # a and p,q € {4,...,n+3}. Using (¢) we obtain (a,s)®(y,1) or (a,1)®(y,s)

for some s, which are again the previous cases.

(iii). Let (z,p)®(y,q) and p # q. For y = a the statement is evident; for = = a we
use (i1).

Now let © # a, y # a. For p = 1 the assumption and the operation ¢ imply
(a,1)®(y,s), where s=¢+1 or s=1. Then by (i7) we get

(h) (a,1)@(y, 1).

If 1<p<gq then using the operation ¢ we get (z,s)®(a,1) for some s. We obtain
(h) by using (1i) and the hypothesis. If ¢ < p then analogously we obtain (h) by using

(i)
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Theorem 1. Let (A, fi,..., fn) be a unary algebra. Let there exist a € A such that
(6) aOx and a # x  imply aOfi(x), i=1,...,n

for any congruence relation © € ConA and any element x € A.
Then there exists a unary algebra (D, f,q) such that Con A= ConD.

Remark. An algebra (A, fi,..., fn) satisfies the assumptions of Theorem 1 if one of the
following conditions holds:

(1) a is a fixed point of every operation f;, 1 = 1,2, ...,n.
(i) Ifz # athen ©(z,a) =V4

(V ameans the largest element of ConA).
(iii) Ife e {1,...,n}and f;(a) # a then O(a, f;(a)) < O(a,z)

for every element x € A, = # a.

Proof. Let (B, f,g) be an algebra whose operations are defined by (1) — (5). We define a
mapping F : ConB — ConA as follows

(7) @)y i (2.1)8(y.1)

for any congruence relation ® € ConB.

a) We prove that the mapping F' is well-defined, i.e., that F(®) € Con.A. Obviously,
F(®) is an equivalence on A. Let zF(®)y. Then by (7) and (1) we get  (z,p)®(y,p)
for all p € {4,...,n + 3}. So, we get

D ®FW) Frs (008 Fs().0), (Fyos(eh DB(fps (). 1) (b (1)

and  fp,_3(2)F(®)fp—3(y), respectively, for p=4,...,n+3.
Hence, F(®) e ConA.
b) Using Lemma 1 we have
O, < By iff F(®)) < F(ds)
for any congruences &, ®, € ConB.

Now we consider two cases.

cl) Let a be the fixed point of all operations fi,..., fn, i.e., f(a,p) = (a,p) holds for
all p=4,....n+ 3. We define the relation © on B as follows:

(8) (z,p)y,q) it (z,p) =(y,q) or z=y=a

Obviously, © is a congruence relation of the algebra (B, f,¢).
Now we prove that F' is a mapping of the interval [Q,Vpg] of the lattice ConBB onto
ConA. Let © € ConA. We define a relation ® on B by the rule:
(z,p)®(y, q) iff 20Oy and (yOa or p = q).
It is easy to show that ® is an equivalence relation on B.
Let OyOa. Then by (6) we have
fi(2)Of;(y)0a for all i,j € {1,2,...,n},
and, consequently,  f(x,p)®f(y,q). Obviously, we also get ¢(z,p)®g(y, q).
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Let p=¢ and 2Oy. Then, fi(2)0Ofi(y) for all 7 € {1,...,n} which implies

(k) f(e,p)®f(y,p)  forallpe{4,..n+3}.

Obviously, (k) also holds for p € {1,2,3}. Further, it is clear that g(x,p)®g(y,p). Thus,
® € ConBB and evidently @ > Q, F(®) = 0.

Assume that ®,®, € [, V], @ # ®;. Then there are (x,p),(y,q) € B such
that (x,p)®1(y,q) but (z,p)(B* — ®3)(y,q). We can suppose z #a#y. If p=gq
then zF(®q1)y but x(A* — F(®;))y by Lemma 1. If p # ¢ then

(l’, 1)@1 (av 1)(1)1 (ya 1)
by Lemmal and hence xF(®1)aF(®y)y. If a2F(P2)aF(P2)y ie.,
(x,1)®@2(a, 1)®2(y,1), then (x,p)®2(y,q), in view of Lemma 1(ii), since & # a # y,
a cotradiction. Thus, the restriction of the mapping F to the interval [Q,Vp]| is an
isomorphism, and, consequently, ConBB/2 = ConA.  Hence, the statement holds for
the algebra (D, f,9) = (B/, f,g).

c2) Let fi, 1 <i < n, be such an operation that f;(a) =b # a. Now we prove that
we can take (D, f,g) = (B, f,g). If aOx for some element = € A, x # a, then by (6)
aOfi(x), thus, aOfi(a), ie., a®b. Hence, ©O(a,b) < O(a,z) for every element
reA v #a.

If (a,1)®(b,1), ® € ConB, then using Lemma 1 (1) we get (a,p)®(b,q) for all
p,qg €{l,...,n+3}. Conversely, from (a,p)®(a,q), p#q wehave (a,1)®(a,i+3)
using Lemma 1 (7). Hence we get  f(a,1)®f(a,t +3) and then (a,2)®(fi(a).i + 3).
Then by Lemma 1 (ii¢) we obtain (a,1)®(f;(a),1), ie., (a,1)®(b,1). Using Lemma 1
again we conclude that F' is an injection.

To prove that F' is onto, suppose that @ € ConA. If a®b we define a relation ® on B
as follows:

(x,p)®(y,q) iff 2Oy and (yOa or p=q).
In the other case, the relation @ is defined on B by the rule:

(x,p)®(y,q) iff p=gq and zOy.
One can prove in a similar way as in cl) that in both cases @& € ConBB.  Obviously,
F(®) =0 by Lemma 1. Hence, F is the isomorphism between ConB and ConA.

Lemma 2. Let (A, fi,...,fn) be a unary algebra, a € A and (B, f,g) be the unary

algebra whose operations are defined by (1) - (5). If ¢ is an automorphism of the algebra
(B.f,g), then

(m) o(a,i) = (a,1) for all i€ {1,...,n+ 3},

() ¢(x,1) = (y.j) yields 1=jando(z,s) = (y,s)
for all s € {1,...,n+ 3}.

Proof. (m). If ¢ € AutB, then there exist elements (z,%), (y,7) such that
¢(w,1) = (y,7), (2,1) #(a,2) and (y,j) # (a,2).  Then

(p) ¢g"(2,i) = g*(y,j)  forany ke N,
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(a,2) and

which implies  ¢(a,1) = (a,1).  Thus ¢f(a,1) = f(a,1), ie., ¢(a,2) ): -
a, ,1) for

similarly ¢(a,3) = (a,3). From ¢g*(a,3) = g*(a,3) we obtain (
all 1 €{4,....,n+ 3}.

(n). Let  o(x,1) = (y,7) and ¢ # j. Then x # a and y # a by (m). Then (p) is
valid and from (p) we conclude the existence of positive integer p such that

o(x,p) = (a,1) or  ¢(a,1) =(y,p)

which contradicts (m).

If  ox, z) (y,1), a # a then y # « and dff (1) = fF(y,0) and
dg* (1) = g*(y,1) imply  ¢(x,s) = (y,s) for every s € {1,...,n+ 3}.

Theorem 2. Let (A, fi,...,fn) be a unary algebra, and a € A and (B, f,g) be the
unary algebra whose operations are defined by (1) - (5). Then

1) the group AutB is isomorphic to the subgroup of those automorphisms
¢ € Aut A having a as a fixed point and

2) the lattice SubB is isomorphic to the sublattice L of all subuniverses of the algebra
A containing the element a.

Proof. 1) Define a mapping F : AutB — AutA  as follows:

Flo)x)=y it  o(2,1)=(y,1)
for any ¢ € AutB and any x,y € A. Since ¢ is a bijection on B such that (n) holds,
we conclude that F(¢) is a bijection taking A onto A.By (m) we get F(¢)(a) = a. If
fi is an operation on A and F(¢)(x) =y, then ¢(x,i+3) = (y,2+ 3) by (n), which

implies

gbf(l‘,l + 3) = f(yvl + 3)7 ¢(fl(x)vl + 3) = (fl(y)vl + 3)7
o(fi(x),1) =(fi(y),1),  F(o)fi(x) = fily) = fiF(o)(@),

thus F(¢) € AutA.
If ¢1 # @2, then F(¢1) # F(¢2) by (n). It is easy to prove that  F(¢q 0 ¢3) =
F(¢1) 0 F(¢2) for any ¢y, ¢2 € AutB.
If v € AutA such that (a) = a then one can easily verify that the mapping ¢ :
B — B satisfying the condition
d(x,1) = (y,1) forall e€{l,..n+3} iff P(x) =y
is an automorphism of the algebra (B, f,¢), and obviously F(¢) = .
2) Let F:SubB — SubA be a mapping defined as follows:
F(S)={sec A;(s,1) € S5} for any subuniverse S € SubB.
a) We prove that F is well-defined, ie., F(S) € SubA. Take s € F(S). From
(5,1) € S we get fF(s,1) € S and g¢F(s,1) € S, k € N; therefore,
(s,1) €S and (a,1) € S
for all + € {1,....,n+3}. From (5,7 4+3) € S, 1 <j <n weget f(s,j+3) =
(fi(s),7+3)€S; thus, (fj(s),1) €S, ie., fi(s) € F(5).
b) If A; is a subalgebra of the algebra A such that a € Ay, then
By ={(s,i);s € Ay, ie{l,...,n+3}}
is obviously a subuniversum of the algebra B and F(By) = A;.
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¢) Clearly, F is one-to-one and
S1CS, iff F(S1) C F(S2)
for any subalgebras §y,S; € SubB, which completes the proof.

Remark 1. If a € A is a fixed point of the operations fi,..., f, then in Theorem 2 one
can replace the algebra (B, f,g) by the factor algebra (B/Q, f,g) where ) means the
congruence relation given by (8).

Corollary 1. Let (A, f1,..., fn) be a unary algebra. If there exists an element a € A
such that (6) holds and

(1) ¢(a) =a for every automorphism ¢ € Aut A and

(i1) every subalgebra of the algebra A contains the element a

then there exists a unary algebra (D, f,q) such that
ConA = ConD, Aut A = AutD and SubA = SubD.

Although the propositions are stated for algebras with finitely many operations, it is
also true for algebras with countably many operations.

Theorem 3. Let (A, fi,..., fn,...) be a unary algebra and a € A an element such that
(9) aOr and a#x imply  a©f,(x)

for any congruence O € ConA, any element © € A and any operation f,, n € N. Then
there exists an algebra (D, f,g) such that

() ConD = ConA,

(33) AutD = Aut A’

where Aut A’ is a subgroup of all automorphisms ¢ € AutA having the element a as a
fixed point.

(3ii) SubD = SubA”

where SubA" is a sublattice of all subuniverses of the lattice SubA containing the element
a.

Proof. We define operations f, g on the set B = A x N as follows (see Fig. 2) :

(1) flz, k) =(z,k +1)fork € {1,2} or Fkodd, k>5,

and f(z,3) = (1)

fla,2k) = (fr—1(x),2k) for k>1,

g(x,1) = (a,1),

g(z,2) = (x,1) for z#aandg(a,2)=(a,2)

9(2,2k + 1) = (,2k + 3),  g(x,2k +2) = (z,2k)

for k > 1.

— e e S

A~~~ A~~~
Ot B W N
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Analogously, as in previous parts, one can show that f,(a) = a for any n € N yields the
crucial algebra (D, f,g) to be the algebra (B/€, f,g), where © means the congruence
of the algebra (B, f,g) given by (8). If there exists n € N such that f,(a) # a then

(D, f,9) =(B.f,9).

Corollary 2. (Kogalovskij, Soldatova). For any unary algebra A with a countable system
of operations and a fixed point there exists a 2-unary algebra B for which

1. ConB= ConA and

2. if A is finite then so is B.

{ \. fi fa
f: @ > [ o———0 - - -

(z,1) (x,2) (x,3) (x,4) (x,5) (x,6)

0 . Y
’ (a,1)  (a,2) (ag A (a,5) /.(a,G)

(z,1) (x,2)’\ (z,3) A (z,5) J.(:c,G)

Fig. 2
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