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AFFINE COMPLETE STONE AND POST ALGEBRAS OF ORDER N

MIROSLAV HAVIAR

ABSTRACT. In this paper we characterize affine complete Stone algebras of order < n (n > 3)
and we show that the variety of Stone algebras of order < 3 is affine complete. We also prove
that each variety of Stone algebras of order < n (n > 2) is locally affine complete. Finally,
we show that the Post algebras (in the sense of [Ka-Mt 1972]) of order n (n > 2) are affine
complete.

1. Introduction.

G. Grétzer in [G 1962] showed that every compatible function on a Boolean algebra
B (i.e. function preserving the congruences of B) can be represented by a polynomial of
B. Later on, in [G 1964] he characterized those bounded distributive lattices of which all
compatible functions are polynomials. These were the first results leading to the study of
affine complete algebras. By H. Werner [W 1971], an algebra A is called affine complete if
all n-ary compatible functions on A are polynomials (n > 1). Further, an algebra A is said
to be locally affine complete if any finite partial function in A™ — A (i.e. function whose
domain is a finite subset of A™) which is compatible (where defined) can be interpolated
by a polynomial of A (see e.g. [P 1972] or [Kaa-P 1987]; in [Sz 1986] or [Kaa-Ma-S 1985]
the notion ‘locally affine complete’ has another meaning).

G. Gritzer in [G 1968] (Problem 6) posed the problem of characterizing affine complete
algebras. It seems to be very hard to answer such a question in general. A list of particular
varieties in which all affine complete members were characterized was published in [C-
W 1981], and probably the most recent list of such varieties can be found in [Ha-P1 1994].

Much can be said about affine completeness if one is interested in varieties of algebras
of which all members are affine complete, i.e. affine complete varieties. Affine complete
varieties have been examined in [Kaa-P 1987] (see also [P 1972], [P 1979]). For a survey
of the most recent results concerning affine complete varieties see [P 1993].

In this paper we deal with a special class of Stone algebras - Stone algebras of order n.
We mainly deal with equationally definable Stone algebras of order < n (n > 2) introduced
by T. Katrindk and A. Mitschke [Ka-Mt 1972]. Stone algebras of order n represent one
of the best-known generalizations of the Post algebras of order n, which are the algebras
corresponding to n-valued propositional logic for n > 2.
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We first note that the Stone algebras of order < 2 are affine complete. Then we prove
that a Stone algebra L of order < n (n > 3) is affine complete iff its dense filter D(L) is an
affine complete Stone algebra of order < n—1 and some extension property holds for partial
compatible functions of D(L). We show that the Stone algebras of order < 3 are affine
complete, hence this variety can be added, as a new member, to the list in [Ha-P1 1994].
Afterwards we show that each variety of Stone algebras of order < n (n > 2) is locally
affine complete. In the last part of this paper we prove that the subdirectly irreducible
Post algebra (in the sense of [Ka-Mt 1972]) of order n (n > 2) is primal. By [Hu 1971]
this yields that each variety of Post algebras of order n (n > 1) is affine complete.

2. Preliminaries. A (distributive) p-algebra is an algebra L = (L;V,A,*,0,1) such that
(L;V,A,0,1) is a bounded (distributive) lattice and * is the unary operation of pseudo-
complementation defined by

a*=max{r € L]z Aa=0} (a€L).

A Stone algebra is a distributive p-algebra satisfying the identity 2* V 2™ = 1.

In any Stone algebra L, two subsets of L play an important role. The subset D(L) =
{r €L |a*=0}={aVa*]|x € L} ofall dense elements of L which forms a filter in L,
and the subset B(L) ={x € L |z = 2™} ={a* | 2 € L} of all closed elements of L which
is a Boolean subalgebra of L.

We first recall the definition of Stone algebras of order n (n > 1) as a subclass of the
Stone algebras (see [Ba-D 1975; p. 206]):

Let L be a Stone algebra. L is a Stone algebra of order 1, if L =1. L is a Stone algebra
of order n (n > 2),if L #1 and D(L) is a Stone algebra of order n — 1.

Let L be a Stone algebra of order n (n > 2). We define

DOL) =1L,
Di(L) = D(Di_l(L)) for e=1,....n—1.
Hence

L=D°(L)2D'(L) 2 2 D" (L) =1
are Stone algebras. We shall denote the smallest element of D'(L) by d; for
i =1,...,n — 1, hence DYL) = [d;). The chain d; < --- < d,—; = 1 is said to be
the chain of smallest dense elements of L.

Before giving the definition of the Stone algebras of order n (n > 2) as an equational
class, we recall some other necessary notions and results.

A Brouwerian algebra is an algebra L = (L;V,A,*) where (L;V,A) is a lattice, and =
is the binary operation of relative pseudocomplementation defined by the rule

r<yxz ff xzAy<z forall x,y,z¢€ L.

One can show that L is distributive and has the greatest element = * ¢ denoted by 1. The
class of all Brouwerian algebras is equational (see [Bi 1967] or [Ka-Mt 1972]).

A Brouwerian algebra satisfying the identity xxyVy*z = 1 is called a relative Stone alge-
bra. If a Brouwerian algebra L has the smallest element 0, then the algebra (L; V, A, *,0,1)
is called a Heyting algebra. Such algebra is also pseudocomplemented if one puts z* = 0 .
The following rules of computation in Brouwerian (Heyting) algebras will be useful (see

[Ba-D 1975; p. 174]):
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(a) <y if z*xy=1

(b) y<axy

(¢) (eVy)xz=(x*xz)A(y=*z)

(d) ax(yAz)=(z*xy)A(x*z)

() (z*xy) =™ Ay*.

Let L be a Brouwerian algebra and 6 be a congruence relation on L. The set Fy =

{r € L|x=1(0)} is a filter of L. Congruence relations of Brouwerian algebras can be
characterized as follows (see [Ne 1965]):

2.1 Proposition. Let L be a Brouwerian algebra. If 6 is a congruence relation on L, then
r=y (6) iff and=yANd forasuitabled € Fy. If F is a filter on L, then the binary
relation 0(F') defined by
r=y (0(F)) iff a«Nd=yANd forasuitabled € F

is a congruence relation on L.

Thus the lattice of congruences of a Brouwerian algebra L is isomorphic to the lattice of
all filters of L, hence it is distributive. Further, it is well-known that Brouwerian (Heyting)
algebras have a Congruence Extension Property (CEP).

In [Ka-Mt 1972], Stone algebras of order < n (n > 2) are characterized as follows:

2.2 Proposition ([Ka-Mt 1972; 5.2]). An algebra L = (L;V, A, *,¢eg,...,e,—1) is a Stone
algebra of order < n (n > 2) with a chain ey < --- < e,_y of smallest dense elements if
and only if it satisfies the lattice identities and the following list of identities:

(1) aA[(zAy)xz]=aA(y*z)

(2) aA[(ynz)xz]==

(3) zA(z*xy)=xAy

(4) zxyVy*sazr=ep_q

(5) Cit+1 A €; = €;

(6) €41 ¥ € = €

(7) xANep1 =2z

(8) x A €o = €0

(9) €i+1/\($*€i)>k€i:(LL'/\eH_l)\/ei (ZG{O,TL—2})

The lattice identities and (1)-(3) above characterize Brouwerian algebras. The identity
(4) guarantees that L is a relative Stone algebra. The identities (5), (7) and (8) establish
the chain 0 =¢ < --- <e,—1 =1 of smallest dense elements, while (6) and (9) state
that [e;41) is the filter of all dense elements of [e;).

It is known that the identity (4) is equivalent to the identity z*yV (z*y)*xy = €,_1.
Thus putting z* = x*eg we immediately get =*Va** = e,_1 which means that a Stone
algebra of order < n can be considered as a Stone algebra as well. Hence in any Stone
algebra of order < n, the equation

(f) z=a"N(zVe)
holds. Further, the subsets B(L) of all ‘closed’ elements of L and D(L) = {xVa*; € L}
of all ‘dense’ elements of L can be defined as above, and the formulas

(9) (zAy) =a*Vy”
and

(h) (xVy)* =a*ANy*
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are true in L. If y is a closed element of a Stone algebra L of order < n then the element
x %y is also closed and

(J) zxy=2a"Vy
holds (see [Ne 1965; Lemma 4.2]).

Finally, we mention the description of subdirectly irreducible Stone algebras of order
<n (n>2) given in [Ka-Mt 1972]. Let L = {0 = ap < -+ < @m—1 = 1} (1 <m < n) be
an m-element chain. Obviously, L is a Stone algebra of order < n if one puts e; = a;
for 1 =0,...,m—1and e; =1for i =m,...,n — 1. This algebra is usually denoted by

Sn(m).

2.3 Proposition ([Ka-Mt 1972; 5.10]). The only subdirectly irreducible Stone algebras
of order < n (n > 2) are the algebras Sp(m) where 1 < m <n.

There are several ways to define Post algebras of order n (see [Ba-D 1975]). In this
paper we use the equational definition of Post algebas of order n (n > 2) presented in

[Ka-Mt 1972; 5.3]:

2.4 Proposition. An abstract algebra L = (L,V,A,*,+,¢€q0,...,e,—1) Is a Post algebra
of order n (n > 2) if and only if it satisfies the lattice identities, the identities (1)-(9) of
Proposition 2.2 and

(10) oV [eVy)+d=eViy+s)

(11) aV[(yVz)+z]=x

(12) aV(z+y)=aVy

(13) 24+yAy+z=ceg

(14) €n—2 + €Epn—1 = €Ep—1.

Note that the identities (10)-(13) state that L is a dual relative Stone algebra, while
(14) guarantees that the order of L is just n.

The subdirectly irreducible Post algebras of order n are characterized as follows:

2.5 Proposition ([Ka-Mt 1972; 5.13]). Let L = (L,V,A,*,+,¢€q,...,€,-1) be a non-

trivial Post algebra of order n (n > 2). The following conditions are equivalent:

(1) L is subdirectly irreducible;
(2) L consists of n elements;

(3) L is a chain.

For these and other facts concerning Post algebras of order n see [Ka-Mt 1972] or [Ba-
D 1975].

Finally, recall that an algebra A is said to be primal, if it is finite and every function
on A is a term function of A. Further, an algebra A is called functionally complete if
every function on A is a polynomial of A. H. Werner in ([W 1970] showed that a finite
algebra A is functionally complete iff the discriminator is a polynomial of A. Recall that
the discriminator of an algebra A is the ternary function defined on A by the rule

z, ife=y
d(%%Z):{T ifa#y
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3. (Local) affine completeness.
We start with Stone algebras of order n as a subclass of Stone algebras having a smallest
dense element. We recall a result from [Be 1982]:

3.1. Theorem ([Be 1982; Theorem 4]). Let L be a Stone algebra having a smallest dense
element. Then the following are equivalent:

(1) L is affine complete;
(2) D(L) is an affine complete lattice;
(3) no proper interval of D(L) is Boolean.

Now let L = (L;V,A,*,0,1) be a Stone algebra of order n (n > 3). Then by its
definition, D"7%(L) is a Boolean algebra, thus D(L) contains a Boolean interval. By
Beazer’s characterization above we get the following:

3.2 Proposition. A Stone algebra (L;V,A,*,0,1) of order n is not an affine complete
Stone algebra for n > 3.

3.3 Example. Let L = {0,d,1} be a 3-element chain. Considering L to be a p-algebra,
L is a Stone algebra of order 3 with D(L) = {d,1}, D*(L) = {1}. By Proposition 3.2, L
is not affine complete. We shall find a unary function on L which is compatible but not
polynomial.

Take a function f’' : D(L) — D(L) defined by f'(d) =1, f'(1) = d. Define f : L — L
by the rule f(z) = f'(z Vd),ie. f(0)= f(d) =1, f(1) =d. Obviously, f is compatible.
Suppose that f is a polynomial function of L. Using the formulas (g) and (h), and the fact
that «* = 0, ™ = 1 for « € D(L), we get that f' = f [ D(L) is a polynomial function
of the lattice D(L), thus an order-preserving function. This is, of course, a contradiction,
hence f cannot be a polynomial function of the algebra L. O

Next we shall deal with equationally definable Stone algebras of order < n (n > 2) (see
Proposition 2.2). First we present some preliminary lemmas.

3.4 Lemma. Let L = (L;V,A\,*,¢eg,...,en—1) be a Stone algebra of order < n and let
L' = (L;V, A, ) be its Brouwerian reduct. Then L and L' have the same congruences.

The proof is straightforward.

3.5 Lemma. Let (L;V,A,*,¢q,...,en_1) be a Stone algebra of order < n (n > 2) and let 6
be a congruence of L. Then 6 | D(L) is a congruence of the algebra
(D(L);V, A %, €1,... €n-1).

Proof. Evidently 6 [ D(L) is a Brouwerian congruence as D(L) is a Brouwerian subalgebra
of L. The statement now follows from Lemma 3.4. O

3.6 Lemma. Let (L;V,A,*,€q,...,en—1) be a Stone algebra of order < n (n > 2) and

let s(X) be a polynomial of L. Then the function s,(xX) : D(L)" — D(L) defined by
$1(X) = s(X) V ey is a polynomial function of the algebra (D(L);V, A\, *,€1,...,€n_1).

Proof. We use induction on the length of the polynomial s(x). If s(x) is a variable or a
constant symbol, then the statement is obvious. Now suppose that the statement holds
for all polynomials s(x) of a length less than k& (k > 1) and let s(X) be of the length k. If
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5(%) = p(x) V ¢(x) (s(x) = p(x) A ¢(%)) for some polynomials p(x), ¢(x), then by induction
hypothesis the statement is obviously true. Now let s(x) = p(X) * ¢(x). Gradually applying
(), (d), (j), (c¢), and (a) from Section 2, and the distributivity of L, we get

(k) (p(%) % q(x)) Ver = (p(%) * [¢(X)™ A (g(X) Ver)]) V er
= [p(%) * ¢(X)™ A p(X) * (q(X) Ver)] V ey
= [(p(E)*V a(%)™) A (p(X) Ver) * (¢(X) Ver)] Ve
=[(p(X)" Ver) V(gX)" Ve )| Al(p(X) Ver) * (¢(X) Ver)]

By induction hypothesis, p(x) V e; and ¢(x) V e are polynomials of the algebra D(L).
Using (g), (h) and (e) from Section 2, we can transform p(x)*
of the Boolean algebra (B(L),V, A, eg, €n—1), l.e. into forms

(11,..,in)E{1,2}7
(see e.g. [Ba-D 1975; p. 92]) where z} and 7 denote =} and z}*, respectively, a(i1,...,1,)
€ B(L) and the join \/ is taken over all n-tuples (i1,...,i,) € {1,2}". Since the function

$1(%) is defined on D(L), we have in (1) 7 = ey, 27* = €,—1 for any x; € D(L), 1 =

1,...,n. Thus p(x)*, ¢(x)** can be represented by some constants p, ¢ € B(L). This means
that in (k) we get a polynomial of the algebra D(L). The proof is complete. O

and ¢(x)** into polynomials

3.7 Lemma. Let (L;V,A,*,¢0,...,e,—1) be a Stone algebra of order < n (n > 2). Let
6p be a congruence of the algebra (D(L);V, A\, *.€1,...,e,—1). Then the equivalence § on
L defined by

(m) =y (0) iff aVe; =yVer (Op) anda* Ve =y*Vey (p) anda™ Ve = y** Ve (6p)
is a congruence of the algebra L.

Proof. Using the formulas (g) and (h) one can easily verify that € is a congruence of the
lattice L. Now let #; = y; (6), x;,y; € L, © = 1,2. Similarly as in (k) of Lemma 3.6 we
get

(z1xa2) Ver = [(a] Ver) V(23" V) Af(z1 Ver) * (22 Ver)]
=[(yfVer)V (Ve Ay Ver)* (2 Ver)
= (y1 *y2) Ver (6p).

Using (e) we have

(x1 *x29) Ve = (27" Aal) Ve = (27" Ver)A(as Ver)

=W Vel) Alys Ver) = (y1xy2)" Ver (6p),
and applying (g), (h) to this, we finally get

(1% x9) Ve =[(z7 Va3 ) ANep_1] Ve = (a7 Ver) V(23 Ver)
=(yy Ve )V (y3" Ver)=(y1*y2)™ Ver (6p).
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Hence x1 %22 =yy *y2 () which completes the proof of Lemma 3.7. O

In the following, x, X* and xVe; will be abbreviations for (2y,...,2,), (z7,...,2}) and
(x1Vey,...,x,Vey,), respectively. Analogical meanings will have X* Ve, X and x** Ve;.
Futher, if we write e.g. X*Vey; = y* Ve (0), we mean that 7 Vey =y Ve (0), i1 =1,...,n.

The following condition defines an extension property for certain partial compatible

functions of D(L):

3.8 Definition. Let (L;V,A,*,eq,...,€e,-1) be a Stone algebra of order < n (n > 2). We
shall say that L satisfies a condition

(D) if for any compatible function f : L™ — L of the algebra L, the partial function
f': D(L)*" — D(L) such that
f’(;E\/ 61,)2*\/61722**\/61):‘]((}2)\/61 (}EELH)
and ' is undefined elsewhere can be extended to a total compatible function of

the algebra (D(L); V, A, %, €1,...,€n_1).

3.9 Remark. Let us verify that f’ is a well-defined partial function which preserves the
congruences of the algebra (D(L); V, A, *,€1,...,e,—1) where defined. If 6 is a congruence
of the algebra D(L) and (XV e1,%x* Ve, X" Ver)=(yVer,y Ve, 7" Ver) (0p), then
X =y () where 8 is the congruence associated to 6p in Lemma 3.7. Now f(x) = f(¥) (6)
since f is compatible, thus f(x)Ver = f(y)Ver (0p). Hence f'(XVe,x* Ve, x**Vey) =
'y Ve, vy Ve, v Ver) (0p) what was to be proved. Using the same procedure with
Op = Apr), the smallest congruence on D(L), one can show that f' is a well-defined

partial function on D(L). O
3.10 Proposition. A Stone algebra L = (L;V, A, *, eg, €1) of order < 2 is affine complete.
Proof. The Boolean algebra Ly = (L;V,A,” ,eg,e1) is affine complete ([G 1962]). We

shall show that L and Ly have the same congruences. Obviously, every congruence of
the Heyting algebra L is also a congruence of the p-algebra L. Conversely, let 8 be a
congruence of the p-algebra Ly and z; = y;(0), x;,y; € L, 1 = 1,2. Since all elements of
L arve closed, we get a1 * 20 = a7 Vaz = y7 Vy2 = y1 * y2(0), thus 6 is a congruence of
the algebra L too. Hence a function f : L™ — L preserving the congruences of the algebra
L also preserves the congruences of Ly, thus f can be represented by a polynomial of the
algebra Ly. This polynomial, of course, can easily be rewritten as a polynomial of the
algebra L replacing each #* (a*) by @ * eg (a*eg). O

We get a characterization of affine complete Stone algebras of order < n (n > 3):

3.11 Theorem. Let (L;V,A,*,¢0,...,¢,_1) be a Stone algebra of order < n (n > 3).
Then L is affine complete if and only if (D(L);V, A, *,e1,...,e,_1) Is an affine complete
Stone algebra of order n — 1 and (D) holds.

Proof. Let L be affine complete and f' : D(L)" — D(L) be a compatible function on the
algebra D(L). We define a function f: L™ — L as follows:

fler,.oo,an) = (e Ver,...,an Ver).
Clearly, f | D(L)™ = f'. Using Lemma 3.5 one can show that f is compatible on
L. So by the assumption, the function f can be represented by a polynomial s(X) =
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s(x1,...,2y) of the algebra L. Since in fact f : L™ — D(L), we have for any x € D(L)",
f(x) = f(x) = f(X) Ve = s(x) Ve, ie. f'is a polynomial function of the algebra
(D(L);V,A,*,€1,...,e,-1) by Lemma 3.6.

To show (D), let f : L™ — L be a compatible function of the algebra L and let f’ :
D(L)*" — D(L) be the associated partial compatible function from Definition 3.8. Since
L is affine complete, f(z1,...,x,) can be represented by a polynomial p(zy,..., 2, ) of L.
Define a function f; : L™ — L by

fi(x) = fl(x Ve, X" Ve, X Ver) =p(X)Ver.

Let ay,...,an be all constant symbols appearing in p(x). Then p(X) can be meant as a
term t(x,a) = t(x1,...,2p,01,..., 0y ) of the algebra Ly = (L;V,A,*,a1,...,a,) where
Ha1, oy Tnym) IS a term of the Brouwerlan algebra (L;V,A,*). Using the distributivity
of L and the formula (z+y) Ve = [(z*Ver)V(y*™* Ver )| Al(zV el) (yV el)} (see the proof
of Lemma 3.6), one can transform ¢(%,a) Ve to a term t1(XVey,X* Ve, x** Ver,aVey) of
the algebra (L;V,A,*,* ,a1,...,am,€e1) where t;(21,...,23,4m) is a term of the algebra
(L;V, A, %). Hence for any x € L™ we have

F'(xVe,x* Ve, x™ Ve ) =p(x) Ve =t(x,a) Ve =t1(xVer,x" Ve ,x"™* Vey,aVer)
= p1(X Ve, x* Ve, x™ Vey) for some polynomial py(z1,...,23,) of the algebra
(D(L);V,A,*,€e1,...,€,_1). This polynomial obviously represents the required total com-
patible function of the algebra (D(L);V, A, *,€1,...,e,-1) extending the partial function
f

Conversely, let (D(L);V,A,*,€1,...,€,—1) be affine complete and (D) holds. Let f :
L™ — L be a compatible function of the algebra L. Using (f) we can write

(m)  F8) = FE A ) V).

We replace “f(x)**’ in (m) by a polynomial of L. First we show that for any x € L",
f(x)™ = f(x*)**. For any variable z; we have
e AN (2 Var)=a Az Va)),

whence by Proposition 2.1, #; = «!* (0(D(L)) where 8(D(L)) denotes the (Brouwe-
rian) congruence associated to the filter D(L). Since f is compatible, we have f(x) =
F(x*) (6(D(L))), thus by Proposition 2.1 again, there exists an element d € D(L) such
that F(%) A d = f(5™) Ad. So we get F(R)™ = (F(%) A d)™* = (&) A d)™* = F&)*™
what was to be proved.

Now we define a function f; : B(L)" — B(L) by the rule fi(x) = f(x)**. To show
that fi is compatible on the algebra (B(L);V,A,*,¢€0,e,—1), let 8p be a congruence of
B(L) and x; = y; (0B), xi,yi € B(L), 1 =1,...,n. Obviously, (B(L);V,A,*,e0,€p—1) 18
a Heyting subalgebra of the Heyting algebra (L;V, A, *, g, €,—1). Since Heyting algebras
have CEP, there exists an extension 7, of the congruence p to the Heyting algebra L.
Obviously, €1 is a congruence of the algebra (L;V,A,*,eq,...,€,-1) too. Hence z; =
y; (01), 1 = 1,...,n, therefore f(x) = f(y)(01) since f preserves the congruences of the
algebra L. It follows f(x)*™* = f(y)**(0p), thus fi is compatible on B(L). By Proposition
3.10, (B(L); V, A, *, eg, €n—1) is affine complete, thus f; can be represented by a polynomial
p(1,...,2,) of the algebra B(L). Hence in (m), f(x)* = f(x*) = f1(x*) = p(x*) for
any X € L". Finally, in the polynomial p(X**) we can put =™ = (a;%eg)*eg, 1 = 1,...,n,
in order to get a polynomial of the algebra (L;V, A, *,€eq,...,€n_1).

To replace ‘f(X) V e1” in (m) by a polynomial of L, take the partial function f’ from
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Definition 3.8. By (D), f’ can be extended to a total compatible function of the algebra
D(L), which can be represented by a polynomial ¢(x1,...,23,) of D(L) since D(L) is affine
complete. Hence in (m) f(X)Ve; = f'(XxVer,x* Ve, x**Ver) = q(XVer,X* Ve, x** Ve ) for
any x € L™, Putting in ¢(XVey,X* Ve, X Ve ) again ¢} = x;%eq, v/ = (z;%eg)*eg, 1 =
1,...,n, we get the required polynomial of the algebra L. The proof is complete. [

We have shown that the Stone algebras of order < 2 are affine complete (Heyting)
algebras. Now we prove that the Stone algebras of order < 3 are affine complete too.

3.12 Proposition. Any Stone algebra (L;V, A\, %, eg, €1, €3) of order < 3 satisfies the con-
dition (D).

Proof. Let D(L) # 1 and let S denote the domain of the partial compatible function f’,
ie.

S={(xVe,x*Ve,x* Vey); x€ L"} CD(L)*".
We define a polynomial function p : D(L)*™ — D(L) as follows:

(n) plxy,...,23,) = \Y} (fflar,...;azn) ANyr A= ANysn),
5650{61,62}3’”
{:Jci*el, if a; = ¢
where y; = .
xi, if a; = es.

We show that f' = p on SN {e,ex}?”. Let x € SN {e,ex}?". For a = X we have
F@E Ay A ANysp = f/(X)Aez = f'(X). Now take & € SN {er,e2}?", a #x and a; #
for some j, 1 < 5 < 3n. Then

Tjke = eq, ifa; =e;
Y; = .
;= eq, if aj = e,
thus  f'(a) Ayr A< Aysn = f/(a) Ner = €. Hence in (n) we get p(a1,...,23,) =
f'(z1,...,23,) what was to be proved. We assert that f’ = p identically on the whole set
S, thus that p(xy,..., 23, ) is the required total compatible extension of the partial function

f'. To show this, suppose on the contrary that there exists a 3n-tuple (dy,...,ds,) € S such
that f'(dy,...,ds,) = a # b= p(dy,...,dsy). Since a,b € D(L) and D(L) is a subdirect
product of copies of 2 = {0,1}, there exists a ‘projection map’ h : D(L) — {0, 1}, which
is a 0, 1-homomorphism between the algebra D(L) and some algebra 2 = {0, 1}, such that
h(a) # h(b). Denote h(S) = {(h(x1),...,h(x3,)) € {0,1}3" | (21,...,23,) € S}. Now
define functions f, ph : h(S) N {0,1}*" — {0,1} by the following rules:

fé(h($1)7 s 7h(I3n)) = h(f/(:[;l? s 7I3n))7

ph(h(x1), ... h(xsn)) = h(p'(21,...,230))
where (z1,...,23,) € S. To show that f], p} are well-defined, suppose that h(xz;) =
hy1),. .., h(xsn) = h(ys,) for some (z1,...,23,), (Y1,-.-,Ysn) € S. Since f' (p') preserves
the kernel Ker h = 6p of the homomorphism h where defined, we get f'(z1,...,23,) =
'y, o ysn) (0p), thus fi(h(z1),...,h(23n)) = f5(h(y1),-..,h(ysn)) (analogously for
ph). Obviously, fi = p) identically on h(S) N {0,1}*", because f' = p’ identically on
Sn{er,ex}*" and h(er) =0, h(ey) = 1. Therefore

h(a) =h(f'(dy,...,dsn)) = f3(h(d1),. .., h(dsn)) = ph(h(di),... , h(dsn)) =

h(p'(di,...,dsn)) = h(b), a contradiction. Hence f' = p’ identically on S and the proof is
complete. O
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3.13 Theorem. A Stone algebra (L;V, A\, *,¢eq,€1,€3) of order < 3 is affine complete.
Proof. Tt follows from Theorem 3.11 and Propositions 3.10 and 3.12. O

3.14 Remark. In Example 3.3 we illustrated the fact that a 3-element chain considered
as a p-algebra is not an affine complete Stone algebra of order 3. This means that it
has too little polynomials ‘to cover’ all its compatible functions. Of course, if we replace
in a Stone algebra of order n the operation * by % , the number of its polynomials will
increase considerably. Theorem 3.13 says that for n < 3 they already ‘cover’ all compatible
functions, i.e. the 3-element chain is an affine complete Heyting algebra. Note that the
function f from Example 3.3 can be represented simply by the polynomial p(x) = x *d.

By Theorems 3.11 and 3.13, a Stone algebra of order < 4 is affine complete iff L satisfies
the condition (D). In general, we get the following result:

3.15 Corollary. A Stone algebra L of order < n (n > 4) is affine complete if and only if
D'(L) satisfies (D) for all i =0,...,n — 4.

The condition (D) above might actually be superfluous - we still do not know an example
of a Stone algebra of order < n in which (D) is not satisfied. Therefore we pose the following
problem:

3.16 Problem. Find an example of a Stone algebra of order < n in which the condition
(D) is not satisfied or show that (D) in the characterizations above is superfluous.

The latter case would, of course, automatically mean that the variety of Stone algebras
of order < n is affine complete for n > 3 too.

However, we can show that each variety of Stone algebras of order < n is locally affine
complete (n > 2):

3.17 Theorem. Every Stone algebra (L;V,A,*,eq,...,e,_1) of order < n (n > 2) is
locally affine complete.

Proof. For n = 2 the result is well-known (see e.g. [P 1972]). Now let n > 3. Let L be
locally affine complete and f' : S — D(L) be a partial compatible function of the algebra
D(L) where S C D(L)" is finite. One can easily verify that f = f' is a finite partial
compatible function of the algebra L too. So by hypothesis, f can be interpolated in all
elements of S by a polynomial s(x) = s(xy,...,x,) of the algebra L. For any x € S we
consequently have f'(x) = f(x) = f(Xx) Ve; = s(X) V €1, thus by Lemma 3.6, f’ can be
interpolated on S by polynomial function of the algebra (D(L);V, A, *,€1,...,€n—1).

Conversely, let (D(L); V,A,*,¢€1,...,¢e,—-1) be locally affine complete and let f: S — L
be a finite partial compatible function of the algebra L. Using (f) we can write again

(m)  F(E) = FOF AR Ve) (7ES).
Analogously as in the proof of Theorem 3.11 one can show that f(x)** can be interpolated
in all x € S by a polynomial of the algebra (L;V, A, *,¢eq,...,en_1).

To replace ‘f(X)Ve;  in (m) by a polynomial of L for all x € S, take the partial function
f" defined by  f'(xVer,x* Ve, X Vey) = f(X) Ve forallx € S. Since f’ is a finite par-
tial compatible function of the locally affine complete algebra (D(L);V, A, *,€1,...,€n_1),
it can be interpolated by a polynomial of (D(L);V,A,*,e1,...,€e,-1). The proof is com-
plete. O
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In the last part of this paper we show that for each n > 2, the variety of Post algebras
of order n is affine complete. (As there are various definitions of Post algebras of order n
in the literature, for some varieties of Post algebras of order n such result might already be
known). Here we make use of the result of T.K. Hu [Hu 1971] which yields that a variety
generated by a primal algebra is affine complete. First we show that the discriminator
function on the subdirectly irreducible Post algebra L of order n is a polynomial of L:

3.18 Proposition. Let (L,V,A,*,+,e9,...,e,_1) be the subdirectly irreducible Post
algebra of order n (n > 2). Then the discriminator is a polynomial of L.

Proof. Define a binary function b(z,y) on L as follows:
blx,y) = (xxy ANy *a)+ e,_1.
Obviously,
€o, ifa=y

b(z,y) =
(2,9) { €En_1, if v #y.

One can easily verify that
d(z,y,z) = [blz,y) ANz| V [b(b(x,y),en—1) A 2].
Hence the discriminator is a polynomial of L. [

3.19 Theorem. The variety of Post algebras of order n (in the sense of [Ka-Mt 1972])
is affine complete.

Proof. From Proposition 3.18 it follows that the subdirectly irreducible Post algebra L of
order n (n > 2) is functionally complete and from the fact that all constants eq,...,e,_1
are the nullary operations of L we get that L is primal. Hence by Hu’s result, the variety
of Post algebras of order n is affine complete. [
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