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THE EDGE DISTANCE IN SOME FAMILIES OF GRAPHS

PAVEL HRNCIAR AND GABRIELA MONOSZOVA

ABSTRACT. The edge distance between graphs is defined by the equality d(G1,G2) = |E1| +
|E2| — 2|E1,2| + ||Vi]| — |V2|| where |A] is the cardinality of A and Ei o is an edge set of the
maximal common subgraph of G; and G2. Further, diam F}, = maz{d(G1,G2);G1,G2 €
F, 4} where F}, ; denotes the set of all graphs with p vertices and ¢ edges. In this paper we
prove that for p > 10 diam F, p41 = 2p — 8 and diam F}, ;42 = 2p — 6. At the end of the
paper we give the answer to a problem recently posed by M. Sabo.

1. Preliminaries

A graph G = (V, E) consists of a non-empty finite vertex set V and an edge set E. In
this paper we consider undirected graphs without loops and multiple edges. A subgraph H
of the graph G is a graph obtained from G by deleting some edges and vertices; notation:
H C G. By A(G) we denote the maximal degree of vertices of the graph G. A graph G
is a common subgraph of graphs G, G if there exist graphs Hy, Hy such that Hy C Gy,
Hy C Gy and Hy 2 G, Hy =2 G. A maximal common subgraph is a common subgraph
which contains the maximal number of edges.

A distance of the graphs Gy = (Vi, Eq) and Gy = (V3, E») is defined (see [2]) by

(1) d(Gh,G2) = |E1| + | E2| = 2|E)

+ Vil =[]

where |Eq|, |E2|, |Vi|, |Va| are the cardinalities of the edge sets and the vertex sets re-
spectively, and |E; 2| is the number of edges of a maximal common subgraph of G; and
Gs.

Throughout this paper, by F} , we denote the set of all graphs with p vertices and ¢
edges, ¢ > 1. Further, diam F,, , := max{d(G;,G2);G1,G2 € F, ,}. lf diam F,, , = d(G. H)
and ¢y, is the number of edges of the maximal common subgraph of the graphs G, H,
then

(2) diam F), ; = 2¢ — 2¢, .

We denote by v a firmly chosen vertex of the maximal degree in the considered graph
G and by wvy,vs,...,v; the vertices adjacent to v (if A(G) = k). We denote U :=
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{vi,v9,...,0p} and U’ := V — {v,vy,...,vr}. The subgraph of the graph G induced
by the vertex set X (X C V) we denote by G(X) and the set of its edges by E(G(X)) or
briefly by E(X). The subgraph of the graph G which contains all edges with one vertex
in the set U and the other in the set U’ we denote by G(U,U’) and the set of its edges by
EU,U").

2. Diameters of F), ,4; and F), ,42

Lemma 1. IfG € F, ,11,p 2 10 and 2o(G) = 3 then G contains at least two of the graphs
H17 H27 Hg (Flgl)

I !

H, H, Hs

Fig.1

Proof. Since G has at least 11 edges and A(G) = 3 then |E(U')| 2 2 from which it follows
that GG contains at least one of the graphs Hy and Hy. Further we show that if G contains
exactly one of the graphs Hy and Hy then G contains also the graph Hz. In fact, if G
does not contain the graph Hy then G(U’) has at most 3 edges. If G does not contain the
graph Hj then G(U') has at most [%] edges. In both cases |E(U,U")| 2 2 holds. Since
|E(U")| 2 2 then from these facts it follows easily that G contains Hs.

Lemma 2. If G € F, ,41,p 2 10 and A(G) = 3 then G contains at least one of the graphs

H; and Hy (Figs.1,2).

H,
Fig.2

Proof. If G does not contain Hs then G(U') has the vertices of degree at most 1. It
follows |E(U)| 4+ |E(U,U")| 2 5 and this is possible only if |[E(U)| = 1 or |E(U)| = 0 (since
A(G) = 3). The considered statement is easy to verify in both cases. In fact, if some vertex
from U’ has the degree at least 2 in G(U,U’) then G contains Hy. Otherwise G contains
H,.
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Lemma 3. If G € F,, ,+1,p = 10 and A(G) = 3 then G contains at least one of the graphs
H; and Hs (Figs.1,3).

Hs

Fig.3

Proof. Obviously, G has a component H in which there are less vertices than edges. So,
in H there is a vertex of degree 3 and we choose it as the vertex of degree 3 in the desired
subgraph Hj resp. Hy. Now it is suflicient to realize that H has at least 5 edges and G
has at least 11 edges.

Lemma 4. If G € F, 41 and A(G) = 3 then G contains at least one of the graphs in
Fig. 4.

T LSS

Fig.4

Proof. The graph G must have a component which has more edges than vertices. Obvi-
ously, this component contains a connected subgraph with five edges and with a vertex of
degree 3. Since all such possibilities are listed in Fig. 4 the proof is finished.

Lemma 5. Let G € F,, ,41,p 2 10 and a(G) = 4. If G contains neither the subgraph Hg
nor the subgraph Hr (Fig. 5) then G contains at least one of the graphs in Fig. 4.

He H7

Fig. 5

Proof. If G contains neither the subgraph Hg nor the subgraph Hy then |E(U")| = |U'|+2.

So, the graph G(U') must have a component having more edges than vertices. This
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component cannot have any vertex of degree 4, since otherwise the graph G would contain
the subgraph Hg or H7, a contradiction. Then, by the same argument as in the proof of
Lemma 4, the considered component contains at least one of the graphs in Fig. 4.

Lemma 6. Each subgraph G of the graph K¢ with at least 11 edges contains the graphs
Hg and H7 as well as each of the graphs in Fig. 4.

Proof. Tt is sufficient to take into account that any vertex of a minimal degree in G has
the degree at least 1 and the subgraph of the graph G induced by the set of the remaining
vertices is the graph K5 without at most two edges.

Lemma 7. If G;,G3 € F, ,41,p = 10 and at least one of the graphs Gy, G2 has a single
non-trivial component which is a subgraph of the graph K then |Ej 3| 2 5.

Proof. Let, say, G; has the property that after removing its isolated vertices we get a
subgraph of Ks. Let H be a component of the graph G2 with more edges than vertices. If
a(H) 2 5 then H contains Hg and it is sufficient to use Lemma 6. If A(H) < 4 then the
statement is a consequence of Lemmas 4,5,6.

Theorem 8. If G1,G2 € Fp p41,p 2 10 and &(G1) = a(G2) = 3 then |Ey 2| 2 5.
Proof. According to Lemma 1, the statement is obvious.
Theorem 9. Let G1,G3 € F), p11,p 2 10, a(Gy) = 3 and A(G2) = 4. Then |E; 3| 2 5.

Proof. If U' = () in the graph G, then |E(U)| = 2 and the considered statement is a
consequence of Lemmas 1 and 2. So, in the sequel we suppose that U’ # (). We distinguish
three cases.

I. Let E(U) # 0 and E(U') # 0. We get the considered statement by Lemma 3
(obviously, the graph G5 contains the graphs H; and Hs).

II. Let E(U) =0 and E(U') # 0. Further we distinguish two subcases.

a) If E(U,U") =0 then |E(U")| = |U’| + 2 and G»(U’) has a vertex of degree at least
3 and also two independent edges. Then the considered statement follows from
Lemma 1.

b) Let E(U,U") # (. First of all we show that G contains the subgraph H,. If
a(Gy) 2 5 the statement follows from the fact that there is a vertex in U’ which
has the degree at least 2 (since |E(U,U’)| + |E(U")| = |U'| +2). If a(Gy) = 4
the statement, obviously, holds if there is a vertex of U having the degree at least
3. In the opposite case it holds |E(U')| 2 |U'| — 2 and since |U'| — 2 > “é—I', the
graph G3(U’) has a vertex of degree at least 2. So, G really contains the graph
Hy. Further it is possible to verify that G2 contains at least one of the graphs Hj
and H4. The considered statement follows from Lemmas 1 and 2.

1L Let E(U") = 0.

a) Let a(Gy) = 5. If there is a vertex of U’ having the degree at least 2 then G,
contains H, and H,, so the statement follows from Lemma 2. Further we can
suppose that each vertex of U’ has the degree at most 1. We get that |E(U)| = 2.

ar) First we suppose that A(G2) 2 6. If there are two adjacent edges in G2(U) then
the considered statement follows from Lemma 2. In the opposite case it is sufficient
to use Lemma 3.
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as) Now, we suppose that A(G2) = 5. If E(U,U’) = () then the considered statement
follows from Lemma 7. If E(U,U’) # () then there is an edge from E(U) and an
edge from E(U,U’), which are not adjacent. We get the considered statement by
Lemma 3.

b) Let A(G2) = 4. According to Lemma 7 we can assume that there are at least
two vertices from U’ having non-zero degrees. If |E(U)| = 2 then G contains the
subgraphs H; and Hjs and the considered statement is a consequence of Lemma
3. If |[E(U)| = 1 then some vertex of U has the degree at least 2 in the graph
G2 (U,U’) and some vertex of U’ has the degree at least 2 in the graph G(U,U").

So, G3 contains the graphs Hs and H, and according to Lemma 2 the proof is
finished.

Lemma 10. If G € F, p41,p 2 10 and a(G) = 4 then G contains at least one of the
graphs Hg and Hg (Figs. 5,6).

=S

Fig. 6

Proof. Tt is sufficient to take into account that G has at least 11 edges and a graph with
5 vertices can have at most 10 edges.

Lemma 11. If G € F, p41,p 2 10, o(G) = 4 and G without its isolated vertices is not

a subgraph of the graph Kg then G contains at least one of the graphs Hy and Hg (Figs.
1,6).

Proof. If G does not contain the subgraph Hg then E(U') = (). Further, if there is a vertex
from U having the degree at least 2 in G(U,U") then G contains Hy. In the opposite case
each vertex from U has the degree at most 1 in G(U,U"), i.e., |E(U,U’| £ 4. To finish the
proof it suffices to consider all possible numbers of edges in E(U,U’).

Theorem 12. If G1,Gy € Fp py1,p 2 10 and a(G1) = A(G2) = 4 then |E; 5| 2 5.
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Proof. The statement holds if both the graphs G4, G2 have the subgraph Hg and also if
they have the subgraph Hg. Then, without loss of generality we can assume that G does
not contain Hg and G5 does not contain Hg. Let us consider the graph H7 in Fig. 5. If
both the graphs G, G5 contain Hr, the statement holds again. There are two possibilities
in the opposite case:

a) Gy contains H; and G does not contain H7. According to Lemma 10, the graph G
has the subgraph Hz which is also contained in the graph G2 because |E(U,U")| =
|U’| + 2 and so G2(U,U") contains two independent edges.

b) Gi does not contain Hr. According to Lemma 10, Gy has the subgraph Hg. Fur-
ther, the graph G contains Hs, because |E(U’)| = |U’| +2 and so G1(U") contains
a vertex of degree at least 3. Now it is sufficient to use Lemmas 7,11.

The proof is finished.

Theorem 13. If G1,Gy € Fp py1,p 2 10, A(G1) = 4 and A(G2) 2 5 then |Ey 2| 2 5.

Proof. We can assume (according to Lemma 7) that neither the graph Gy without its
isolated vertices nor the graph G without its isolated vertices is a subgraph of the graph
Ks. Obviously, G2 contains the graph Hg. If Gy does not contain the graph Hg then
|E(U)| = 0 and also |[E(U,U")| = 0. We get |E(U")| = |U'| + 2 and, obviously, G2(U’) has
a vertex of degree at least 3. This means that Gy contains Hs. To finish the proof it is
sufficient to use Lemmas 10 and 11.

Theorem 14. diam F}, ,41 = 2p — 8 for p = 10.

Proof. By Theorems 8, 9, 12 and 13 it suffices to find two graphs G1,Gy € Fj p41 with
|Ey 2| = 5. Such graphs are depicted in Fig. 7.

Gll GQZ

Fig. 7

Theorem 15. diam F), ,42 = 2p — 6 for p = 10.

Proof. By Theorem 14 for any two graphs G1,G2 € Fj, pyo it holds |Ey 2| 2 5 (if p = 10).
Now it is sufficient to find two graphs G, Gy € F,, p42 for which |E; 2| = 5 and the proof
will be finished. Such graphs are depicted in Fig. 8.
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Remark. By [1] diam F), ,41 = 2p — 6, if 5 < p £ 9. Further, obviously, diam Fy 5 = 0.
These facts together with Theorem 14 mean that we know diam F), ,41 for every p (there
are graphs with p vertices and p + 1 edges only for p = 4). If we consider Theorem 15
and the following three values: diam Fy ¢ = 0, diam F5 7 = diam F5 3 = 2, diam Fs 3 =
diam Fg 7 = 6 (see [1] and [2]) then there are unknown diam F), ;42 only for p € {7,8,9}.
In these cases diam F), ,42 € {2p — 6,2p — 4}.

Fig. 8

3. |Eiz|=2
The following theorem gives the answer to the problem 6b which is listed in [2]. We
denote the star with n edges by S, (Fig. 9), the path with n edges by P,, and the circle
with n edges by C,,.

Fig. 9

Theorem 16. If G, € F},, 4, and G3 € F, then

2,42
d(Glez) =q+q@+|p—p|—4

if and only if the graphs Gy, Gy satisfy one of the following three conditions (we do not
pay attention to the isolated vertices; there can be any finite number of them):
1. A(Gl) = A(Gz) =1
and one of the graphs G, GG has exactly two edges and the other one has at least
two edges;
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Proof.

. A(Gl) > 1, A(Gz) >1

and at least one of the following conditions holds:

one of the graphs Gy, G is S,

one of the graphs G, G is S,, for n 2 3 and the other one is a graph G for which
a(G) =2,

one of the graphs Gy, G is the graph K3 and the other one is a graph which does
not contain Cf,

one of the graphs G, GGy is P3 or Cy and the other one is a graph which does not
contain Ps (i.e., each of its non-trivial components is K3 or Sy ),

one of the graphs Gy, Gy is one of the graphs in Fig. 10 and the other one is a
graph having only components of type S, for n < 2;

. A(Gl> =1, A(Gj> > 1 ({17.]} = {172})

and one of the following conditions holds:

|E(G;)| = 2 and G, has at least two independent edges (i.e., G; has at least two
non-trivial components or has a component which is different from Ks and S, ),
|E(G;)| 2 3 and G has exactly two non-trivial components and each of them is
K5 or S,

|E(G;)| 2 3 and G has only one non-trivial component which is a subgraph of s
containing P3 or G is one of the graphs in Fig. 11 (the graphs in Fig. 11 contain
all line edges and an arbitrary subset of pointed edges).

The case 1 is trivial. In Case 2 it is sufficient to take into account that at least one

of the graphs G, G2 does not contain the graph in Fig. 12 (and so, this graph is S,, or
a subgraph of Ky). In case 3 the graph G;, obviously, can have at most two non-trivial
components if |[E(G;)| 2 3. If G, has exactly one non-trivial component (denote it by
H), we will distinguish two cases. The case |V(H)| < 6 is trivial. In the opposite case
([V(H)| 2 6) it is sufficient to distinguish whether H contains P; or not (obviously, H
must contain P3 and cannot contain Ps).

Fig. 10
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