PRODUCTS OF STATES ON SOME KINDS OF TENSOR PRODUCTS

Vladimír Janiš

ABSTRACT. We study states on tensor products $B \otimes P$, where B is a horizontal sum of an arbitrary set of Boolean algebras and P is a bounded orthocomplemented poset. Such tensor products exist and they are (in a slightly more general case) constructed in [2]. It is shown that each pair of states on B and P generates a state (a product state) on $B \otimes P$ which in a certain way corresponds to these states.

It has been shown in [2] that for a horizontal sum ($\{0;1\}$ -pasting) B of an arbitrary set of Boolean algebras and for a poset $(P,0,1,\perp)$ there exists a tensor product $B\otimes P$ and its construction has been given as well. We study states in such tensor products.

We will present the result of the above mentioned construction after a few neccessary definitions. By the abbreviation OCP we will understand a bounded orthocomplemented poset. In fact all the results of this work remain valid also in a little bit more general case, when P is only a bounded quasi-orthocomplemented poset. Since the differences are not substantial, we restrict ourselves to the more usual case of an OCP.

We recall, that if P is an OCP, $a, b \in P$, then a is orthogonal to b (we denote $a \perp b$) iff $a < b^{\perp}$.

Definition 1. Let P, Q, R be bounded OCPs. A mapping $\beta : P \times Q \to R$ is said to be a bimorphism if the following conditions are satisfied:

(1) for each orthogonal pair $a, b \in P$ and for any $c \in Q$ there is

$$\beta(a,c)$$
 and $\beta(b,c)$ are orthogonal,

and

$$\beta(a \lor b, c) = \beta(a, b) \lor \beta(a, c),$$

(2) for each orthogonal pair $c, d \in Q$ and for any $a \in P$ there is

$$\beta(a,c)$$
 and $\beta(a,d)$ are orthogonal,

and

$$\beta(a, c \vee d) = \beta(a, c) \vee \beta(b, d),$$

(3)
$$\beta(1,1)=1$$
.

¹⁹⁹¹ Mathematics Subject Classification. 03G12,81P10.

Key words and phrases. Boolean algebra, horizontal sum, bounded poset, tensor product, state.

A tensor product for a horizontal sum (a $\{0,1\}$ -pasting) of Boolean algebras and a OCP will be defined in a similar way to the tensor product of orthoalgebras used in [1].

Definition 2. Let B be a horizontal sum of an arbitrary set of Boolean algebras and let P be an OCP. Then a pair (T, τ) consisting of an OCP T and a bimorphism $\tau : B \times P \to T$ is said to be a *tensor product* of B and P iff the following conditions are satisfied:

- (1) Each element of T is a finite join of mutually orthogonal elements of the form $\tau(a,b)$, where $a \in B, b \in P$,
- (2) If L is an OCP fulfilling the previous property with the bimorphism $\beta: B \times P \to L$ then there is a morphism $\phi: T \to L$ such that $\beta = \phi \circ \tau$.

A morphism in the previous definition is understood in the usual way, i.e. it maps joins on joins and a unity element on a unity element. If no misunderstanding could occur, we will use T as a notation for the tensor product instead of (T, τ) .

The construction of the tensor product $B \otimes P$ is based on the same idea as the construction of a sum for a Boolean algebra and a quantum logic which was introduced in [5].

Let S be a set consisting of all the elements of the type

$$\{(a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)\},\$$

where n is a natural number, $a_i \in B, b_i \in P$ and for each a_i the set of all a_j compatible with a_i (i.e. those from the same block of the horizontal sum) is an orthogonal partition of unity in B. We define a binary relation \leq and an operation \perp on S in the following way:

$$\{(a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)\} \le \{(c_1,d_1),(c_2,d_2),\ldots,(c_m,d_m)\}$$

iff $b_i \leq d_i$ whenever $a_i \wedge c_i \neq 0$, and

$$\{(a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)\}^{\perp} = \{(a_1,b_1^{\perp}),(a_2,b_2^{\perp}),\ldots,(a_n,b_n^{\perp})\}.$$

As the next step we identify those $p, q \in S$ for which both $p \leq q$ and $q \leq p$ hold. The set of all the equivalence classes obtained by this identification will be denoted by T and its elements will be writen in square brackets. A routine verification shows that T is an OCP. The properties of this structure in case when B is a single Boolean algebra and P an orthomodular lattice is studied in [3] where there are results concerning mostly its completeness and in [4], where states and homomorphisms are studied.

Later we will make use of the following: If the elements

$$[(a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)]$$
 and $[(c_1,d_1),(c_2,d_2),\ldots,(c_m,d_m)]$

in T are mutually orthogonal, then without a loss of generality we may suppose that $a_1, a_2, \ldots, a_p, c_1, c_2, \ldots, c_q$ are from the same block of B, while all the remaining pairs a_i, c_j are from different blocks. If we assume this, then their least upper bound is the element

$$[(a_i \wedge c_j, b_i \vee d_j), (a_{p+1}, b_{p+1}), \dots, (a_n, b_n), (c_{q+1}, d_{q+1}), \dots, (c_m, d_m)],$$
 where $i = 1, 2, \dots, p$ and $j = 1, 2, \dots, q$.

The following propositions are proved in [2]:

Proposition 3. The mapping $\tau: B \times P \to T$ such that $\tau(a,b) = [(a,b),(a^{\perp},0)]$ is a bimorphism.

Proposition 4. Let B, P, T and τ have the same meaning as above. Then (T, τ) is a tensor product of B and P.

The tensor product of B and P will be denoted by $B \otimes P$. Our aim is to study states on it. A state is understood in the usual way, i.e. a state on a bounded poset K is a mapping $s: K \to [0; 1]$ such that s(1) = 1 and for each orthogonal pair $a, b \in K$ there is $s(a \vee b) = s(a) + s(b)$.

Proposition 5. Let B, P, T and τ have the same meaning as above, let s_1 and s_2 be states on B and P respectively. Then there is a state s on T such that $s(\tau(a,1)) = s_1(a)$ and $s(\tau(1,b)) = s_2(b)$ for each $a \in B, b \in P$.

Proof. Similarly to [5] we define the state S by the following rule:

$$s([(a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)]) = \sum_{i=1}^n s_1(a_i)s_2(b_i).$$

As the unity element in T is [(1,1)], we immediately have s([(1,1)]) = 1. Let now $[(a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)]$ and $[(c_1,d_1),(c_2,d_2),\ldots,(c_m,d_m)]$ be orthogonal elements of T. Again we will suppose that $a_1,a_2,\ldots,a_p,c_1,c_2,\ldots,c_q$ are from the same block of B, while all the remaining pairs a_i,b_j are from different blocks. Then (see the remark before Proposition 3) we have

$$s([(a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)] \vee [(c_1,d_1),(c_2,d_2),\ldots,(c_m,d_m)]) =$$

$$= s([(a_i \wedge c_j,b_i \vee d_j),(a_{p+1},b_{p+1}),\ldots,(a_n,b_n),(c_{q+1},d_{q+1}),\ldots,(c_m,d_m)]) =$$

$$= \sum_{i=1}^p \sum_{j=1}^q s_1(a_i \wedge c_j)s_2(b_i \vee d_j) + \sum_{i=p+1}^n s_1(a_i)s_2(b_i) + \sum_{i=q+1}^m s_1(c_i)s_2(d_i).$$

Making use of the additivity of s_2 and the fact that the sets $\{a_1, a_2, \ldots, a_p\}$ and $\{c_1, c_2, \ldots, c_q\}$ are partitions of unity we obtain that the term on the right-hand side is further equal to

$$\sum_{i=1}^{p} s_1(a_1)s_2(b_i) + \sum_{i=1}^{q} s_1(c_i)s_2(d_i) + \sum_{i=p+1}^{n} s_1(a_i)s_2(b_i) + \sum_{i=q+1}^{m} s_1(c_i)s_2(d_i) =$$

$$= s\left(\left[(a_1, b_1), (a_2, b_2), \dots, (a_n, b_n)\right]\right) + s\left(\left[(c_1, d_1), (c_2, d_2), \dots, (c_m, d_m)\right]\right).$$

Hence s is a state on T.

Moreover, if $a \in B$, then due to Proposition 3 we have $\tau(a,1) = [(a,1),(a^{\perp},0)]$ and evidently $s(\tau(a,1)) = s_1(a)$. If $b \in P$, then $\tau(1,b) = [(1,b)]$ and also in this case we have $s(\tau(1,b)) = s_2(b)$.

Therefore s is the state on $B \otimes P$ with the required properties and the proof is completed.

We have shown that each pair of states on B and P generates a corresponding state (a product state) on their tensor product $B \otimes P$. In fact there exist also states on $B \otimes P$ that are not generated by any such pair of states, even in the case when B is a Boolean algebra. For more details about states and homomorphisms on that structure see [4].

References

- [1] Foulis, D.J., Bennett, M.K., Tensor products of orthoalgebras, Order (to appear).
- [2] Janiš, V., Horizontal sums of Boolean algebras, quasicomplemented posets and tensor products, Submitted to Int. Journal of Theor. Physics (1994).
- [3] Janiš, V., Riečanová, Z., Completeness in sums of Boolean algebras and logics, Int. Journal of Theor. Physics 31 (1992), no. 9, 1689-1696.
- [4] Nánásiová,O., States and homomorphisms on the Ptak sum, Int. Journal of Theor. Physics **32** (1993), no. 10.
- [5] Pták,P., Summing of Boolean algebras and logics, Demonstratio Mathematica 19 (1986), 349-357.

DEPT. OF MATHEMATICS, FACULTY OF HUMANITIES AND SCIENCES, MATEJ BEL UNIVERSITY, TAJOVSKÉHO 40, 975 49 BANSKÁ BYSTRICA, SLOVAKIA

E-mail address: janis@bb.sanet.sk

(Received October 15, 1994)