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PRODUCTS OF STATES ON SOME KINDS OF TENSOR PRODUCTS

VLADIMIR JANIS

ABSTRACT. We study states on tensor products B ® P, where B is a horizontal sum of an
arbitrary set of Boolean algebras and P is a bounded orthocomplemented poset. Such tensor
products exist and they are (in a slightly more general case) constructed in [2]. It is shown
that each pair of states on B and P generates a state (a product state) on B ® P which in a
certain way corresponds to these states.

It has been shown in [2] that for a horizontal sum ({0; 1}-pasting) B of an arbitrary set
of Boolean algebras and for a poset (P,0,1, L) there exists a tensor product B @ P and
its construction has been given as well. We study states in such tensor products.

We will present the result of the above mentioned construction after a few neccessary
definitions. By the abbreviation OCP we will understand a bounded orthocomplemented
poset. In fact all the results of this work remain valid also in a little bit more general case,
when P is only a bounded quasi-orthocomplemented poset. Since the differences are not
substantial, we restrict ourselves to the more usual case of an OCP.

We recall, that if P is an OCP, a,b € P, then a is orthogonal to b (we denote a L b) iff
a < bt.

Definition 1. Let P,Q, R be bounded OCPs. A mapping #: P x ) — R is said to be a

bimorphism if the following conditions are satisfied:

(1) for each orthogonal pair a,b € P and for any ¢ € @ there is
B(a,c) and (b, c) are orthogonal,

and
BlaVb,c)=[(a,b)V [(a,c),
(2) for each orthogonal pair ¢,d € @ and for any a € P there is
B(a,c¢) and ((a,d) are orthogonal,

and

Bla,cVd)=pB(a,c)V B(b,d),
(3) A(1,1) =1.
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A tensor product for a horizontal sum (a {0, 1 }-pasting) of Boolean algebras and a OCP
will be defined in a similar way to the tensor product of orthoalgebras used in [1].

Definition 2. Let B be a horizontal sum of an arbitrary set of Boolean algebras and let
P be an OCP. Then a pair (T, 7) consisting of an OCP T and a bimorphism 7 : Bx P — T

is said to be a tensor product of B and P iff the following conditions are satisfied:

(1) Each element of T is a finite join of mutually orthogonal elements of the form
7(a,b), where a € B,b € P,

(2) If L is an OCP fulfilling the previous property with the bimorphism : Bx P — L
then there is a morphism ¢ : T — L such that § =¢o .

A morphism in the previous definition is understood in the usual way, i.e. it maps joins
on joins and a unity element on a unity element. If no misunderstanding could occur, we
will use T as a notation for the tensor product instead of (T, 7).

The construction of the tensor product B® P is based on the same idea as the construction
of a sum for a Boolean algebra and a quantum logic which was introduced in [5].
Let S be a set consisting of all the elements of the type

{(al,bl), (az,bz), ey ((,Ln,bn)},

where n i1s a natural number, a; € B,b; € P and for each «a; the set of all a; compatible
with a; (i.e. those from the same block of the horizontal sum) is an orthogonal partition of
unity in B. We define a binary relation < and an operation L on S in the following way:

{(a17 bl)? (a2762)7 R (anvbn)} < {(Clvdl)v (627d2)7 R (Cmvdm)}
iff b; < d; whenever a; A ¢; # 0, and

{(a1.b1), (ag,by), ..., (an, b))}t = {(ay,by), (a2, b3), . .., (an,bi)}.

As the next step we identify those p, ¢ € S for which both p < g and ¢ < p hold. The
set of all the equivalence classes obtained by this identification will be denoted by T and
its elements will be writen in square brackets. A routine verification shows that T is an
OCP. The properties of this structure in case when B is a single Boolean algebra and
P an orthomodular lattice is studied in [3] where there are results concerning mostly its
completeness and in [4], where states and homomorphisms are studied.

Later we will make use of the following: If the elements

[(al,bl), (az,bz), ey (anbn)] and [(Cl,dl), (Cz,dz), ey (Cm7dm)]

in T are mutually orthogonal, then without a loss of generality we may suppose that
ai,dz,...,0p,C1,C2,...,¢ are from the same block of B, while all the remaining pairs

ai,c; are from different blocks. If we assume this, then their least upper bound is the
element

[(ai A Cj,bi vV d]), (Clp+1,bp+1), ey (an,bn), (Cq+1,dq+1), . ,(Cm,dm)] y

where s =1,2,....pand j = 1,2,...,q.
The following propositions are proved in [2]:
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Proposition 3. The mapping 7 : B x P — T such that 7(a,b) = [(a,b),(at,0)] is a
bimorphism.

Proposition 4. Let B, P,T and 7 have the same meaning as above. Then (T,7) is a
tensor product of B and P.

The tensor product of B and P will be denoted by B ® P. Our aim is to study states
on it. A state is understood in the usual way, i.e. a state on a bounded poset K is a
mapping s : K — [0; 1] such that s(1) = 1 and for each orthogonal pair a,b € K there is
s(aVb) =s(a) + s(b).

Proposition 5. Let B, P,T and v have the same meaning as above, let s; and sg be

states on B and P respectively. Then there is a state s on T such that s (7(a,1)) = s1(a)
and s (7(1,b)) = s2(b) for each a € B,b € P.

Proof. Similarly to [5] we define the state S by the following rule:
S ([(alvbl)7 (a2762)7 R (anv bn)]) = Z Sl(ai)‘S?(bi)'
=1

As the unity element in T is [(1,1)], we immediately have s([(1,1)]) = 1. Let now
[(a1,b1),(az,b2),...,(an,by)] and [(¢1,dy1), (c2,d2),. .., (¢m,dn)] be orthogonal elements
of T. Again we will suppose that a1, az,...,a,,c1,c2,..., ¢4 are from the same block of B,
while all the remaining pairs a;,b; are from different blocks. Then (see the remark before
Proposition 3) we have

S ([(al,bl), (ag,bz),. ca (an,bn)] vV [(Cl,dl), (Cz,dz), Ceey (Cm,dm)]) =

= 3([(&,; A Cj,bqj vV d]‘),(ap+1,bp+1>,. .. ,(an,bn),(cq+1,dq+1),.. ,(Cm,dm)]) =
P n

=3 silai Aey)sa(bi vy + Y sa(ai)sa(b) + Y si(ei)sa(di).

=1 j—=1 i=p+1 i=gt1
Making use of the additivity of s, and the fact that the sets {a1,aq,...,a,} and {c1,ca,..., ¢4}
are partitions of unity we obtain that the term on the right-hand side is further equal to

s1(a1)sa(b;) + ZSI(Ci)52(di) + Z s1(ai)sa(b;) + z s1(ei)s2(d;) =
i=1 i=1 i=pt1 i=q+1

=S ([(al,bl), ([lz7 bz), ey ((ln7 Z)n)]) —|— S ([((217 dl), (Cz,dz), ey (Cm, dm)]) .
Hence s is a state on T.

Moreover, if @ € B, then due to Proposition 3 we have 7(a,1) = [(a,1),(at,0)] and
evidently s(7(a,1)) = si(a). If b € P, then 7(1,b) = [(1,b)] and also in this case we have
s(7(1,b0)) = s2(b).

Therefore s is the state on B® P with the required properties and the proofis completed.

We have shown that each pair of states on B and P generates a corresponding state (a
product state) on their tensor product B @ P. In fact there exist also states on B @ P
that are not generated by any such pair of states, even in the case when B is a Boolean
algebra. For more details about states and homomorphisms on that structure see [4].
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