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THE DISTANCE POSET OF POSETS

PaviEL KLENOVCAN

ABSTRACT. In [3] a distance between isomorphism classes of ordered sets was introduced.
Let F be a set of all (non-isomorphic) posets on a finite set P. For (P, R),(P,S) € F, we
define (P, R) < (P,S) if and only if there exists a bijective isotone map f of P onto itself. We
will study the distance poset (F, <).

1. Introduction

In [4], [5] and [6] some properties of the distance graphs for some type of a metric for
graphs and posets were investigated. In this paper some analogous results will be derived
for a metric introduced in [3].

Throughout this paper all partially ordered sets are assumed to be finite. Let (P, R) be
a partially ordered set (shortly poset). If a,b € P, b covers a, then we will write a <pg b.

In [3] a metric on a system of isomorphism classes of posets, which have the same
cardinality, is defined. Without loss of generality we can suppose that all posets are
defined on the same (finite) set P. We will often write a poset R instead of a poset (P, R).

Let B(P) be the set of all bijective maps of P onto itself. For any f € B(P) and posets
(P,R),(P,S) we denote by ds(R,S) the number defined by

(1) df(R,S) = [f(R)\ S|+ |5\ f(R)],
where f(R) = {[f(a), f(b)]; [a,b] € R} (cf. [3]). Since the posets (P, R) and (P, f(R)) are

isomorphic, then

) 4y(R.S) = || 15|~ 2/f(R) 5|,
The distance of the posets (P, R), (P, S) is defined by

3 A(R, ) = min{ds (R, 5); f € B(P)).

If we identify isomorphic posets, then (3) defines a metric on the set of all (finite,
non-isomorphic) posets defined on the same set P.

If amap f € B(P) is an isotone map of a poset (P, R) onto a poset (P, S), then f(R) C S
and d(R,S) = ds(R,S) = |S| — |R| (cf. Remark 2 in [3]).

The following lemma is easy to verify (cf. Lemma 1 in [3]).
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Lemma 1.1. For any posets (P, R),(P,S) and any maps f,g € B(P) the following prop-
erties are satisfied:

(i) df(R,S) = dy(R,S) iff [f(R)NS|=|g(R)NS],
(i1) df(R,S) < dy(R,S) iff [f(R)NS|>|g(R)NS],
(i) F(R)NS|=|Rnf7H(S)]

The following three lemmas are obvious.

Lemma 1.2. Let (P, R),(P,S) be posets and f € B(P).

a) If S\ f(R) # 0, then there exists [a,b] € S\ f(R) such that a <g b.
b) If f(R) \ S # 0, then there exists [u,v] € R such that [f(u), f(v)] € f(R)\ S and

U <R V.

Lemma 1.3. Let (P, R) be a poset. If for a,b € P, a <gr b, then (P, R\ {[a,b]}) is also a
poset.

Lemma 1.4. Let (P, R) be a poset. If a,b € P, a <g b, then d(R, R\ {[a,b]}) =

Let (P, R),(P,S) be posets and let f € B(P). If d¢(R,S) =d(R,S), f is said to be an
optimal map of (P, R) onto (P, S) (cf. Definition in [3]). From Lemma 1.1 it follows that
f is an optimal map if and only if |f(R) N S| is maximal. Any isotone map f € B(P) is
optimal (cf. Remark 2 in [3]).

Lemma 1.5. Let (P, R),(P,S) be posets and let f € B(P) be an optimal map of (P, R)
onto (P, S). If a <s b, [a,b] ¢ f(R), then f is an optimal map of (P, R) onto (P, S\ {[a.,b]})
and d(R, S \ {[a,b]}) = d(R,S) —

Proof. Since [a,b] € S\ f(R), then
di(R,S\{[a,b]}) =df(R,S)—1=d(R,S)— 1.

Now it is sufficient to prove that d(R, S\ {[a,b]})
that there exists a map g € B(P) with d,(R, S \
two cases:

a) If [a,b] ¢ g(R), then dy(R, S\ {[a,b]}) =dy(R,S)—1and so dy(R,S) <d(R,S) —1,
a contradiction.

b) If [a,b] € g(R), then dy(R, S\ {[a,b]}) = d4(R.S)+ 1 and so dy(R,S) < d(R,S) —

a contradiction. O

d(R,S) — 1. Suppose on the contrary

>
{[a,b]}) < d(R,S) —2. We distinguish

A map f € B(P) is an optimal map of (P, R) onto (P, S) if and only if f~! is an optimal
map of (P,S) onto (P,R) (cf. Lemma 1.1, (iii)). From this the next lemma follows (see
Lemma 4 in [3]).

e posets and let f € B(P) be an optimal map of (P, R)
). f(b)] ¢ S, then f is an optimal map of (P, R \ {[a,b]})
= S)

Lemma 1.6. Let (P,R),(P,S) b
[f(a
I},9) = d(R,

onto (P,S). If a <g b and
onto (P, S) and d(R \ {[a,b
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2. The distance poset

Let Fn, n € N, be a set of all (non-isomorphic) posets on a set P of cardinality n. For
(P,R),(P,S) € Fn, we define

(P,R) < (P,S) if and only if there exists an isotone map f € B(P).

A binary relation < is a partial order on F,. The poset (F,, <) will be called the distance
poset (of n-element posets). We shall study this poset.

Example. The following figure depicts the poset (Fy, <). Cy is a four-element chain and
Ay 1s a four-element antichain.
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Lemma 2.1. Let (F,,<) be the distance poset and let (P,R),(P,S) € Fn, n € N. Then
d(R,S) =1 if and only if (P,R) < (P,S) or (P,S) < (P, R).

The proof is simple; it will be omitted.

Lemma 2.2. Let (P, R),(P,S) € Fo,n € N, (P,R) < (P,S) and d(R,S) =m, m € N.
Then all maximal chains from (P, R) to (P, S) have the length m.

Proof. Let f € B(P) be an isotone map of (P, R) onto (P, S). Since the posets (P, R) and
(P, f(R)) are isomorphic, then d(R,S) = m = |S| — |R| = |5\ f(R)|. Thus, by Lemma
2.1, for each maximal chain from (P, R) = (P, f(R)) to (P, S) there exists a sequence of
ordered pairs [ay,b1], ... [am,bm] € S such that

¢ = ((Pv S)v(va\{[alvbl]})v(va\{[alabl]v [a2vb2]})7" '7(PJS\{[G1761]7" i) [amvbm]})>

O

Now we recall some further notions and facts concerning posets and graphs.

If a poset (P, R) has the least element 0p, then we define the height h(a) of an element
a € P as the length of the longest chain from O0p to a. If a poset (P, R) has the least
element and all maximal chains between the same endpoints have the same length, then
we say that (P, R) is a graded poset. A poset (P, R) is said to have length n, denoted
by I(P) = n, if the length of the longest chain in (P, R) is n. If (P, R) has the greatest
element 1p, then I[(P) = h(1p).

A graph G = (V, E) consists of a nonempty finite vertex set V' together with a prescribed
edge set E of unordered pairs of distinct vertices of V. Every edge can be written in the
form ab, where a,b € V.

Let 6(a,b) denote the distance from a to b (i.e. the length of the shortest path from a
to b in a connected graph G = (V, E)), and let diam G = max{d(a,bd); a,b € V} denote
the diameter of G. The function ¢ is a metric. The covering graph C(P) of a poset (P, R)
is the graph whose vertices are the elements of P and whose edges are those pairs ab,
a,b € P, for which a covers b or b covers a. For elements a,b of a poset (P, R), §(a,b) shall
denote the distance from a to b in the covering graph C(P) of (P, R).

From Lemma 2.2 we immediatelly obtain

Theorem 2.1. The distance poset (Fp, <) is a graded poset with the least element 0, =
A, (an n-element antichain) and the greatest element 17, = C,, (an n-element chain).

The following lemma is a part of Lemma 2.1 in [2].

Lemma 2.3. Let (P, R) be a graded poset and let a,b € P. Then
§(a,b) = h(a) — h(b) if and only if [b,a] € R.

Clearly, if a poset (P,R) € F,, n € N, then h(P,R) = |R| — n. From Lemma 2.3 we

have

Lemma 2.4. Let (P,R),(P,S) be posets from F,,n € N. If (P,R) < (P,S), then
d(R,S)=4d(R,S).

The following theorem was motivated by the similar results of Zelinka in [5] and [6].
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Theorem 2.2. Let (F,,<), n € N be the distance poset. If (P, R),(P,S) € F,, then
d(R,S)=4(R,S),
where (R, S) is the distance of vertices (P, R), (P, S) of the graph C(F,).
Proof. Let (P, R),(P,S) € Fn. Then there exists a map f € B(P) such that
d(R,S) = ds(R,S) = [f(R)\ S|+ |5\ f(R)].
Since f(R)N S C f(R), f(R) NS C S, then
(P, f(R)NS) <(P, f(R)) = (P,R) and (P, f(R)NS)<(P,5)
From the triangle inequality for § and from Lemma 2.4 it follows that
S(R,S) <SR, f(R)NS)+6(f(R)NS,S)=d(R,f(R)NS)+d(f(R)NS,S) =
=d(f(R), f(R) N S) +d(f(R) NS, 5) = [f(R)\ (f(R) 0S|+ [S\ (f(R)NS) =
=[f(R)\ S|+ ]S\ f(R)] = d(R,S).
Thus
(a) §(R,S) <d(R,S).

Let
R:R117R127---aR1i1 :R21,R22,...,R2i2,...,le,RjQ,...,R]‘l‘j — S

be a shortest path from (P, R) to (P,S) in C(F,), where {Ri1, Rk2,..., Ry, } is a chain
in (Fp,<) forall k € {1,2,...,5}. From Lemma 2.4 and from the triangle inequality for
d it follows that
(R, S) =6(R, Ri;,) + 0(Ro1,Rai,) + - +0(Rj1,S5) =
=d(R, Ryi,) + d(Ray, Raip) + -+ + d(Rj1, 5) > d(R, S).

Thus
(b) R,S)>d(R,S).
From (a) and (b) we have §(R,S) =d(R,S). O

A simple induction yields the following corollary.

Corollary 2.1. Let (F,,<), n € N be the distance poset. If (P,R),(P,S) € F,, then
h(P,R) — h(P,S) =d(R,S) (mod 2)

The next lemma is implicit in Alvarez [1].

Lemma 2.4. Let (P, R) be a graded poset with the greatest element. Then
diam C(P) = 46(0p,1p) =1(P).

From Lemma 2.4, Lemma 2.3 and Theorem 2.1 we immediately get
Corollary 2.2. Let (F,, <), n € N be the distance poset. Then
n(n—1)

diam C'(F,) = 5
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