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A VECTOR LATTICE VARIANT OF THE MARTINGAL THEOREM

PETER MALICKY

ABSTRACT. The purpose of this paper is to give a variant of the martingal theorem for
random variables with values in a vector lattice. The following theorem is known as the
inverse martingal theorem, see [5,p.360]. The direct martingal theorem we do not use, because
its generalization for vector lattice valued random variables is more difficult.

1. Introduction

Theorem 1.1. (inverse martingal theorem) Let (2, S, P) be a probability measure space,
{Sk} be a decreasing sequence of o-subalgebras of S and S be the intersection of {Si}.
Then for any random variable £ : ) — R with a finite expectation E(§)

(1) E(€|Sk) — E(£|Sx) almost certainly and

(ii) E|E(£[Sk) — E(£|Sx)| — 0.

The present paper generalizes the inverse martingal theorem for vector lattice valued
random variables. The proof of the main result is very similar to the proof of the ergodic
theorem published by author in [3] and it might be omitted. However, we give the proof
for the sake of completness of results. Similarly as in [3] we use results of [2] about mean
value and conditional mean value for vector lattice valued variable. Similar results for
mean value were established in [6] under stricter conditions.

2. Vector lattices

More complete information about vector lattices may be found in [1] and [4].

A real vector space V is called a vector lattice if it has a partial ordering < such that
(V,<) is a lattice and:

Ve,y,zeV:iz<y = z+2<y+=2

Ve,y e V:A>0:2 <y = Az < \y. Lattice operations are denoted by symbols V
and A.

If @ € V then the symbol |a| denotes the element a V (—a).

A vector lattice V' is called o-complete if every sequence {a,} C V bounded from
above has a least upper bound which is denoted by the symbol \/"__, a,, ( or equivalently,
every sequence {a,} bounded from below has a greatest lower bound which is denoted by

/\20:1 an).
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Definition 2.1. Let V be a o-complete lattice. A sequence {a,} C V is called decreasing
to 0 if:

Vn: anpyr < ap and /\zo:1 an = 0. We write a, \, 0 in this case.

A sequence {z,} C V is called converging to x € V if there is a sequence {a,} C V
decreasing to 0 such that |z, — 2| < a, for all n. We write 2, — x (n — 00) in this case.

Proposition 2.2. Let V be a o-complete vector lattice.

(1) A sequence {x,} C V converges to x € V if and only if {z,} is bounded and
r = /\2021 \/Szn Tm = \/2021 /\?:n x

(1) an 0, b, O = (an +b,) (O

(1) an \(0,A >0 = Aa, \(O

(iv) 2n = 2,yn 2y = (20 +yn) = (x+y)

(V) zp = 2 = Az, — Az,

The following lemma will be important in the proof of the main result in this paper.

Lemma 2.3. Let V be a o-complete vector lattice and {a,} C V. {bnr} C V be sequences
such that:

Vn,k:byr >0

Vn:bn e — 0 (F— o0)

an \( 0 (n — o0).

Put ¢, = N0_ (an + by k). Then Vk: ¢ > 0 and ¢, = 0 (k — o00).

Proof. The inequality ¢; > 0 for all k is obvious. The sequence {¢j} is bounded because
0 < ¢k <ay+by;forall kand by — 0 (k — oo). It means that the element A}~ \/jik ¢;
exists. We have: ‘

\/C] \/ /\ an+bn,])§ /\ \/(an+bn,]>
1=k j=kn=1 n=1 j=k

and

k=1 3=k k=1n=1j=k n=1 k=1 j=k
oo co oo o 0o
= At AV b = Al 0= Ao =0
n=1 k=1 3=k n=1 n=1

Except for assumptions of lemma we used the obvious facts:

V A an+005) < NV (an+0n)

j=kn=1 n=1j=k

and
> >0 >

Vit = A A Vot

k=1n=1j=k n=1k=1 3=k



3. Integral and conditional mean value of vector lattice valued functions

In this section we give a summary of results of author’s paper [2].

Let (2,8, P) be a probability measure space and V' be a o-complete vector lattice. The
symbol F(£,V) denotes the set of all functions f : € — V. Obviously, F(,V) is a
o-complete vector lattice under natural operations and ordering.

Two functions f,g € F(, V) are called equivalent if there exists a set A € § such that

P(A)=0and Vw e Q\ A: f(w) = g(w).

The set of all equivalence classes is denoted by F(, S, P, V) and it is a o-complete vector
lattice under natural operations and ordering. A function f € F(§2,V) is called simple if
flw) = a; for w € Al, where {A;} is a finite measurable partition of Q and a; € V. We

put / flw)dP(w Z P(A;)a; in this case.

A class ¢ € F(9Q, S P V') is called simple if it contains some simple function f. We put
E(p) = |, ¢dP = [, f(w)dP(w) in this case.

The set of all simple functions is denoted by Li°(£2, S, P, V) and the set of all simple
classes is denoted by £L3°(Q,S, P, V).

Let {fn} C F(,V) and f € F(Q,V). We say that a sequence {f,} converges to the
function f uniformly almost everywhere if there exist A € S, {a,} C V such that:

P(A)=0

Vw e Q\A:Vn:|fu(w) — flw)] <ap

an — 0 (n — o0).

Obviously, the condition a, — 0 may be replaced by a stronger one a,, \, 0. We write
fn = fuae. (n — o0) in this case.

Let {¢,} € F(Q,8,P, V) and ¢ € F(Q,S,P,V). We say that the sequence {p,}
converges to a class ¢ uniformly almost everywhere if f,, — f w.a.e. for some f,, € p, and
f € ¢. We write ¢, — ¢ w.a.e. (n — oo) in this case.

Let M be a system of all vector subspaces of F(£2,S,P,V) which contain the set
LE (2,8, P, V) and are closed with respect to the convergence which was described above.
Obviously, M has the minimal element with respect to inclusion. This vector space is

denoted by L>(£,S,P,V).

Theorem 3.1.
(i) £L>=(Q,S8,P,V) is a vector sublattice of F(2, S, P, V'), which is closed with respect

to u.a.e. convergence.
(ii) There exists a unique nonnegative linear extension E of the set E onto £L>°(2, S, P
(¢ )

Q,
which is continuous in the following sense: ¢, — ¢ w.a.e. => E(p,) — E

Remark. We shall write E(p) or [, ¢dP for ¢ € L>(,8,P,V) instead of E(p).

In a similar way a condltlonal mean value operator can be constructed. Let (2,8, P)
be a probability measure space, Sy be a o-algebra of § and E(.|Sp) be a conditional mean
value operator for real functions. Take ¢ € L5°(2,S, P,V ); ¢ is an equivalence class of
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n
some simple function f of the form z YA4;ai. Denote by ¢ the equivalence class of the
=1

function Z E(x4ilSo0)a;. In this case ¢ € L=(Q,S,P,V).

1=1
Putting E(¢|So) = ¢ we obtain a linear nonnegative operator
E(.|So) : LFT(Q,S,P, V) — LZ(Q, S, P, V).

Theorem 3.2.

(i) There exists a unique nonnegative linear extension
E(.|S) : LZ(Q,8,P, V) — L>®(Q,S0, P, V) of E(.|So).

(ii) The operator_F(.|$0) is continuous in the following sense: ¢, — ¢ wa.e. =—
E(¢n|So) = E(¢|So) u.a.e.

Remark. We shall write E(¢|So) instead of E(p|Sy).

We shall also use the pointwise convergence.

Let {fn} C F(Q,V) and f € F(,V). We say that the sequence {f,} converges to
f almost everywhere if there exists a set A € S such that P(4A) = 0 and Vw € Q\ A :
fa(w) = f(w) (n — o0). We write f, — f a.e. in this case.

If{¢n} CF(Q,S,P,V)and ¢ € F(,S,P, V) then the notation ¢, — ¢ a.e. (n — 00)
means that f, — f a.e. (n — oo) for some f, € ¢, and f € ¢.

4. The inverse martingal theorem for vector lattice valued random variables

Theorem 4.1. Let (2,8, P) be a probability measure space, V be a o-complete vector
lattice, {Si} be a decreasing sequence of o-subalgebras of S and S, be the intersection of
{Sk}. Then for all p € L>*(Q,S,P,V)

(1) E(¢|Sk) = E(¢|Sx) a.e. and

(i) ElE(p|Sk) — E(#|Seo)| = 0.

Proof. Denote by M the set of all ¢ € L>(2, S, P, V), for which (¢) is true. The martingal
theorem for real functions implies that M contains £5°(2, S, P, V). It is sufficient to prove
that M is closed with respect to u.a.e. convergence. Let {,} C M be a sequence which
converges to ¢ € F(Q,8,P, V) w.ae.. Obviously, ¢ € L(Q,S,P,V) and E(¢,|Sk) —
E(¢n|Ss) a.e. when k — oo for all n.

Let fu, f.9n,9, hnr and h be representants of the following equivalence classes ., ¢,
E(¢n|Sx): E(¢|Sx), E(¢n|Sk) and E(¢|Sk). There is a set A € S with P(4) =0 and a
sequence {a,} C V with a, \, 0 such that |f,(w) — f(w)| < a, for all w € Q\ A. Since
conditional mean value preserves ordering and constants, there are sets By, and B € §
with P(B) = 0 and P(B) = 0 such that

|gn(w) — g(w)] < a, for allw € @\ B and

|Fnk(w) — h(w)] < a, for all w € Q\ By.
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By assumptions hpg(w) — gn(w) a. e. when k — oo for any n; the exceptional w form

a set C, with P(C,) = 0. Denote D = A(J U B | U U C, |. For w € Q\ D denote
k=1 n=1
buk = |hnk(w) — gn(w)|. We have

(@) = g(@)] < [hi(w) = hak(@)] + [hnr(@) = ga(W)] + |gn(w) = g(w)] <

< ap + bpk + an = 20, + byg.

Put ¢ = /\ (2an + bn k).

n=1
Then |hr(w) — g(w)| < ¢ and ¢x — 0 by lemma 2.3. The proof of () is complete. Part
(17) can be proved by the same idea (it is not necessary to use the representants).
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