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FUNCTIONALLY COMPLETE ALGEBRAS

BOHUSLAV SIVAK

ABSTRACT. It is known that every funtionally complete algebra has the k-interpolation prop-
erty for £ > 1. We will prove that for each integer k& > 2, every k-element algebra with the
k-interpolation property is functionally complete.

1. Introduction

The polynomial function of an algebra (A, F') is represented by some ”correctly ar-
ranged” string containing (possibly) the variables, the symbols 7(”, ”7)”, the constants
(from A), and the symbols of the operations (from F'). The algebra (A, F') is function-
ally complete iff every function A™ — A is polynomial.

The algebra (A, F') has the k-interpolation property iff for every integer n > 0, every
k-tuple

of pairwise distinct vectors and every k-tuple
(b1, ba,. .., by) € AF
there exists a n-ary polynomial function F' such that
F(ai) =by, F(a) =by, ..., F(a{) = bs.

A lot of interesting information on the functional completness and the interpolation
properties can be found in [1] or [2]. Further we will use the Composition theorem (Wille
+ Werner). By this theorem, if there exist two different elements 0,1 € A, two binary
polynomial operations ”+” and ”-” satisfying the identities

x+0=2,04+z=2,2-1=2,2-0=0

and several unary polynomial functions (the unary functions ¢ for which one value of ¢ is
equal to 1 and all other values of g are equal to 0), then (A, F') is functionally complete.
(It is assumed that A is finite.) Further we will study only k-element algebras with the
k-interpolation property, consequently, all unary functions will be polynomial. Moreover,
each k-element algebra with the 2k-interpolation property is functionally complete because
the identities for 74”7 and ”7-” determine at most 2k values of each operation.
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Lemma 1.1. Assume that (A, F') has the (m + 1)-interpolation property. Then (A, F)
has the m-interpolation property, too.

Example 1.1. Let (A, F) = (Z2,+) be the additive group of the 2-element field. This
algebra is not functionally complete (every unary function is polynomial but it is easy to
prove that among 16 binary functions there are only 8 polynomial functions). It can be
proved that this algebra has the 3-interpolation property (we leave it to the reader).

2. Three-element algebras

Assume that A = {0,1,2} and the algebra (A, F') of any type has the 3-interpolation
property. Every function M : A2 — A can be represented by the following 3 x 3 matrix:

M(0,0) M(0,1) M(0,2)
M =|M(1,0) M(1,1) M(1,2)
M(2,0) M(2,1) M(2,2)

Using such matrices, we can simply write the "interpolation polynomials”. For example,
the (possibly not existing) binary polynomial function G satisfying the equalities

G(0,0) =0, G(0,1) =1, G(1,2) =2, G(2,0) =1

will be represented by the following matrix (”+” denotes the non-determined value):

*

(V]

0
G=|*
1

*

and we will say that the matrix G is polynomial iff it represents some binary polynomial
function G.

Lemma 2.1. Every unary function on (A, F) is polynomial.

Lemma 2.2. Every 3 x 3 matrix over the set {0,1,2,*} containing at most 3 numbers is
polynomial.

Lemma 2.3. For 3 x 3 matrices K,L, M over the {0,1,2,x}, let us define the matrix
KLM by the following way:

KLM(z,y) = K(L(x,y), M(x,y)).

(The value KLM/(x,y) is not determined in the following three cases:

- the value L(x,y) is not determined,

- the value M(x,y) is not determined,

- the values L(x,y) = a, M(x,y) = b are determined, but K (a,b) is not.) If the matrices
K, L, M are polynomial, then the matrix K LM is polynomial, too.
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Lemma 2.4. Let M be a polynomial matrix. Then the matrix K defined by
K(z,y) = M(y, )

is polynomial, too.

Lemma 2.5. Every matrix of the form

G =

o o R
o O Q
a o Q

(resp. the transposed matrix) is polynomial.

Proof. Let us define the unary function

f(0)=a, f(1)=b, f(2)=c.

By Lemma 2.1, the function f is polynomial. Moreover, G(z,y) = f(x).
Lemma 2.6. Assume that M is a polynomial matrix and that the matrix K can be
obtained from M by one of the following operations:

1) some permutation of the rows (columuns),
2) replacing of some row (column) by any other row (cohunn).

Then the matrix K is polynomial, too.

Proof. For example, we wish to exchange the first two rows of the matrix M. By Lemma
2.1, the unary function

F0)=1, f(1) =0, f(2) =2

is polynomial. Moreover, it holds M (x,y) = M(f(x),y).
Another example - we wish to replace the column 0 by the column 2. It suffices to use the
function

F0)=2, f(1) =1, f(2) =2
and the equality M(x,y) = M(x, f(y)).

Lemma 2.7. Let M be a polynomial matrix and let f be an unary function. Then the
matrix fM defined by

fM(x,y) = f(M(z,y))
1s polynomial, too.

Lemma 2.8. The algebra (A, F) is functionally complete iff the following two matrices
are polynomial:

P =

jerien B an)
N =
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Proof. Apply Lemma 2.1 and the Composition theorem. (The matrix S corresponds
to "4” and the matrix P corresponds to ”-”.) Here we assume that (A, F') has the 3-
interpolation property.

Remark. In the following theorem, we will explicitly write all assumptions.

Theorem 2.1. Assume that A = {0,1,2} and that the algebra (A, F) has the 3-interpolation
property. Then (A, F) is functionally complete.

Proof. We are going to prove that the matrices S, P (Lemma 2.8) are polynomial. By
Lemma 2.2, the matrices

0 1 =«
51:1 * * s Q:
*

* N O

are polynomial. Applying Lemma 2.6, we succesively obtain the following polynomial

matrices:
0 1 =* 0 1 0 0 1 0
So=11 % x|, Sy=|1 *« 1|, S4=|0 0
0 1 =« 0 1 0 1 *x 1

Applying Lemma 2.4 and Lemma 2.6, we obtain the polynomial matrices

0 0 1 0 0 1
55:1 1 s 56:0 0 1
0 0 1 1 1 =

Direct calculations give (see Lemma 2.3)

0 1 2
QSGng 1 * *x|=.5.
2 k%

* | is polynomial.
*

Proposition 2.1. The matrix P’ =

* O O
¥ = O

Let us continue in the proof of Theorem 2.1. By Proposition 2.1, Lemma 2.6 and Lemma
2.3, we obtain the polynomial matrices

0 0 = 0 0 =
P1: 0 1 * N P2: 0 0 = s P:QPQ.Pl
0 0 =« 0 1 =«

It remains only to prove Proposition 2.1. We know that the matrix Q is polynomial. The
value (1, 1) is not determined and it is easy to see that at least one of the following three
matrices is polynomial:

0 1 = 0 1 =« 0 1
P3:2 0 = 5 P4:2 1 % s P5:2 2
* %k * ok * ok
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By Lemma 2.7, at least one of the following two matrices is polynomial:

FPs =

* O O

1 % 1
0 = N P;=10
* *

* O O

It suffices to apply Lemma 2.6.
Theorem 2.2. Assume that A = {0,1,2} and that the algebra (A, F') has the following
properties:

1) every unary function is polynomial,
2) there exists a binary polynomial function @) such that

Q(0,0) =0, Q(0,1) =1, Q(1,0) =2

Then (A, F) is functionally complete.

Proof. The binary function ) corresponds to the matrix @) in the proof of Theorem 2.1.
Starting from @, it is possible to derive S and P, (apply Lemma 2.6 and Lemma 2.7).

Corollary. Assume that A = {0,1,2} and that the algebra (A, F) has the following
properties:

1) among unary polynomial functions there exist at least one transposition, at least
one 3-cycle and at least one function with exactly 2 values,
2) among binary polynomial functions there exists a function G and there exist

a,b,c,d € A such that

{G(a,¢), G(a,d), G(b,c), G(b,d)} = A.

Then (A, F) is functionally complete.

3. Four-element and ”big” algebras

In the case of 4-element algebras we can assume that A = {0,1,2,3} and the binary
functions will be represented by 4 x 4 matrices. The results above (Lemma 2.1 — Lemma
2.8) must be modified (it is easy). The fundamental matrices in the modification of Lemma

2.8 will be

01 2 3 0 0 * =*
1 * * % 0 1 * =«
5= 2 % ok k| P = 0 2 % =
3k x ok 0 3 * =«

Theorem 3.1. Assume that A = {0,1,2,3} and that the algebra (A, F) has the 4-
interpolation property. Then (A, F) is functionally complete.
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Proof. Starting from the "fundamental” polynomial matrix

0 1 * =
2 3 *x %
Q= x ok ok k|
%k ok %
we successively obtain the polynomial matrices
0 0 % =% 0 0 x =« 0 0 % =
0 1 % =« 0 1 % =x 0 0 % =
Pl_****’PZ_OO**’PS_Ol**’
¥ ok %k ok 0 1 % =* 0 1 * =
P=QP;P,,
0 1 * = 0 1 * = 0 0 1 1
1 * * % 0 1 * = 0 0 1 1
51—****,52—1***,53—11**,
* k% ok 1 % % % 1 1 % %
01 0 1 01 2 3
I 1 = 1 % 3 =
Se=lg 1 ¢ 1| S=@BSN=|, 5
1 1 = 3 % ok %

Trivially, S is a special case of Ss.
Theorem 3.2. Assume that A ={0,1,2,3} and that the algebra (A, F') has the following
properties:

1) every unary function is polynomial,
2) there exists a binary polynomial function @) such that

Q(0,0) =0, Q(0,1) =1, Q(1,0) =2, Q(1,1) = 3.
Then (A, F) is functionally complete.
Corollary. Assume that A = {0,1,2,3} and that the algebra (A, F') has the following
properties:

1) among unary polynomial functions there exist at least one 4-cycle, at least one
3-cycle and at least one function with exactly 3 values,
2) among binary polynomial functions there exists a function G and there exist

a,b,c,d € A such that {G(a,c), G(a,d), G(b,c), G(b,d)} = A.
Then (A, F) is functionally complete.
Remark. The method of the proof of Theorem 3.1 can be applied more generally.

Theorem 3.3. Assume that A = {0,1,2,...,k — 1},k > 5 and that the algebra (A, F)
has the k-interpolation property. Then (A, F) is functionally complete.

The idea of the proof. First modify the results above (Lemma 2.1 — Lemma 2.8) and
prove that there exists an integer m such that the following inequalities are satisfied:

m? >k, 2m < k.
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The fundamental polynomial matrix ) can be defined by the following way:
Qlz,y) =ma+y, e <m, y<m, me+y<k.

(All other values are not determined.) We leave the details to the reader. This method is
not convenient in the case k = 5 because there exists no integer m satisfying the inequalities

m? > 5, 2m < 5.
Example 3.1. Put k = 7. The inequalities
m?>7, 2m <7

have the solution m = 3. Here the matrices S, P are:

01 2 3 4 5 6 0 0 *x *x *x * =x
1 %« % % % * % 0 1 % *x % *x x
2 % x x ok % % 0 2 % *x % % x
S=13 *x *x x x x x|, P=]0 3 *x *x x x x
4 % x % x ok k 0 4 % *x % *x x
S5 k k  k ok ok k 0 5 * * * * %
6 * * * * ok x 0 6 * * * *x =

and the fundamental polynomial matrix is:

* % %X *¥ OO WO
R SR R R SR SN
* %k K %K ¥ CUN

* K K K K X K
* K K K K X K
* K K K K K K
* K K K K K K

The derivations of S, P from ) we leave to the reader. (Use the same method as in the

case k =4.)
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4. Five-element algebras

Theorem 4.1. Assume that A ={0,1,2,3,4} and that the algebra (A, F') has 5-interpolation
property. The (A, F) is functionally complete.

Proof. The fundamental matrices in the modification of Lemma2.8 will be

01 2 3 4 0 0 * * =«
1 *« x * 0 1 * * =%
S=12 *x x *x x|, P=]0 2 *x x %
3 o+ ok ok ok 0 3 * * *
4 % *x *x x 0 4 * * *

By the 5-interpolation property the following two matrices are polynomial:

01 2 % =« 0 1 2 % «
3 4 x x x 1 * % * %
Q=1+ * *x *x x|, R=12 % * x =x
O * ox ok x %
* % % % x * % % % %
From @) we derive polynomial matrices
0 1 % % =% 0 1 % % =x 0 0 0 1 1
1 * *x x % 0 1 *x x = 0 0 0 11
Si=|* * x * x|, Sy=]/0 1 * % x|, S3=/00 0 1 1
¥ ok ok ok ok 1 * *x *x x 1 1 1 * =%
¥ ok ok ok ok 1 * *x *x x 1 1 1 * =%
and from R we derive polynomial matrices
0 1 2 * =« 01 2 0 1
1+ x *x 1 * x 1 =«
Si=12 * * *x x|, Ss=|2 * *x 2 =
0 1 2 * =« 01 2 0 1
1 * * * % 1 * * 1 %

The matrix ).53955 is a special case of S. It is more difficult to derive the matrix P. By
the b-interpolation property, the matrices

* 0 % % % 0 * * *x %
0 1 *x % =x * 1 3 *x %
Pr=10 2 % * *|, Q= 4 2 % %
* ok ok ox % * ok ok ok ok
* ok ok x % * ok ok ok k
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are polynomial. From P; we derive polynomial matrices

* 0 *x *x % x 0 *x * %
0 1 =+ * = 0 1 * * x
Po=10 2 *x *x x|, P;=|0 2 * % =x
0 1 * * =% 0 2 * * =%
0 2 * * % 0 1 * * =%
Direct computations give
Py =Q'P,P; =

O OO O ¥
= W N~ O
* K K K ¥
* K K K ¥
* K K K ¥

In the case Py(0,0) = 0, the proof is finished (P; = P). All other cases are equivalent and
we can assume that Py(0,0) = 1. Then we have the polynomial matrix

1 0 * *x x
0 1 * * %
P5:0 2 * * *
0 3 * % %
0 4 * * %

By the 4-interpolation property, the matrices

0 0 * * =« 0 2 * * x
0 1 * x = 3 1 % %
Ps=|*x *x x x x|, U=/|%x % x *x x
* % ok ok ok * % ok ok x
* % ok ok ok * * ok ok x

are polynomial. From Ps we derive the polynomial matrices

0 0 *x x =« 0 0 * *x =«
0 1 x = =« 0 1 *x *x =«
P.=10 0 *x *x x|, Pa=1]0 1 % x x
0 1 * * = 0 0 * x =
0 0 * *x =« 0 0 * *x =«
Direct computations give
Py =UP;: P =

oo o oo
S W = O
EE S I
I S
H* Ok K K K



By the 5-interpolation property, the matrix

=

|
=~ % %x O %
* ¥ K =¥
* ¥ DN ¥ ¥
* W ¥ ¥ ¥
* ¥ K K K

is polynomial. From P;p we derive the polynomial matrix

0 1 *x x =«
0 1 * x =«
Pi=|*x * 2 x %
¥ x ok 3 %
4 x x % x
and direct computations give: P = P;1P5Py.
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