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ON ALMOST COMPLEX STRUCTURES ON FIBRE BUNDLES

ANTON DEKRET

ABSTRACT. If o is an almost complex structure on a manifold M then there is not a con-
nection on M induced by «. In this paper the problem of connections on a fibre bundle
m:Y — M, dim M = dim of fibres, which can be constructed from a given almost complex
structure a on M only is explored.

INTRODUCTION

Let a be an almost complex structure (ACS) on a manifold M, dimM = 2m, a is a
(1,1)-tensor field on M such that a®> = —Idgp. It is known, see [3], [4], that there is
no connection on M, linear connection on the tangent bundle pp; : TM — M, which
is canonically induced by «. If « is an ACS on a fibre bundle 7 : ¥ — M, dim M is
the dimension of fibres, then the question of connections on Y entirely determined by «
arises. Examples of such fibre bundles are py; : TM — M and the cotangent bundle
7w :T*M — M. In this paper we construct connections from the given (1,1)-tensor field «
on Y with emphasis on the ACS-case. If Y = T M then there are some special geometric
objects on T'M which are in interesting relations to our topic. We have discussed them in
[2]. In this paper all maps and manifolds are supossed to be smooth.

CONNECTIONS AND ALMOST COMPLEX STRUCTURES ON Y

Let (z°,%") be a local fibre chart on a fibre bundle 7 : Y — M, dim M is the dimension
of fibres.

Let us recall that a connection I' on T'Y can be considered as a (1,1)-tensor field Ap
(horizontal form of I'), such that Twhp = Tw,hp(VY) = 0, where T'w is the tangent
map of the map = and VY is the vector bundle of all vertical vectors on Y, hp =
= da* ® 9/0x" + T(x,y)de? © d/0y’. Then hp(TY) = HT is the so-called horizontal
subbundle of T; (2%, y?, dx?, dy*) € HT if and only if dy* = ' jda’, F; (x,y) are said to be
the functions of T

Let o = (a%(z,y)da? 4 b)(x,y)dy?) @ 0/0x" + (¢ (x,y)dx? + bl (x,y)dy’) ® d/0y" be a
(1,1)-tensor field on Y. It is called vertical if a(VY) C VY.

Denote B : Tmalyy = bidy’ ® 0/0".

It means that B can be considered as a vector bundle morphism VY — TM over m or
VY — Yz, TM over Idly, i.e. as a section Y — V*Y @y TM.
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Lemma 1. A (1,1)-tensor field « is vertical iff B = 0.
Proof is evident from the local form of o and B.

Remark 1. If B is regular, i.e. if it is an isomorphism, then we get the inverse vector
bundle isomorphism B~! : Yz, TM — VY over Id]y, i.e. asection B! : Y — T*M ®
RyVY,B~! = I;j-dxj ® 0/0y;, B}Cb;" = 5;-, i.e. a semibasic (1,1)-vector form with values in
VY.

We will consider two cases.

1. B#0,ie. a(VY) VY, ie. «is not vertical.
Let I', dy* = F;-dxj, be a connection on Y. Let X = '0/0y" be an arbitrary vertical vector
on Y. Then a(X) = b7 d/0z* + hin?0/0y* is T-horizontal, i.e. a(X) € HT, if and only
if Tj,bkn7 = hin’. Tt means that a(VY) C HT iff
(1) N
It immediately gives

Proposition 1. If and only if B is regular there is a unique connection T'2 on Y such
that HT'2 = a(VY).

The relation (1) induces that if B is regular then the functions of the connection I'2 are
T = hi bk

We will construct another connections on Y when B is regular. Let X =
£'0/0x" +n'9/dy" be a vector on Y. Then a(X) = (ah&? + %7 )0/0x" + (57 + hin? )9 /Dy’
is vertical if and only if
(2) a?é’j + b;ﬁj = 0.

This leads

Proposition 2. If and only if B is regular there is a unique connection I'} on Y such
that a(HT}) = VY, ie. with the functions I = —bj.ak.

Remark 2. Recall that if ¢ is a semibasic (1,1)-form on Y with values in VY, i.e. if p is a
section Y — T*M ®y V'Y and hr is the horizontal form of a connection I' on Y then hr+¢
is the other connection on Y. So if B is regular then hApr: + cB~! and hr2 + cB71l,ceR,
are another connections on Y.

The (1,1)-tensor form « is a vector bundle morphism TY — TY over Id|rps. Then

2 __ _ ] i .8 j 118 118 j ]
o = aa = [(aga] + byc)da? + (agbj + bshj)dy’| ® 0/0x"+
+ [(csai + hici)da? + (cgbj + hih3)dy’] ® 0/0y".
So ais an ACS on Y, i.e. o = —Id|ry, iff
(3) azai +beci =05, agbi+bhi =0, ciai+hic;=0, cbi+hihi=—d;.

It is easy to see that if B is regular then the third and fourth equations of the relations
(3) are the consequence of the first and second ones.
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Proposition 3. Let a be a (1,1)-tensor field on Y such that B is regular. Then 'L, = T2

if and only if o? is vertical.

Proof. o is vertical iff the second equation of (3) is satisfied, i.e. iff a} = bghii)? Then

T = —blag = hib¥ = °T%. Conversally, if T}, = T2 then —bial = hib3, ie. —albs = bihs,
2

i.e. o is vertical.

We will focus ourselves to the connections I" which are invariant according to «, i.e.
«(HT) C HT.
Let hp = dz' ® 8/02" + I'dz? @ 0/0y* be an arbitrary connection on Y. Then

ahp = (a} + b)) da? @ 8/0x" + (¢ + hi,Ty)dz’ ® 8/0y".

Let T' be another connection given by the equation dy® = f;da:j. Then «(HT) C HT if
and only if
(4) T (ak +05TY) = i + hiTh  or
(5) ¢ =Thal — hiT¥ + T{0iTY for T =T.

Consider the space VY ®y T*M of all semibasic VY-valued (1,1)-forms on Y. Let
v = fy]i-dxj ® 0/0y* € T*M ®y VY. Denote

a” iy = ay= bify]t-da:j ® 0/0x" + hi’y?dxj ®0/0y', T*M @y VY = T*M @ TY,

ot 1y = ya = (viabda? +4ibEdy’) @ 0/0y', T*M @y VY - T*Y @ VY.
Note that if B is regular then o™ (B~!) = hr2 and ot (B~') is the vertical form vp =
= Idry — hrt of the connection T,
Definition 1. Two (1,1)-tensor fields a1, as on Y will be called (4, —)-equivalent if o] =
- 4+ _ o+

It is evident that the relations 'a} = 2a%, b5 = 2b%, 'h% = 2h% are the coordinate

conditions for aq, as to be (+, —)-equivalent.
The relation (4) immediately yields

Proposition 4. Let I, T be connections on Y. Then in every class of the (+, —)-equivalent
(1,1)-tensor fields on Y there exists a unique (1,1)-tensor field ap & such that ap 5(HL') C

C HT.
If I' =T then we use the denotation ar instead of arr.

Proposition 5. Let o be such a (1,1)-tensor field on Y that B is regular. Then ar1 = ar
and ari cannot be an almost complex structure on Y.

Proof. By the relation (5) in both cases of T}, and T2 we get ¢} = hig’;aj. So api =
= ar> = (aldz? + bidy’) © 9/0x" + (hjbladdz? + hidy’) ® 0/dy'".
If ar: is an ACS then the first and second equations of (3) read
aia? + bihfg,tca;‘f = —5;-, Bia? + hii); = 0.
Then aia; — bégfaia;‘? = —5;-. It is not possible. So ar: cannot be an almost complex
structure on Y.



Definition 2. Let (1,1)p denote the set of all (1,1)-tensor field o on Y such that B

is regular. We will say that two (1,1)-tensor field oy, a2 € (1,1)p are (+)-equivalent if

af =ajy.

In coordinates, a; and aq are (4)-equivalent iff la;- = %t 1b§~ = 2b§~, detlb;- #+ 0,

. '77
det®bt # 0.

Proposition 6. In every class of all (4+)-equivalent (1,1)-tensor fields there is a unique
almost complex structure on Y.

Proof in coordinates. A class of all (+)-equivalent (1,1)-tensor fields is given by the local

functions aj, b;, det bZ # 0. By the first and second equations of the relation (3) a tensor

field of this class is an ACS iff c;- —b’ — bl ak as, h,Z = —Bgazb;?. It completes our proof.

Remark 3. The same can be said for the class of (—)-equivalent tensor fields.
Remark 4. If a is an ACS on Y then « is vertical and so '} =T'2.

Proposition 7. Let I' be a connection on Y. Let B : ¥ — V*Y @y TM, B =
= bidy’ ® d/0x*, be a vector bundle isomorphism VY — T'M over w. Then there ex-
ists a unique almost complex structure « on Y such that Tralyy = B and T, =T =T2.

Proof. Let T be the functions of . Let a be an arbitrary (1,1)-tensor field on Y such that
Trolyy = BandTh =T =T2. Then T = —biak, T4 = hibk ie. al = —biT%, hi =Tibs
and the second equation of (3) is satisfied. By the first equation of (3) a is an ACS iff

c; = b FZbiF; So such an ACS locally exists and is unique.

We are turning to the second case of a.

2. Let B=Twalyy =0, ie a(VY) C VY. We have

o= a?da:j ® 0/0z" + (c;-dxj + h;dyj) ® 0/0y",
A:=Tra= aéda:j ® 0/0z"
H := Oz|vy = h;dyj & 8/8yz

So A is a section ¥ — T*M ®y TM determining a vector bundle morphism 7Y —
TM over 1 : Y — M or Yoy TM — YxyuTM over Idy and H is a section ¥ —
— V*Y ® VY determining a vector bundle morphism VY — VY over Idy.

Let T',T be two connections on Y with the local functions F;,f}. When B = 0 the
equations (4) and (5) read

(47) cj'- = fZa — ht Fk

(57) ¢ =Tjal — nTh.

Proposition 4 can be reformulated as follows
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Proposition 8. Let H: Y = V*YQVY, A:Y — T*"M®y T M be two sections. Let I, I
be two connections on Y. Then there is a unique vertical (1,1)-tensor field «(A, H,T',T")
on Y such that a|yy = H, Tna = A, o(HT) C HI.

If T =T we use the denotation a(A, H,T) instead of a(A4, H,T',T).
In the case of a vertical (1,1)-tensor field « the coordinate conditions (3) for « to be an
ACS are of the form

) i .S __ i i S i .8 __ 118 __ 7
(3") aga; = —0;, cgai+hoc; =0, hihy = —0;.

Preserving the above denotations we have the following vector bundle morphism on
T"M ®y VY over Idy:

H™ :v— Hy= h};fyjlf’dacj ®0/0y, yeT*M @y VY, so H =a™,
At iy 5 yA = fy,ia;‘-’dxj ® 0/0y", so AT =a™,

H:AT—H :vy— ('y,ia? - i,'y;?’)dfnj ® 0/0y",

H=A"+H :y— (fy,ia? + hi,fyjl?)dxj ® 0/0y".

The relation (5’) immediately gives

Proposition 9. Let a be a such vertical (1,1)-tensor field on Y that the map # is a vector
bundle isomorphism on T*M ®y VY over Idy. Then there is a unique connection I' on
Y such that o(HT) C HT.

Lemma 2. If a vertical (1,1)-tensor field « is an almost complex structure on'Y then the
maps H and ‘H are not isomorphisms on T*M ®y VY.

Proof. The map (H™ + AT)H = H™H + AtH : v — (hivial — hihi~F) + (viajaf —
—hi'y,ia;‘?) is a vector bundle morphism on 7*Y ®y VY. If a is on ACS on Y then by
(3") we get (H™ + AT)H = 0. If H is regular then H~ + AT = 0. But the equation
H~vy = —vA is satisfied for all y € T*"M ®y VY if and only if H = k-Id = —A, k € R
Then hjh% = k267, i.e. k> = —1. It is contrary with & € R. Analogously the supposition

"H is regular” leads to contradiction.

Remark 5. If « is a vertical ACS on Y then according to (5’) such a connection I' that
a(HT) C HT can but not have to exist. If it exists then it does not need to be unique.

Remark 6. Let A:Y —T*M ®y TM be an ACSon Yxpy TM. Let H:Y - V*Y VY
be an ACS on VY. In view of the relation (3’) there exists a vertical ACS « on Y such
that Tma = A, alyy = H and is not unique.

Proposition 10. Let A : Y — T*"M ®y TM be an ACS on YxpyTM. Let H : Y —
— V*Y @ VY be an ACS on VY. Let I' be a connection on Y. Then the vertical (1,1)-
tensor field (A, H,T') described in Proposition 8 is an almost complex structure.

Proof. By Proposition 8, a(A, H,T') is the unique vertical (1,1)-tensor field on Y such
that a(A, H,T)lyy = H, Tra(A, H,T) = A and «(A, H,T)(HT) C HT. If A = a}ds’ @
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®0/0xt, H = h}dyj ® 0/0y" and I‘; are the functions of I' then the coordinates c;- of
a(A, H,T) are determined by (5°). So (A, H,T') = alda’ ® 0/9z" + [(F};a;‘-’ - h};F;‘-’)dxj +
+hldy’] ® 8/9y’. The functions a’, h% satisfy the first and third equations of (3’). Then
chal +hics = (Tyaf — hjT¥)as +hi(Diak —hiTh) = 0. So a(A, H,T) satisfies the relations
3 and is an almost complex structure.

Remark 7. Let m : Y — M be a vector fibre bundle. Let o be a V B-(1,1)-tensor field,
i.e. a(X) is a linear projectable vector field on Y for all linear projectable vector fields
X on Y. In a local fibre chart o = a%(z)dz’ ® 8/0z" + [c}y(v)y*da? + hi(x)dy’] ®
®0/0y*, see [1]. In this case alyy = H is a vector bundle morphism on Y over Idy,

with the coordinate expression: Z* = %, §* = h;- (r)y?. These equations with the added

of
ozt

tangent map TH. Let T, F;- (x,y) = F;kyj, be a linear connection on Y. Then it is easy
to deduce that the equations

following ones dz* = dz', dy* = h}kyj dz" + h;-dyj, where we use := f;, determine the

7 s iTs 1.t
I‘jshk_ s jk_hkj

are the coordinate conditions under which TH(HT) C HT. The solution F;S of these
equations can but not has to exist. Let a(HT') C HI'. Then by (5): c};j = Fija,sC —
—hZsz. If ' is without torsion then the conditions TH(HT') C HT', o(HT') C HT lead to

(6) F;'s(hlsc —ap) = hi;j - C;cj-
If H — A has sense (for instance in the case of y = TM) and if H — A is regular then
there is a unique solution T'%, of (6). For example if A = —H, and H is regular then

ri = 5(hi, — ci Jh%. In view of Proposition 10 we can say that if « is a symmetric V B-
almost complex structure on T'M such that A = —H, then there exists a unique symmetric
linear connection such that TH(HT') C HT,

a(HT) ¢ HT'. We will deal in detail with such an almost complex structure in our other

paper.

REFERENCES

[1] Cabras, A., Kolar, 1., Special tangent valued forms and the Frolicher - Nijenhuis bracket, Arch.
Mathematicum (Brno) Tom 29 (1993), 71 — 82.

[2] Dekrét, A., Almost complex structures and connections on T M, to appear.

[3] Janyska, J., Remarks on the Nijenhuis tensor and almost complex connections, Arch. Math. (Brno)
26 No. 4 (1990), 229 — 240.

[4] Yano, K., Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, New York
(1964).

DEPARTMENT OF MATHEMATICS, TU ZVOLEN, MASARYKOVA 24,
960 53 ZVOLEN, SLOVAKIA

E-mail address: dekret@usld.tuzvo.sk
(Received September 5, 1995)



Acta Univ. M. Belii
Math. 1n0.3(1995), pp.9-16

METRICS ON SYSTEMS OF FINITE ALGEBRAS

ALFONZ HAVIAR

ABSTRACT. In this paper four different metrics on a system of n-element algebras of the
same type are presented. For groupoids and lattices the maximal distance of algebras is also
determined.

INTRODUCTION

In [1], [5] and [3], [4], metrics on systems of graphs and posets, respectively, are investi-
gated. In this paper we show an analogous way of defining metrics on a system of pairwise
non-isomorphic finite algebras of the same type.

In universal algebra, isomorphic algebras are not usually considered to be different.
Assuming that two n-element algebras of the same type are not isomorphic one can seek
for a bijection compatible with the operations as much as possible. Such an approach
yields the first way of defining the metric. The concept of the homomorphism generalizes
that of the isomorphism, and in our second approach, it motivates the definition of a
measure of difference between algebras. Our third approach is based on the fact that two
non-isomorphic algebras may have ‘large’ isomorphic subalgebras. The distance of algebras
depends on the cardinality of these isomorphic subalgebras. As it turned out for systems
of graphs, the approach based on subgraphs can be replaced by that based on supergraphs
[2]. A similar idea can be applied also to the class of all finite algebras of the same type.

The second (homomorphic) metric and the third (substructure) metric can also be
considered for finite algebras of the same type having different cardinalities, as in the
proofs that these functions are metrics the cardinalities of algebras are not relevant. The
first metric could also be modified (similarly as for graphs) for algebras of the same type
but different cardinalities. However, it is hard to decide how much the metric depends on
the difference of cardinalities of algebras and on the difference between algebraic properties
of given algebras.

The concept of a metric reflects a ‘distance’ between classes containing isomorphic
algebras. However, in order to simplify the terminology we will speak on a ‘distance’
between algebras.

We will particularly focus our attention to the metrics on systems of groupoids and
lattices where we also determine the maximal distance of two algebras.

1991 Mathematics Subject Classification. 08A62, 28 A99.
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Throughout this paper the set N, = {0,1,...,n — 1} is taken as a universe of n-
element algebra. By §,, we denote a system of pairwise non-isomorphic n-element algebras
of the same type. By G, (L£,) we denote the system of all pairwise non-isomorphic n-
element groupoids (lattices). The maximal distance between algebras on the system G,
(L) in a metric d; will be denoted by D;(G,) (D;(Ly)). The number D; will be called
the diameter of the system G,, (L,,).

1. ISOMORPHISM METRIC

Let A=(AFy,...,F,), B=(B,F|,...,F]) ben-element algebras of the same
type. We denote by M (A, B) the set of all bijections of A onto B. Let f € M (A, B) and
let F;, 1 <j<m be ak-ary operation of A. For k> 1 we put

D;(f) = {lar,...,ar] € A%; f(Fj(ar, ..., ax)) # Fj(f(ar), ..., f(ar))}

and for k=0

P ={3" S
Let
D(f)=Di(f)U---UDn(f),
and
(1) diso(A,B) = min{| D(f) |; f € M(A, B)},

where | D(f) | is the cardinality of the set D(f).

Theorem 1.1. The function d;s, given by (1) is a metric on the system S,, (of pairwise
non-isomorphic n-element algebras of the same type).

Proof. Clearly, d;so(A,B)=0 ifand only if A = B.

It f(Fj(ai,...,ax)) # Fj(f(a1),..., f(ax)) forabijection f:A — B, k-ary opera-
tion Fj, k > 1, and elements a1, ...a then  f~'(Fj(by,...,bx)) # Fj(f 7 (b1),..., f 7' (bx))
for the elements by = f(aq),...,bx = f(ag). It follows d;s,(A,B) = d;s0(B, A).

Let diso(A,B) =| D(f) |, diso(B,C) =| D(g) | and d;so(A,C) =| D(h) | .
obvious that | D(go f) |>| D(h)|. We shall have established
| D(f) | + | D(g) |>| D(h) | if we prove that

It is

(1a) | D(f) [+ 1 D(g) [=| D(go f) |-
The inequality (la) follows easily from the fact that [a1,...,ax] € D(f) or

[f(a1),..., f(ar)] € D(g), if [a1,...,ax] € D(go f) and F; € D(f) or F! € D(g) if
F; € D(go f), respectively.
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Theorem 1.2. D;s,(G,) =n? if n>2,
Diso(Ly)=(n—22—(n—-2) if n>4

Proof. a) Of course, d;so(G1,G2) < n? holds for any n-element groupoids Gy, Go.
We define the operations o and * on the set N, ={0,...,n—1},n>2, by

roy=ux for every number z

{y, if z#y
THrY = ]
r+1, if z=y

(we compute modulo n). It follows immediately that  f(zoy) # f(z) * f(y) for any
permutation f of N, and any numbers z,y € N,. Therefore we have

diso((Mn7 0)7 (Mna *)) =n?.

b) Let Ly = (L1,V,A,0,1), Ly = (L2, V,A,0,1) be n-element lattices. Let f:L; — Lo
be a 0, 1-preserving bijection. It follows immediately that

(1b) | D(f) 1< (n=2)* = (n - 2).

The equality  d;so(L1,La) = (n —2)%2 — (n —2)  holds if L; is the n-element chain and
L, is the n-element lampion (a lattice of height 2 with n-2 atoms),n >4 . O

2. HOMOMORPHISM METRIC

Let A,B be n-element algebras of the same type. If f: A — B is a homomorphism
then f(A) is a subuniverse of B. We call f(A) the homomorphic image of A in B. If there
is no homomorphism f : A — B we define the homomorphic image of A in B to be ().

Let S,, be a system of pairwise non-isomorphic n-element algebras of the same type.
We define the distance of algebras A,B € S,, by

(2) dn(A,B) =[ A[ = [ f(A) [+ [B[—-[g(B)],

where f is a homomorphism A — B such that the cardinality of f(A) is maximal
possible. Analogously, for ¢: B — A.

Theorem 2.1. The function dj, given by (2) is a metric on the system S,,.

Proof. We see at once that dp(A,B)=0 iff A =B and d,(A,B)=d,(B,A).

Let A,B,Cc S, and let

f:tA—>B, g:B—C, h:A—C(C,

F:B—~A G:C—B, H:C—A,
be such homomorphisms that f(A),..., H(C) are maximal homomorphic images. We
want to prove the inequality

| AT=1r(A) [+ [C[=]H(C)|<
SAT=[fA) I+ BI=[FB)[+|B|-|g(B)[+]C]|-]G(C)].
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It is sufficient to show that

(2a) | f(A) [+ 1g(B) [<| B|+|h(A)]
and
(2b) | F(B) |+ |G(C) <] B+ |H(CO)|.

We are going to prove (2a) ((2b) can be proved in the same way). Since
| h(A) [=] g(f(A)) | it suffices to show that [ g(B) | —|g(f(4)) [<|B|—]f(A)], ie.

(2¢) | 9(B) —g(f(A) <[ B = f(A) |

The inequality (2c) follows from

| B = f(A) [2[9(B = f(A)) =] 9(B) = g(F(A)) | .

If there are no homomorphisms from A to B or from B to C (i.e. if f(A) = 0 or
g(B) =), the inequality (2a) also holds.

Remark. We note that the proof runs if we drop the assumption that A, B, C are algebras
of the same cardinality.

Theorem 2.2. Dy(G,)=2n if n>2,
Dy(Ly,)=2n—-2 if n>T.

Proof. a)lt is evident that Dp(G,) < 2n. We will find two non-isomorphic groupoids
whose congruence lattices are trivial and the sets of idempotent elements are empty.
We define the operations o and * on the set N, ={0,1,...,n—1} n>2 by

ion—1)=ix(n—1)=1i+1,
joi—ixi=i+l,
jok—ivk=k+2 if i=k+2...n—1,

1ok=1, txk=k otherwise

(we compute modulo n). Now, we are going to show that the groupoids (N,,o) and
(N, *) have only trivial congruences. Let © € Con(N,,o), i©j and i < j. The equality
i+1=j implies io(n—1)0(i+1)o(n—1), ie. i+10i+ 2, analogously i+ 207+ 3,
etc., hence © = N2.If i+1<j we have i0i©®jo4, ie. i+ 10i+2, and this again
yields © = N2. In the same manner one can see that (N, ) has trivial congruences.
It is obvious that (IV,,o) and (IV,,*) are non-isomorphic and they do not contain any
idempotent elements. Hence dj((N,,0), (N, *)) = 2n.

b) It is sufficient to find two non-isomorphic lattices such that they have no non-trivial
congruences. It is immediate to check that the n-element lampion and the lattice depicted
in Fig. 1 (n > 7) have only trivial congruences.

O
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Fig. 1

3. SUBSTRUCTURE METRIC.

Let A,B be n-element algebras of the same type. We call an subalgebra A; of A a
common subalgebra of A and B if there exists a subalgebra B; of B such that A; and B,
are isomorphic. In this case we denote the universe Ay of A; by Sap. Otherwise (i.e. if
there are no isomorphic subalgebras of A and B) we put Sap = (). We define the distance
of algebras A and B by

(3) ds(A,B) =| A |+ [B|-2.]Sap |,

where | Syp | is the maximum of cardinalities of common subuniverses of A and B.
Theorem 3.1. The function ds given by (3) is a metric on the system S,,.

Proof. We will prove only the triangle inequality. Let

ds(A,B)=| A |+ | B|—2.|SaB |,
ds(B,C)=|B|+|C|-2.|SBc |,
ds(A,C)=|A|+|C|-2.]Sac |

and let f and h be embeddings of S4p into B and S¢ into C, respectively and let g be
an embedding of S into C. It suffices to prove that

(3a) | B|+ | Sac |>]| Sap |+ | Spc |-

It is easily seen that B’ = f(Sap) N Spc is a subuniverse of the algebra B. Further, it
is evident that

(3b) | B[+ | B" =] f(SaB) | + | Spc |=[ SaB | + | Spc | -
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The subalgebras of A and C with subuniverses f~1(B’) and g¢(B’) are isomorphic,
therefore

(3¢) | B |<| Sac | -

Combining (3c) with (3b) we have (3a).
If Sap=0 or Spc =0, the inequality (3a) is evident. Sac = () implies B’ = and
again (3a) holds. [

Theorem 3.2. Dy(G,) =2n if n>2,
Dy(L,)=2n—6 if n>4.

Proof. a) For example, the groupoids (N,,,o) and (N, %) with operations given by

ror=xxr=x+1,
xoy=z if x#uy,
rxy=y if x#uy,

(we compute modulo n) have the distance 2n. The details are left to the reader.

b) Every n-element lattice (n > 4) contains a 3-element chain. From this we have
Dy(Ly,) < 2n — 6. The distance of the n-element chain and the n-element lampion is
2n — 6.

Remark. We note that the proof runs if we drop the assumption that A, B, C are algebras
of the same cardinality.
The next examples show that the metrics d;s,, dj, and d, are independent.

Example 1. Let (G,o), (H,x*) and (K,.) be the groupoids given by Cayley’s tables 1, 2
and 3, respectively.

ol a b * C d . 0 1
al| b a c| ¢ d 0| O 0
b| b a d| c d 1] 0 1
Tab. 1 Tab. 2 Tab. 3

We can easily check that

diso(G,H) =4=d;(G,H) > d,(G,H) = 3,
diso(H,K) =1 < dj (H K)=2= dh(H K),
diso(G,K) =3 =d,(G,K) < ds(G,K) = 4.

Example 2. Let (L1,V,A) be the 4-element lattice of height 2 (the lampion) and
(L3, V,A) the 4-element chain. It is obvious that
diso(Lh Lz) =4 > dh(Ll, Lz) =3 > dS(Ll,LQ) = 2.

14



4. SUPERSTRUCTURE METRIC

Let 7 be a type of algebras. We define a metric on the system of all pairwise non-
isomorphic n-elements algebras of the type 7 as follows.
Let A,B be n-element algebras of the type 7. We define the distance of A and B by

(4) dsu(A,B) =2.|Oap | - |A[ =] B],
where Oy4p is a minimal algebra (with respect to the cardinality of its universe) of the

type 7 which contains subalgebras isomorphic to A and B.

Theorem 4.1. The function dg, given by (4) is a metric on the system of all pairwise
non-isomorphic n-element algebras of the type 7.

Proof. We will show that (similarly as on a system of graphs)
ds.(A,B) =ds(A,B).
By (3)
ds(A,B)=| A |+ |B|-2.|SaB |,

where Syp is a maximal algebra (with respect to the cardinality of its universe) such
that there exist a subalgebra A; of A which is isomorphic to Spp and a subalgebra
B; of B which is isomorphic to S4p . Without loss of generality we can assume that
Ay =By =5S4p. Let C =AUB and let F be k-ary operation symbol of 7, k> 1. Fix
an element b € A. We define the operation F' on the set C in the following way:

If ay,...,a5,a€ A and F(ay,...,ap) =a in A or

ai,...,ax,a € B and F(ay,...,ax) =a in B

then F(ai,...,ax) = a. Otherwise F(ay,...,ax) =b.

Now, we have

dsu(A,B) <2.[C| = [A| = [B=2(A[+|B|~=[Sap )= |A|-|B|=
=|A|+|B|~2.|Sap |= ds(A,B).

On the other hand, we can suppose that A C Oap and B C Oy4p, whence
| Oap [2[ A+ |B|-|ANB|2[A|+|B|—|SaB|.
Therefore,
dsu(A,B)=2.|Oap | = |A| = |B[>|A|+|B|-2.[SaB |[=ds(A,B).

O

Uunlike previous metrics d;s,, dp,, ds, the function given by (4) may not be a metric on
any system of non-isomorphic n-element algebras of the same type (like groups, rings, etc.).
However, we can prove the next statement.
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Theorem 4.2. The function dg, given by (4) is a metric on the system L,, of all pairwise
non-isomorphic n-element lattices.

Proof. Let Ly = (L1,<3y), Ly = (L2,<3) be lattices and Lj» be a maximal lattice
such that there exist a sublattice L} of L; isomorphic to Lis and a sublattice L} of Lo
isomorphic to Lis. We can assume that L{ = L, = L5 and 0,1 € Lis. As the ordering
on L =L;ULs we take the transitive closure of the union of the orderings <; and
<. To finish the proof proceed similarly as in the proof of Theorem 4.1 [

Corollary. Dg,(G,) =2n if n>2,
Dgy,(Ly)=2n—-6 if n>4.
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THE STUDY OF AFFINE COMPLETENESS
FOR QUASI-MODULAR DOUBLE P-ALGEBRAS

MirosLAvV HAVIAR

ABSsTRACT. In this paper we study affine complete and locally affine complete algebras in
the class of quasi-modular double p-algebras. We generalize Beazer’s characterization of
affine complete double Stone algebras with a non-empty bounded core [B 1983] to the class of
quasi-modular double S-algebras with a non-empty bounded core. We prove that finite regular
double p-algebras are the only finite affine complete quasi-modular double p-algebras with a
non-empty core and that Post algebras of order 3 are the only affine complete quasi-modular
double S-algebras with a non-empty finite core. In distributive case, we derive the Beazer
result and we construct an example of an infinite regular double Stone algebra which is not
affine complete. We finally show that the Post algebras of order 3 are the only locally affine
complete (in a stronger sense of [P 1972]) quasi-modular double S-algebras with a non-empty
bounded core.

1. Introduction.

One of the topics of universal algebra rapidly developed in the last decades has been
the study of affine complete algebras. Let us recall that an n-ary function f on an algebra
A is called compatible if for any congruence 6 on A, a; = b; (0) (a;,b; € A), i =1,...,n
yields f(ay,...,a,) = f(b1,...,bn) (0). Obviously, every polynomial function of A, i.e. a
function that can be obtained by composition of the basic operations of A, the projections
and the constant functions, is compatible. By H. Werner [W 1971], an algebra A is called
affine complete if the only compatible functions on A are the polynomial ones. Hence one
can imagine affine complete algebras as algebras having many congruences.

The first results in this topic are due to G. Grétzer. In [G 1962] he showed that
every Boolean algebra is affine complete and in [G 1964] he characterized affine complete
bounded distributive lattices as those which do not contain proper Boolean subintervals.
In [G 1968] he formulated a problem of characterizing affine complete algebras which was
later reformulated in [C-W 1981] as follows: characterize affine complete algebras in your
favourite variety. In [C-W 1981] one can also find a list of particular varieties in which all
affine complete members were characterized. Some new items in the list are mentioned in
[Ha-P1 1995].

Also a ”local” version of affine completeness has been studied. Let us recall that an
algebra A is said to be locally affine complete if any finite partial function in A™ — A (i.e.

1991 Mathematics Subject Classification. Primary 06D15, 06D30.

Key words and phrases. compatible function, (locally) affine complete algebra, quasi-modular double
p-algebra, Post algebra of order 3.
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function whose domain is a finite subset of A™) which is compatible (where defined) can
be interpolated by a polynomial of A (see e.g. [P 1972] or [Kaa-P 1987]; the notion ‘locally
affine complete’ has also another, weaker meaning in the literature - see e.g. [Sz 1986] or
[Ha-P1 1995].)

In [B 1982] R. Beazer characterized affine complete algebras in the class of Stone algebras
with bounded dense filter and in [B 1983] he gave a similar characterization in the class
of double Stone algebras with a non-empty bounded core. Locally affine complete Stone
algebras (in the weaker sense of [Sz 1986]) were characterized in [Ha 1993] and affine
complete algebras in the variety of all Stone algebras were recently described in [Ha-
P11995]. Another generalization of the first Beazer result, to the class of so-called principal
p-algebras, was presented in [Ha 1995].

In this paper we generalize the second Beazer result and its consequences (3.1-3.3)
into a larger class of all quasi-modular double S-algebras with a non-empty bounded core
(Theorem 3.14). First we show that for a quasi-modular double p-algebra L with a non-
empty bounded core K (L) = [k,[], affine completeness of L yields affine completeness of
K(L) as a bounded lattice (Theorem 3.4). Consequently, we get that finite regular double
p-algebras are the only finite affine complete quasi-modular double p-algebras with a non-
empty core and that Post algebras of order 3 are the only affine complete quasi-modular
double S-algebras with a non-empty finite core (3.7 and 3.8). In distributive case, we derive
(3.15-3.17) the second Beazer result and its consequences. Then we construct an example
of an infinite regular double Stone algebra which is not affine complete with regard to
Beazer’s question in [B 1983].

We finally show that Post algebras of order 3 are the only locally affine complete quasi-
modular double S-algebras with a non-empty bounded core (3.19-3.20).

2. Preliminaries.

A p-algebra (pseudocomplemented lattice or PCL) is an algebra L = (L;V,A,*,0,1)
where (L;V,A,0,1) is a bounded lattice and * is the unary operation of pseudocomple-
mentation, i.e. = < a* iff z Aa = 0. By a distributive (modular) p-algebra (L;V,A,*,0,1)
we mean that the lattice L is distributive (modular). Further, recall that a Stone algebra
is a distributive p-algebra satisfying the Stone identity

(S) Vot =1.
In general, p-algebras satisfying (S) are called S-algebras.

Besides distributive and modular p-algebras, a larger variety of quasi-modular p-algebras
was introduced and studied [Ka-Me 1983]. This subvariety of p-algebras is defined by the
identity

(xAy)V2Z*)ANx=(xAy)V (2" Ax).
It is known (see [Ka-Me 1983; 6.1]) that quasi-modular p-algebras satisfy the identity
=z N (x V).

An algebra L = (L;V,A,*,7,0,1) is called a (quasi-modular) double p-algebra, if
(L;V,A*,0,1) is a (quasi-modular) p-algebra and (L;V,A,7,0,1) is a dual
(quasi-modular) p-algebra, i.e. x > a* if and only if a Vz = 1.

A double S-algebra is a double p-algebra satisfying the identities

r*Vr*=1and zT Azt = 0.
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A double Stone algebra is a distributive double S-algebra. A double Stone algebra in which
so-called determination principle,
a* =b* and a' = bT implies a = b,
holds is called a three-valued Lukasiewicz algebra.
In a double p-algebra L, the sets B(L) = {z € L; v = 2**} and B(L) = {z €
L; © = xtt} give Boolean algebras (B(L);w,A,*,0,1) and (B(L);V,A,%,0,1) where
rvy = (xVyr*and 2 Ay = (z Ay)*™. If L is a quasi-modular double S-algebra,

then B(L) (= B(L)) is a subalgebra of L (cf. [Ka-Me 1983; 6.8] and [Ka 1974]) and
ot =g, gt =TT

The sets D(L) = {x € L; * = 0} and D(L) = {x € L; #+ = 1} form a filter and
an ideal of L, respectively. The set K(L) = D(L) N D(L) is the core of L. The class
of quasi-modular double S-algebras with non-empty core includes bounded lattices with a
new zero and unit adjoined, Post algebras of order n > 2, injective double Stone algebras,
etc.

Congruences on double p-algebras are lattice congruences preserving the operations *
and T. The congruence ® of a double p-algebra defined by

r = y(®) if and only if z* = y* and 2+ = y*

is called the determination congruence. A double p-algebra is regular (i.e. two congruence
relations having a congruence class in common coincide) if and only if ® = w (see [V 1972)).
Regular double p-algebras form a variety defined by the identity (zAz%)V (yVy*) = yVy*.
Further, a regular double p-algebra L is distributive (see [Ka 1973b]). In [B 1976] regular
double p-algebras were shown to be congruence permutable, hence the variety of regular
double p-algebras is arithmetical. A (quintuple) construction of regular double p-algebras
was presented in [Ka 1974].

A special subclass (not a subvariety) of the variety of regular double Stone algebras (i.e.
three-valued Lukasiewicz algebras) form Post algebras of order 3, which are defined by the
condition |K(L)| =1 (see e.g. [B 1983]).

Let L = (L;V,A*,7,0,1) be a quasi-modular double p-algebra with a non-empty
bounded core K(L) = [k,l]. Since L satisfies the identities =z = z** A (z V z*) and
z =zTT Vv (x AzT), it obviously satisfies the equations = =z** A(zV k) and =z =
TV (z Al). Thus L satisfies the equation

(1) z=zttV (A (zVE)AID).

In [Mu-En 1986; Theorem 5] it was shown that the filter D(L) of a quasi-modular p-
algebra L = (L;V,A,*,0,1) is a neutral element in the lattice F'(L) of all filters of L. So if
D(L) = [k), then for all z,y € L, ([x)V[y))A[k)=([x)A[k))V ([y)A[k)) holdsin F(L).
Consequently, (zrAy)Vk=(xVE)A(yVEk) forallz,y€ L. Thus in a quasi-modular
double p-algebra L with a non-empty bounded core K(L) = [k,I], the elements k,[ are
distributive.

For these and other properties of double p-algebras as well as for the standard rules of
computation in double p-algebras we refer to [B 1976] or [Ka 1973b].

In the second part of this preliminary section we present a collection of results concerning
(local) affine completeness of some classes of algebras which will frequently be used in our

investigations.
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We start with basic Gratzer’s results.
2.1 Theorem ([G 1962]). Any Boolean algebra is affine complete.

Let us recall that a function f : L™ — L on a lattice L is order-preserving if x; < y;
(xi,y; € Ly i=1,...,n) implies f(x1,...,2,) < f(y1,...,yn). It is well-known that every
polynomial function on a lattice is order-preserving.

2.2 Theorem ([G 1964; Corollaries 1,3]). Let L be a bounded distributive lattice. The
following conditions are equivalent.

(1) L is affine complete;

(2) every compatible function on L is order-preserving;

(3) L contains no proper Boolean interval.

When omiting the distributivity of L, one can prove (at least) the following:

2.3 Proposition. If a lattice L contains a Boolean interval [a,b] (a < b), then L is not
affine complete.

Proof. Define a function f : L — [a,b] by the rule f(z)= ((zVa)Ab)" , where’ denotes
the complement in the Boolean interval [a,b]. For any non-trivial congruence ® € Con(L)
and z=y () (z, y € L) we have ((zVa)Ab)' = ((yVa)Ab) (P),i.e fisacompatible
function of L. But f is not order-preserving because f(a) = b, f(b) = a, therefore f
cannot, be represented by a lattice polynomial. Hence L is not affine complete. [

2.4 Corollary. A finite lattice L is affine complete if and only if |L|=1. O

If the property we study is the local affine completeness (in the sense of [P 1972]), then
the trivial lattices are the only members of the variety of all lattices having this property:

2.5 Proposition. A lattice L is locally affine complete if and only if |L| = 1.

Proof. Let L be locally affine complete and let a,b € L, a < b. The function f =
{(a,b), (b,a)} is a finite partial compatible function on L, thus by hypothesis it can be
interpolated on {a, b} by a polynomial of L, which is an order-preserving function. But we
have f(a) = b, f(b) = a, a contradiction. [

On the other hand, there are varieties of which all members are locally affine complete.
The following result (see [P 1979] or [P 1982] or [P 1991]) characterizes them as arithmeti-
cal, i.e. congruence-distributive and congruence-permutable (meaning that the congruence
lattice of each algebra in such variety is distributive and every two congruences permute):

2.6 Theorem. A variety V is arithmetical if and only if for each algebra A € V, a finite
partial function f on A can be interpolated by a polynomial function of A just in the case
[ is Con(A)-compatible.

This also yields that every finite algebra in an arithmetical variety is affine complete.

The following technical lemma will be used several times in the sequel (and we repeat
its proof from [Ha 1992]):
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2.7 Lemma. Let D = (D,V,A, f1,..., fx,0,1) be any algebra such that its reduct
(D,V,A,0,1) is a bounded distributive lattice and the algebra D is a subdirect prod-
uct of 2-element algebras. Let f',q' : D™ — D be partial compatible functions with
domains F and G (F,G C D™), respectively, let S := F NG and let SN {0,1}" # @.
For any (0,1)-homomorphism h : D — {0,1} between the algebra D and a 2-element
algebra 2 = {0, 1}, denote h(S) := {(h(x1),...,h(x,)) € {0,1}"; (z1,...,2,) € S} and
let h(S) = h(S N {0,1}™) hold. Then f'" = ¢’ identically on S if and only if f' = ¢’
identically on S N {0,1}".

Proof. Let f' = ¢’ identically on S N {0,1}". Suppose on the contrary that there exists
an n-tuple (dy,...,d,) € S such that f'(dy,...,d,) =a#b=g'(dy,...,d,). Since a # b
in D which is a subdirect product of 2-element algebras, there exists a ‘projection map’
h: D — {0,1}, which is a (0, 1)-homomorphism between the algebra D and some algebra
2 = {0, 1}, such that h(a) # h(b). Define functions f3}, g5 : h(S) — {0,1} by the following
rules:

fo(h(z1),. .  h(wn)) = h(f (21, .., 20)),

gs(h(z1),...,h(xy)) = h(g' (x1,...,2,)) where (z1,...,7,)€ S.
Obviously, f4, g4 are well-defined, since f’, g’ preserve the kernel congruence of the ho-
momorphism h. Obviously, fi = ¢4 identically on h(S), because h(S) = h(S N {0,1}"),
h(0) =0, h(1) =1 and f’ = ¢’ identically on S N {0,1}"™. Therefore

h(a) = h(f'(d1,...,dn)) = f3(h(d1), ..., h(dn)) = g3(h(d1), ..., h(ds)) =

h(g'(d1,...,dn)) = h(b), a contradiction. Hence f’" = ¢’ identically on S and the proof is
complete. [

In order to abbreviate some expressions, we shall often use the notation x for an n-tuple

T1,...,%y), and f(x) for f(x1,...,z,) in the next section. Further, x* and x* will denote
(z%,...,2r) and (z7,...,2;}), respectively, (XVk)Al will abbreviate ((x1VE)AL ..., (z,V
k) A1) , etc.

3. Afinne completeness.
We start this section with Beazer’s characterization of affine complete double Stone
algebras with a non-empty bounded core and its consequences.

3.1 Theorem ([B 1983; Theorem 5]). Let L be a double Stone algebra having
a non-empty bounded core K (L). The following conditions are equivalent.

(1) L is affine complete;

(2) K(L) is an affine complete distributive lattice;

(3) No proper interval of K (L) is Boolean.

3.2 Corollary ([B 1983, Corollary 6]). Any Post algebra L = (L;V,A,*,*,0,1) of order
3 is an affine complete double Stone algebra.

3.3 Corollary ([B 1983, Corollary 7]). A finite double Stone algebra having a non-empty
core is affine complete if and only if it is a Post algebra of order 3.

In the first part we generalize 3.3 to a larger class of double S-algebras.
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3.4 Theorem. Let L be a quasi-modular double p-algebra with a non-empty bounded
core K(L) = [k,l]. If L is affine complete then K (L) is an affine complete lattice.

Proof. Let L be affine complete. Similarly as in [B 1983], for any compatible function
[k : K(L)" — K(L) we define a function f : L™ — L by
flze,...;zn) = fe((x1 VE)ANL .o (2 V E) AD).

Obviously, f [ K(L)™ = fk and f preserves the congruences of L. Thus by hypothesis, f
can be represented by a polynomial po(z1,...,z,) of L. From now we proceed as follows:
we apply the formulas (zAy)* =2* v y*, (xVy)* =2*Ay*, (xAy)T =zt VvyT and
(xVy)t =zt Ayt in po(X) everywhere it is possible (see Example 3.5 below) and we
obtain a polynomial py(z1,...,x,) of the partial algebra (L; Vv, A, 7, A%, T, 0,1) with two
partial operations \7 and A defined only for elements of B(L) and B(L), respectively.

Let x € K(L)". Then frg(x) = f(X) = p1(X), and moreover, in p;(X) we can put
7 =1, xr =0foralli=1,...,n. Hence each part of the form (...)* or (...)* in p;(X) can
be rewritten as a constant symbol equal to 0 or 1 if in the brackets were variables only, or
as a constant of B(L) or B(L) if there was at least one constant symbol of L in the brackets
(see again 3.5). Rewriting the polynomial p; (X) in this way, we obtain a polynomial ps(X)
of the lattice (L;V,A,0,1). If a1,...,an are all constant symbols in ps(X), then py(X)
can be expressed as a term (X, a) of the algebra (L;V,A,0,1,a4,...,a,). Now using the
lattice homomorphism ¢ : L — [k,1], ¢(X) = (zV k) Al (note that in Section 2 we showed
that the elements k,[ are distributive), we get

fK(i) = (p(t(f(, 5‘)) = t((p(l'l% R 90(-1'”)7 (,0(&1), te (,O(Clm))

hence fg(X) can be represented by a polynomial of the lattice K(L). The proof is com-
plete. [

3.5 Example. We illustrate the method described in the proof of Theorem 3.4 on a
simple example. Let L be a quasi-modular double p-algebra with a non-empty bounded
core K(L) = [k,l], fx(z1,x2,23) be a compatible function of the lattice K(L) and let
po(w1, T2, 23) = [(x1 A a*) V (2 AD)]T A x3
be a polynomial of L representing the function f(z1,r2,23) : L3 — L associated to the
function fx as in the proof of Theorem 3.4. In the first step, we get the polynomial
pr(x1, o, w3) = [(x1 Aa))T A (2F AD)T] A3 =[(2] Vart) A (2T VT A ws.
In the second step, by putting xf =1, xﬁ = (0 we obtain a polynomial
po(r1,22,23) = bT A x3, which is a term ¢(z1,22,73,07) of the algebra
(L; A, V,0,1,bT). Finally, we get
Jic (21,22, 23) = t(p(21), p(22), p(x3), (bF)) = [(bT V k) AN] A [(z3 V k) A,
hence fg(x1,xs,x3) is a polynomial function of the lattice K(L). O

3.6 Corollary. Let L be a quasi-modular double p-algebra with a non-empty bounded
core K (L) = [k,l]. If K(L) contains a proper Boolean interval then L is not affine complete.

Proof. The result follows from Theorem 3.4 and Proposition 2.3. [

3.7 Corollary. A finite quasi-modular double p-algebra with a non-empty core is affine
complete if and only if it is a regular double p-algebra.

Proof. The necessity follows from 3.4 and 2.4. Since the variety of all regular double
p-algebras is arithmetical, all its finite members are affine complete by 2.6. [J
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The next result generalizes 3.3 to a larger class of double S-algebras:

3.8 Corollary. Let L be a quasi-modular double S-algebra with a non-empty finite core.
Then L is affine complete if and only if L is a Post algebra of order 3.

Proof. Affine completeness of L yields |K(L)| = 1 by 3.4 and 2.4. Hence L is a regular
double p-algebra, so L is distributive. Thus L is a Post algebra of order 3. The converse
follows from 3.2. [

3.9 Example. Take the lattice M, of height 2 having an infinite number of atoms and
any Boolean algebras By, Bs. The lattice L1 = By & M, & B> (& means linear sum)
obviously gives a quasi-modular double p-algebra with the core K(L;) = M. (For
B, = B, = 1, the quasi-modular double S-algebra Ly = 1® M, &1 is depicted in Figure
la.) By 3.6, L; is not affine complete.

L1 L2
< > S
K(Ly) =My
Figure 1a Figure 1b

Now let By and By be finite Boolean algebras and D be a finite distributive lattice.
Construct a quasi-modular double p-algebra Ly such that the zero of By will be identified
with the unit of D and the zero of D will be identified with the unit of B,. By 3.7, Ly is
affine complete if and only if |D| = 1. Hence the regular double p-algebra Ly in Figure 1b
(By =23, By, =2% and D = 1) is affine complete. [

R. Beazer’s technique employed in 3.1 was based on the fact that subdirectly irreducible
double Stone algebras are very simple - the chains with at most four elements. This and also
a ‘good behaviour’ of the operations * and T in double Stone algebras enabled him to find
an exact form of the polynomials representing compatible functions. However, if we turn to
a larger class of double S-algebras, which contains various subdirectly irreducible algebras,
the situation becomes more complex and Beazer’s method seems to be non-applicable.

Therefore we employ a technique based on the fact that in the class of quasi-modular
double S-algebras with a non-empty bounded core, every element can be decomposed on
two ‘closed’ elements and an element of the core - see the equation (1) in Section 2. Hence
the elements from the range of any compatible function can be decomposed in this way,
too. Since the set of all closed elements of a quasi-modular double S-algebra L forms
a Boolean subalgebra B(L) (= B(L)) and we assume that the core K (L) is a bounded
lattice, it would be natural to reduce the property of affine completeness of L into that
of B(L) (= B(L)) and K(L). (This idea is, in fact, in accordance with a general idea of
approaching quasi-modular p-algebras presented in [Ka 1980; p. 559].)
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The main problem which arises when realizing the idea of the reduction is how to
decompose a compatible function f : L™ — L into (well-defined) functions of B(L) (=
B(L)) and K (L), respectively. As we shall see, the first part of this task concerning B(L)
(= B(L)) can be quite easily managed, while the second is difficult so that we are forced
to deal with partial functions of the lattice K (L).

In the sequel, by L = (L;V,A,*,7,0,1) we always mean a quasi-modular double S-
algebra having a non-empty bounded core K (L) = [k,l]. In such case, the map ¢ : L —
K(L), ¢(x) = (x V k) Al is a lattice homomorphism. Further, we abbreviate (X V k) Al as
p(X).

To any compatible function f : L™ — L we associate a partial function fj : K(L)*™ —
K (L) as follows:

(2)  fr(p(X), p(X), 0(X™), p(XF), p(XTF)) = p(f(¥)) (XL
and fj is undefined elsewhere.

3.10 Lemma. The function f. defined above is a well-defined partial compatible function
of the lattice K (L).

Proof. To show that [} preserves the congruences of K (L) where defined, let 6k be a con-
gruence of K(L) and  ¢(z7) = o(y?) (0x) for z,y; € L, i =1,...,n, j € {-2,-1,0,1,2}
where 2° = z, z' = 2T, 22 =271, 27! = 2*, 272 = 2**. We associate to the congruence
Ok an equivalence relation 6y on L defined by
(3) x=y () ifand only if ¢(z7) = p(y?) (fk) for all j € {—2,-1,0,1,2}.

Since L is a quasi-modular double S-algebra, i.e. B(L) (= B(L)) is a sublattice of L,
one can easily verify that 67, is a congruence on L. Hence we have x; = y; (01), thus
f(®) = f(¥) (0z) as f is compatible on L. Now again by (3) ¢(f(%X)) = ¢ (f(¥)) (0k), i.e.
[5 preserves the congruences of K (L) where defined. To show that f} is well-defined, use
the same method with 0 = Ag (1), the smallest congruence of K(L). [

3.11 Definition. We shall say that L satisfies an ‘extension’ property

(E) if for any compatible function f : L™ — L, the partial compatible function fJ. :
K(L)%" — K (L) defined by (2) can be extended to a total compatible function of
the lattice K (L).

We will present two situations when the condition (E) is satisfied (and later on the third
in 3.17).

3.12 Proposition. If L is affine complete then L satisfies (E).

Proof. Let f}- be the function associated to a compatible function f : L™ — L. We define
a function f; : L™ — L by f1(X) = ¢(f(X)) . This is evidently compatible on L, hence
by hypothesis it can be represented by a polynomial p(z1,...,z,) of L. Using de Morgan
laws for * and T, p(X) can be rewritten as [(x, x*,x**,x*, xTT) for some lattice polynomial
[(x1,...,z5,) of L. Further, using the homomorphism ¢, one can show that for all x € L™
@), &) = o(fx) = AE) = p&E = IFx,x*xH 3 =
= p(I(x, X", X*%, xt, i++)) =(e(x),..., 90()2++))7
where (21, ..., x5,) is a polynomial of the lattice K(L). Then, of course, !’ is the required
total compatible extension of the partial function fj.. O
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Let L be a quasi-modular double S-algebra with a non-empty core K (L) = [k,[] such
that K (L) is a Boolean lattice. Let fr- : K(L)°" — K(L) be the partial function from (2)
and let S be its domain. Define a function ¢(z1,...,zs,) on K(L) by the rule

q(l’l,...,l'5n): v f}((al,...,agm)/\yl/\---/\ygm,
aesn{k,i}sn
where y; = , .
x5 if a; = k.

Obviously, fi = ¢ identically on S N {k,[}°" and q is compatible on K(L). One can
verify that (K(L);V,A,k,l) with the partial compatible functions f} and ¢ satisfy the
assumptions of Lemma 2.7. Hence by the conclusion of Lemma 2.7 f}- = ¢ identically on
S, thus the compatible function g(z1, ..., zs,) is a total extension of the function fj . So
we have showed:

3.13 Proposition. Let L be a quasi-modular double S-algebra with a non-empty core
K (L) which is a Boolean lattice. Then (E) is fulfilled in L.

Now we present, a characterization theorem and its consequences.

3.14 Theorem. Let L be a quasi-modular double S-algebra with a non-empty bounded
core K(L) = [k,l]. Then L is affine complete if and only if K(L) is an affine complete
lattice and L satisfies (E).

Proof. The necessity follows from Theorem 3.4 and Proposition 3.12. Now let K (L) be an
affine complete lattice and let L satisfy (E). Let f : L™ — L be a compatible function on
L. Since L satisfies the equation (1), we can write

(1) &) =[GV UER™AGE VE)AL  forany £ = (o1,....20) € L™
We shall show that the right side of (4) can be replaced by a polynomial of the algebra L.

To replace f(x)** (and similarly f(x)™") in (4) by a polynomial of L, we define a partial
function fp : B(L)?>™ — B(L) on the Boolean algebra B(L) (= B(L) ) by

fpEED) = FR™ (R (Re L)
and fg is undefined elsewhere. Obviously, fg is well-defined since =} = y7, = y+, 1=
1,...,n yields z; = y;(®) (the determination congruence), which follows f(X ) = f(y)(P )
thus f(x)** = f(y)** (fX)™" = f(y)™"). Further, for any congruence 0p fB(L)
define an equivalence relation 0, on L by z =y (1) if and only if z* = y* (0p) and
xt =yt (). Since B(L) (= B(L)) is a subalgebra of L, 61, is obviously a congruence
of L containing 6p. Using 01, one can easily show that fj preserves the congruences of
B(L) where defined. Let S be the domain of fg, i.e.

S ={(x*,x%); x€ L"} C B(L)*™

Note that if (3,b) = (a1, ..., an, b1, ..., bn) € SN{0,1}2" then a; = 1 implies b; = 1.
One can easily verify that the function f can be interpolated on the set S N {0,1}*" by
a Boolean polynomial function b : B(L)** — B(L) defined as follows:

b(x1,...,Ton) = V (fp(a,b) Az§t A-- /\x“”/\xnﬂ/\---/\xg;;

(a, B)ESn{o 1}2n

where 7} = 1;, 2¥ =z} = ¥ = 2. By Lemma 2.7, fj, = b identically on the whole set S,
hence for any X € L™ we have

FE™ (FE)TF) = (X, XF) = b(x*, xT).
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Therefore f(x)** (and similarly f(X)T*) can be replaced in (4) by some polynomial
by (x*,xT) (ba(x*,xT)) of the algebra L.

Now we associate to f(X) the partial function [y : K(L)’" — K(L) defined by (2).
By (E) there exists a total compatible function fx : K(L)>® — K (L) which extends ff-.
Affine completeness of K (L) yields that fx can be represented by a lattice polynomial
[(x1,...,75,). Hence in (4) we have for any x € L™,

P = ba(,5) V (b1 %) A Lp(R), 93, 97, 9(7), 9(E)))
where ¢(X) means (XVEk)AL:= ((x1 VE)AL ..., (x, VE)AD).

So f is a polynomial function of the algebra L and the proof is complete. [J

We shall finally derive the Beazer characterization of double Stone algebras with a
non-empty bounded core.

3.15 Lemma. Let L be a double Stone algebra with a non-empty bounded core K (L) =
[k,l] and z,y € L. Then for the lattice homomorphism ¢ : L — K (L), ¢(x) = (z V k) A
we have

o(x*) = p(y*) if and only if ¢(z**) = p(y**) and

p(xt) = p(y*) if and only if p(z++) = p(y*+).

Proof. Let o(x%) = ¢(y*). The identities x7 AT = 0 and z+ VvV ztt = 1 imply
ext)ANp(xtt) =k, o(zT)Vp(zTt) =1 for any z € L. Hence

e(z*F) = (™) Ap(y* ™) vV oa™) = (pa™) Vo)) A (p(y*) vV o(z™)) =
ply™) vV e(rtT).
In the same way one can show ¢(yTF) = p(y™) V o(z*T). The converse statement as
well as the proof of the first statement are analogous. [

**)

3.16 Lemma. Let L be a double Stone algebra with a non-empty bounded core K (L) =
[k,1], k <l and let € L such that p(z*), p(z**), p(z), e(x™T) € {k,1} for the lattice
homomorphism ¢ : L — K(L), ¢(x) = (x V k) Al. Then @(x*) =1 implies ¢(z**) =k
and analogously, p(z) = [ implies p(z*) = k.

**)

Proof. Let o(x*) = [. It is obvious that ¢(z**) = [ would yield [ = @(z*) A p(z**) =
= (™) A

©(0) = k, a contradiction. Analogously, if p(zT) = [ = p(z™F), then I
e(xTT) = ¢(0) = k, using the dual Stone identity zT AzTt =0. O

3.17 Proposition. Let L be a double Stone algebra with a non-empty bounded core
K (L) = [k,l] such that K (L) contains no proper Boolean interval. Then L satisfies (E).

Proof. If k =1, then L is a Post algebra of order 3 and trivially, L satisfies (E). So let us
further assume that k£ < [.

Let fj. : K(L)>™ — K(L) be the partial compatible function associated to a compatible
function f : L™ — L. Let T = {(xVEk)AL...,(xTT VEk)Al); x € L™} be the domain
of fi. We shall show that fi can be interpolated on the set T'N {k, [} by the following
polynomial of the lattice K(L):

(5) q(z1,...,z5,) = V (fr(D1s. .y b50) Ayt A+ Aysn),
beTN{k,i}5»
where y; = .
l, if b; = k.
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Let % be any (fixed) vector from T'N{k,1}°". If b # % and b; # z; for some n < j < 5n,
then either b; = [, z; = k and then fk(f)) ANYyi A=~ ANysp, =k orb; =k, z; =1 and
then by Lemmas 3.15, 3.16 there exists s, n < s < bn such that z; = k,b; = [, thus again
fr (f)) Ayp A -+ ANys, = k. Hence it suffices to take into account in (5) only conjunctions
f}((f)) Ayi A -+ Aysy, such that b; = z; for all n < i < 5n and moreover, b; < z; for
1<i<n. So

q($1,...,$5n) = 3 V } (f}((bl,...,bn,$n+1,...,l’5n).
beTN{k,1}5", b<x
In next we show that fj-(b) < fi (%) for any b € T N {k,1}°" such that b; = z; for
t=n+1,....;5n and b; < z; for e = 1,...,n. For s = 1,...,n denote us = by if
bs = x4, otherwise us = u. We get a unary compatible function g : K(L) — K (L), g(u) =
Fre(U1, .o Uy Ty, .. ., Ts,) and we want to show that fh(b) = g(k) < g(l) = fi(X).
Since g(k) = g(u) (O1at(k,u)) and g(u) = g(I) (Grat(u,l)) for any u € K(L), we get
g(u) Vu=g(k)Vuand
g(u) ANu=g(l) A u.
This means that for any u € [g(1), g(k) V g(I)], g(u) is the relative complement of u in this
interval, which is therefore Boolean. By hypothesis (K (L) contains no Boolean interval)
this implies g(k) < g(I), what was to be proved. Hence
q(x1,. .., T5n) = [k(x1,...,25,) for any X € T N {k,1}°", and by applying Lemma
2.7, q(x1, ..., x5y,) is the required total compatible extension of the partial function ff.. O

From 3.14 and 3.17 we now get the Beazer result 3.1 and its consequences.

By Theorem 2.6 every finite algebra in an arithmetical variety, is affine complete. Hence,
as Beazer concluded in [B 1983], any finite regular double p-algebra is affine complete.
Afterwards he raised a question whether or not every infinite regular double p-algebra is
affine complete.

Later on, K. Kaarli and A.F. Pixley [Kaa-P 1987] proved that an arithmetical variety
of finite type is affine complete if and only if it has definable principal congruences and
all its subdirectly irreducible members are finite and have no proper subalgebras. It is
well-known that the variety of all regular double p-algebras has infinite subdirectly ir-
reducible members, e.g. infinite Boolean algebras with a new unit adjoined. Moreover,
every subdirectly irreducible regular double p-algebra having more than two elements has
a proper subalgebra {0, 1}. Hence the variety of all regular double p-algebras is not affine
complete, and consequently, it must exist an infinite regular double p-algebra which is not
affine complete.

Next we construct an example of an infinite regular double Stone algebra which is not
affine complete. This has been motivated by techniques in [P 1993].

3.18 Example. Let 3 = ({0,a,1};V,A,*,7,0,1) be the 3-element double Stone alge-
bra with the core {a}. Let L be a subalgebra of 3“ consisting of the sequences X =
(1, %2, T3,...) which are 0 for all but finitely many n or are 1 for all but finitely many n.
One can easily check that L is a regular double Stone algebra with an empty core.
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Let f: L — L be defined componentwise as follows:

1 if n is odd

o ={ L
T, if n is even.
We shall show that f(X) = f(7)(0(%,y)) for any X,7 € L. Let X,y € L. By construction
of L, there is a natural number K such that
x=(z1,...,cx,x,z,2,...), x€{0,1}
S’:(yla"'vyKvyvyvyv"')v ye{ovl}
For x € {0, 1}, let = denote the constant sequence (x,z,z, ...). Congruence-distributivity
yields that congruences on finite subdirect products are ‘skew-free’, hence

0(%,5) = 0(z1,y1) X -+ X O(zk, yx) X 0(z,y).

Now it is clear that f(X) = f(7)(0(%X,¥)), thus f is a compatible function on L. Suppose
that L is affine complete. Then f is a polynomial function of L, thus there is an (m+1)-ary

term ¢ of L and elements ¢!, ...,¢™ € L such that
f(®) =t(x,e,...,cm).
For the constants ¢!,...,¢é™ there is a natural number NV such that fori=1,...,m
& =(c,ch, ... i), ¢ e{0,1}.

Take x € L such that z,, = x,4+1 = 0 for some even n > N. Then we get
0=z, = f(X)n =t0,c'y....c™) = fX)ps1 = 1,

a contradiction. Hence f cannot be represented by a polynomial of L, so L is not affine
complete. [J

We finally turn to local affine completeness and we present ‘local versions’ of the previous
results. As we shall see, much easier descriptions can be obtained.

3.19 Theorem. Let L be a quasi-modular double p-algebra with a non-empty bounded
core K(L) = [k,l]. L is locally affine complete if and only if L is a regular double p-algebra.

Proof. If L is locally affine complete then analogously as in the proof of 3.4 (the only
difference is that the functions fg, f are finite partial compatible functions in this case)
one can show that K (L) is a locally affine complete lattice, thus by 2.5, |K(L)| = 1. Hence
L is a regular double p-algebra. The converse follows from 2.6. [

Corollary 3.20. Post algebras of order 3 are the only locally affine complete quasi-
modular double S-algebras with a non-empty bounded core.

Proof. If L is a locally affine complete quasi-modular double S-algebra with a non-empty
bounded core K (L) = [k,l], then by 3.19 L is a regular double Stone algebra (i.e. a three-
valued Lukasiewicz algebra). Moreover, since |K(L)| = 1, L is a Post algebra of order
3. O
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NOTE ON ZEROS OF THE CHARACTERISTIC
POLYNOMIAL OF BALANCED TREES

1pavoLr Hic AND 2ROMAN NEDELA

ABSTRACT. A graph G is called integral if all the zeros of the characteristic polynomial
P(G; \) are integers. A tree T is called balanced if the vertices at the same distance from the
centre of T have the same degree. In the present paper we investigate the properties of the
zeros of characteristic polynomials of balanced trees.

1.INTRODUCTION

A graph G is called integral if it has an integral spectrum, i.e. if all the zeros
of the characteristic polynomial P(G;\) are integers. The identification of all integral
graphs seems to be intractable. However, that of various families of integral graphs was
investigated in [1, 3, 4, 5]. In [3] integral balanced trees were studied. A tree T is called
balanced if the vertices at the same distance from the centre of 7" have the same degree.
According to the parity of the diameter of a tree balanced trees split into two families.
We shall code a balanced tree of diameter 2k by the sequence (ng, ng—_1,...,n1), where n;
j=1,...,k denotes the number of succesors of a vertex at distance k — 7 from the centre.
In [3] it is proved that all zeros of the characteristic polynomial of the balanced tree with

the sequence (ng,ng—1,...,n1) are zeros of the following recursively defined polynomial
Py (z):

Definition 1.
Py(z)=x
Pi(z) =22 —ny
Pj(x) = #.Pj_1(x) — n;.Pj_2(x)
where 7 = 2,...,k.
This fundamental observation allows us to reduce the study of spectra of balanced

trees to the study of properties of polynomials Py(z). The aim of this note is to prove
some basic results on the sequence {Py(z)} £ =0,1,.... Results proved here are used in

[3].

1991 Mathematics Subject Classification. 05C50.
Key words and phrases. graph, characteristic polynomial, tree.
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2.RESULTS

In what follows we always assume that a sequence {n;} j = 1,2... of positive
integers is given. It is easy to verify by induction on k, that for the terms of the sequence
{Px(x)} of polynomials defined by Definition 1 the following statements hold:

Proposition 1.
a. P;(0) > 0, for k =3 (mod 4);

b. P¢(0) <0, for k=1 (mod 4);

c. Pp(0)=0, for k=0 or 2 (mod 4);

d. Py(z) is decreasing in point 0 for k = 2 (mod 4);
e. Py(z) is increasing in point 0 for k =0 (mod 4).

Now, let z; be the smallest positive zero of polynomial P;(x) (i=1,2, ... ). Denote
by {zx} the sequence of the smallest positive zeros corresponding to the sequence { Py (x)}.
The following theorem shows that the above notation is correct.

Theorem 1. For every i > 1 there exists a positive zero of the polynomial P;(x). More-
over, using the above notation the following statements hold:

a. {xok11} Is decreasing;

b. {zar} is decreasing;

C. Tok+2 > T2k+1, for k=0,1, ...

Proof. a. We shall proceed by induction on k. If k=0, then from P;(x) = 2% — n; we have
r1 = /n1. If k=1, then P3(x) = z* — (n1 + na +n3)z? + ny1.n3. By Proposition 1.a we get
for x €< 0,21 >

(1) Pg(O) > 0,

(2) Pg(xl) = leg(xl) — ngPl(xl) = xl[lel(xl) — nle] = —nzx% < 0.

Using (1) and (2) we deduce that there exists y € (0,z1) for which P3(y) = 0. It follows
r3 < 1.

Now, let 1 > x3 > -+ > xop—1 > 0. We shall investigate the polynomial Py y1().
According to whether 2k +1 = 3 or 1 (mod 4) we distinguish two cases (see Proposition
1):

Case 1. Pory1(0) > 05
Case 2. Por41(0) < 0.
We shall deal only with the Case 1 . The proof in the case 2 can be done similarly.

If P41(0) > 0, then by Proposition 1, P,_1(0) < 0 and it follows, that for every
x € (0,295—1) we have Po,_1(x) < 0 because of zgr_1 is the smallest positive zero of
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Psj.—1(x). Hence,

Poi1(zor—1) = Tag—1Pog(w2p—1) — nog+1Por—1(T2k—1) =
= Top—1Pog(op—1) =
= Tok—1[Tak—1Pok—1(T2k—1) — N2k Pok—2(T2k—1)] =

= —Zog—1N2k Por—2(T2k—_1)-

Further, substituting x = x9x_1 into the equality
Poy_1(z) = xPop_2(x) — nog_1Pog—_3(x)
we get
0 = zop—1Pog—2(Tar—1) — nog—1Pok—3(T2k—1)
and

nok—1Pok—3(Tok—1) = Togp—1Por—2(T2r_1).

By Proposition 1 and the fact xor—1 € (0, x95—3) the left part of the last equation
is positive and it follows
Poy—a(x21-1) > 0.

Hence,
Popr1(Tok—1) = —Tak_1n2x Pag—2(T2x—1) <O0.
Since Par41(0) > 0, there exists xog+1 € (0, x2x—1) which is a zero of Pagy1(z).
b. We shall proceed by induction on k. If k=1, then from Py(z) = 2> — (ny + n2).x

it follows xo = /n1 + ny. If k=2, then Py(x) = x.P3(x) — ng.P2(x). By Proposition 1.c
and 1.e for z €< 0,x9 > the polynomial Py(x) satisfies the following properties:

(3) Py(x™) > 0, for some 2t € O (0),
(4) P4(.T2) = CEQPg(CEQ) — ’TL4P2(£U2) = .TQ[CUQPQ(.TQ) — ’Il3P1(.T2)] =
= —x9n3 P (1) = —zn3(z3 — ny) < 0.

Here O.+ (0) denotes a sufficiently small right open neighbourhood of 0. Using (3) and (4)
we see that there exists x4 € (0,22) such that x4 is a zero of Py(x).

Now, let the statement hold for every n < k i.e.

0 < Top_o < Top—y < -+ <1y < X9,

Consider the polynomial Py (z). According to Proposition 1.d and 1.e we have to
distinguish two cases:

(5) k is odd and Puy(z7) < 0, for 27 € O (0);
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(6) k is even and Py (z7) > 0, for 2zt € O+ (0).
We shall examine only Case (6). Case (5) can be handled in a similar way. Substi-
tuting x = xo_o into the equation
Poy(7) = wPo—1(7) — nog Pog—2(7)

we have

(7)

Py (xok—2) = Tog—2Pog—1(x2p—2) =

= Tok—2[Tak—2Pok—2(Tak—2) — Nok—1Pok—3(T2k—2)] =

= —Tak—2Nok—1 ok 3(T2k—2)
On the other hand, using the substitution £ = x3;_o in the equation
Poj_o(x) = xPog—3(x) — nog—2 Por—a(x)
we have
(8) Tok—2Pok_3(Tor—2) = nog—2Pak—a(T2k_2)
Hence, using Proposition 1.d and 1.e Pag_4(22—2) > 0. Combining (7) and (8) we obtain
Py (z2r—2) < 0.

According to Peg(zT) > 0 for 27 € O+ (0) there exists zax € (0, Za,—2) such that xoy is a
zero of the polynomial Py ().

¢. The statement is trivial for k=0, since x5 = \/n1 + no > /n1 = 1. Now, let the
statement hold for every n < k; i.e.

(9) Lok > Tak—1

Suppose n = k + 1. We shall restrict ourselves to the case Pogyo(zt) > 0. The case
Pypy2(x™) < 0 can be handled similarly. By Definition 1 we have

Popyo(x) = 2 Popy1(z) — nog42Por(2)
According to Theorem 1.a and (9)
Top+1 < T2g—1 < T2k

By Proposition 1.d and by the assumption Psi2(zt) > 0. It follows Pyy(z) < 0 for
every € (0,2Z254+1). On the other hand, Pai11(z) > 0 for every x € (0,x2x41). Hence,
Psjio(x) > 0, for z € (0,29541) and it follows that the smallest zero xax42 of the polyno-
mial Poyio(x) is greater than zopy 1. O
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Corollary 1. If the polynomial Psy1(x) has only integer zeros then 1 is not the zero of
sz (.I')

Proof. Let xor, = 1 be the smallest zero of Pai(x). Using Theorem 1. a; and c;
1 = xop, > Tag—1 > Tag41 > 0,

for every k =1,2,.... However, this contradicts the fact that x4 is integer. [

A sequence {n;};cr, where I is an interval (finite or infinite) of integers > 1 is called
integral if the corresponding polynomials Pj(z) j = 1,... have only integral zeros.

Corollary 2. There is no infinite integral sequence.
Corollary 3. Every integral sequence (ng,ng_1,...,n1) has
a length < min{2,/n1,/n1 + na}.
REFERENCES

[1] F. C. Bussemaker, and D. Cvetkovié, There are ezactly 13 connected cubic integral graphs, Publ.
Elektrotech. Fak., Ser. Mat. Fiz., vol. 544, (1976), pp. 43-48.

2] D. Cvetkovié, M. Doob,and H. Sachs, Spectra of graphs, VEB Deutscher Verlag d. Wiss., Berlin, (1980).
3] P.Hic, R. Nedela, Integral balanced trees, submitted to Math. Slovaca.

(
(
[4] A.J.Schwenk, and M. Watanabe, Integral starlike trees, J. Austral. Math. Soc. A 28 ((1979)), 120-128.
(

5] M. Watanabe, Note on integral trees, Math. Rep. Toyama Univ., (1979), pp. 95-100.

IDEPARTMENT OF MATHEMATICS, INFORMATICS AND PHYSICS,
Faculty of Education,

TRNAVA UNIVERSITY, HORNOPOTOCNA 23, 918 43 TRNAVA, SLOVAKIA,

E-mail address: phic@ uvt.mtf.stuba.sk

2DEPARTMENT OF MATHEMATICS, FACULTY OF NATURAL SCIENCES,

MATEJ BEL UNIVERSITY, TAJOVSKEHO 40, 974 00 BANSKA BYSTRICA, SLOVAKIA
E-mail address: nedela@ bb.sanet.sk
(Received September 10, 1995)

35



36



Acta Univ. M. Belii
Math. 1n0.3(1995), pp.37-59

THE EDGE DISTANCE IN SOME FAMILIES OF GRAPHS II

PAVEL HRNCIAR AND GABRIELA MONOSZOVA

ABsTRACT. The edge distance between graphs is defined by the equality d(G1,G2) = |E1| +
|E2| — 2|E1,2| + ||V1| — [V2]| where |A] is the cardinality of A and E1 2 is the edge set of a
maximal common subgraph of G; and Ga. Further, diam F} ¢ = maz{d(G1,G2);G1,G2 €
Fp,q} where F} 4 denotes the set of all graphs with p vertices and g edges. In the paper
we prove that for p € {7,8,9} diam Fp py2 = 2p — 6 and for p 2 19 and p+ 3 < ¢ < %p
diam F} ¢ = 2q — 12.

1. Preliminaries

A graph G = (V, E) consists of a non-empty finite vertex set V" and an edge set E.
In this paper we consider undirected graphs without loops and multiple edges. A subgraph
H of the graph G is a graph obtained from G by deleting some edges and vertices; notation:
H C G. By a(G) we denote the maximal degree of vertices of the graph G. A graph G
is a common subgraph of graphs G, G5 if there exist graphs Hy, Hy such that H; C G,
HQQGQ andHl%G,HQ%G.

A maximal common subgraph is a common subgraph which contains the maximal
number of edges.

The edge distance of the graphs G1 = (V4, E1) and Gy = (Va, E2) is defined (see [3])
by
(1) d(G1,G2) = |Ex| + |Ea| = 2By of + [[VA] — [V2|

where |Eq|, |Eal|, |Vi|, |Va| are the cardinalities of the edge sets and the vertex sets, re-
spectively and |Ej 2| is the number of edges of a maximal common subgraph G o of the
graphs G and Gs.

Throughout this paper, by F}, , we denote the set of all graphs with p vertices and
q edges. Further, diam F}, , := max{d(G1,G2);G1,G2 € F, 4}. If diam F), , = d(G, H) and
Cp,q 1s the number of edges of a maximal common subgraph of the graphs G, H then

(2) diam Fj, ; = 2q — 2¢p 4.

1991 Mathematics Subject Classification. 05C12.
Key words and phrases. Subgraph, common subgraph, distance, edge distance.
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Denote by v a firmly chosen vertex of a maximal degree in the considered graph G and
by v1,va,..., v the vertices adjacent to v (here k = A(G)). Denote U := {v1,va,...,v;}
and U' := V — {v,vy,...,v,}. The subgraph of the graph G induced by the vertex set
X (X C V) we denote by G(X) and the set of its edges by E(G(X)) or briefly by E(X).
The subgraph of the graph G which contains all edges with one vertex in the set U and
the other in the set U’ is denoted by G(U,U’) and the set of its edges by E(U,U’).

This paper is a continuation of the articles [1] and [2] but it can be read indepen-
dently on them.

2. Diameter of F),

In [1] diam F}, ,42 is determined for all p except of p € {7,8,9}. In this section of
the paper we will show that diam Fj, ;42 = 2p — 6 for p € {7,8,9}.

Lemma 2.1. Let G1,G2 € F 12, p € {7,8}. If the graph G without its isolated vertices
is a subgraph of the graph Ky then |E; 2| = 5.

Proof. 1t si sufficient to show that G2 has a subgraph with 5 vertices and with at least 5
edges. It is easy to check this fact by distinguishing the following cases:

a) a(G2) =3
(i) [E(U)| 2 2
(i) [E(U)|=1
If |[E(U,U")| =0 then Go(U") is the complete graph Kjy.

(iii) [EU)[=0
If every vertex from U’ has degree at most 1 in Go(U,U’) then G5(U’)
has at least 3 edges.

Z

b) a(G2) 2 4
(i) [EW)[z1
(ii) There is a vertex in U’ whose degree in G2(U,U’) is at least 2

(iii) If none of the previous two cases is valid then G5 (U’) is the complete
graph K3 and |E(U,U")|=3. O

Lemma 2.2. Let G € Fp, 12, p € {7,8,9} and A(G) = 4. Then G contains at least one
of the graphs Hy, Hy (Fig. 2.1).
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Fig. 2.1

Proof. Suppose that |E(U)| = 0 and simultaneously |E(U,U’)| = 0. Then |E(U’)| =
|U’| + 3 which is impossible since |[U’| £ 4. O

Lemma 2.3. Let G € F 12, p € {7,8,9}, A(G) =4 and |[E(U)| = |[E(U')| =0. Then G
contains the graphs Hs and H, (Fig. 2.2).

Fig. 2.2

Proof. Since |[E(U,U’)| = |U’| + 3, at least one of the following holds:

(i) there are at least 2 vertices of degree at least 2 in U’
(ii) there is a vertex of degree at least 3 and another vertex of non-zero degree in U’ [

Lemma 2.4. If G1,G3 € F) 12, p € {7,8,9} and A(G1) = a(G2) =4 then |Ey 2| 2 5.

Proof. In view of Lemma 2.2 it is sufficient to consider the case when exactly one of the
graphs GG1, G5 contains the graph H; and exactly one of them contains the graph Hs.
Without loss of generality we can assume that the graph G; contains the graph H; and
the graph G5 contains the graph Hs. According to Lemma 2.1 we can also assume that
the graph G; without its isolated vertices is not a subgraph of the graph K5. According
to the above facts, we have |[E(G1(U"))| 2 1. If |E(G3(U"))| 2 1 then a common subgraph
is the graph Hs (Fig. 2.3).
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Hs
Fig. 2.3

So let |[E(G2(U’))| = 0. According to Lemma 2.3 the graph G2 contains the graphs Hj
and Hy. If |[E(G1(U))| 2 3 then the graph G contains the graph Hs. In the opposite case
we have |E(G1(U"))| 2 |U'| + 1 whence |U’| = 4. Then the graph G contains the graph
H, and the proof is finished. [

Lemma 2.5. Let G1,Gy € Fp 10, p € {7,8,9}, a(G1) = 4 and A(G3) = 5. Then
|E1 2| 2 5.

Proof. The statement of the lemma is trivial if A(G1) > 4. Two cases are possible:

a) |E(G1(U,U")| 21,

b) |E(GL(U,U"))] = 0.
In the case a) a common subgraph is the graph Hs. Obviously, if the graph G2 did not
contain the graph Hy then it would be |E(G2(U))| = 0 and |E(G2(U,U’))| = 0. This
yields |[E(G5(U"))| > |U’| and it is impossible.

In the case b) we can assume according to Lemmas 2.1 and 2.2 that G contains the

graph Hg (Fig. 2.4). Clearly, the statement holds if |E(G2(U))| 2 1 or |E(G2(U,U"))| 2 1.
Now it is sufficient to realize that at least one of these inequalities must be valid for the
graph G,. O

Hg
Fig. 2.4

Let F' = {G € Fr9U Fg 10U Fy11; o(G) = 3}. Let us consider the next subsets of
F
F; contains all graphs which have the subgraph H7 (Fig. 2.5),
F5 contains all graphs from F' — F; which have the subgraph Hg (Fig. 2.5),
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F35 contains all graphs from F' — F; which have the subgraph Hg (Fig. 2.5),
Fy contains all graphs from F' — F; which have the subgraph Hyo (Fig. 2.5),
Fs contains all graphs from F' — F; which have the subgraph Hy; (Fig. 2.5).

SIS
el i

Hl(] 11

Fig. 2.5

Lemma 2.6. F1UF2UF3UF4UF5:F.

Proof. Obviously, each graph G € F' has at least 4 vertices of degree 3. If there are no
two non-adjacent vertices of degree 3 then GG contains H7. If there are two non-adjacent
vertices of degree 3 then G must contain at least one of the graphs Hg, Hg, Hyoy and
Hy;. O

Lemma 2.7. If G € F; then G has the subgraph Hi5 in Fig. 2.6.

Hi,
Fig. 2.6

Proof. We know that the graph G has the subgraph H; and apart from the vertices of this
subgraph G it has other p — 4 vertices. The subgraph of the graph G induced by these
p — 4 vertices has at least p — 5 edges and consequently it has a vertex of degree at least
2. O

Lemma 2.8. If G € F; then it contains the graphs Hs, Hy, H13 and H14 (Figs. 2.2, 2.7).
Moreover, if p # 7 then G contains also the graph Hy5 (Fig. 2.7).
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Hiys Hyy H;s
Fig. 2.7

Proof. The component of the graph G which contains the graph Hg must also contain a
vertex which does not belong to Hg, i.e. G contains the graph Hyg (Fig. 2.8). Obviously,
if p # 7 then G has an edge which is not incident with any vertex of the subgraph Hg. [

Hig
Fig. 2.8

Lemma 2.9. If G € F3 then it contains the graphs Hs, Hy, Hi3 and Hy7 (Figs. 2.2, 2.7,
2.9).

Hy7
Fig. 2.9

Proof. Obviously, G contains the graphs H3 and Hi7. Since G contains the graph Hg and
has at least 9 edges, it has an edge which is not incident to any vertex of the circle in
the considered subgraph Hg. Therefore G contains Hy. Apart from the edges of Hg there
must exist another edge in G which is incident with at least one vertex of Hy. It follows
immediately that G contains Hy3. [
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Lemma 2.10. IfG € Fy U F5 then G contains the graphs Hys, Hi7, Hig and Hqg. (Figs.
2.7, 2.9, 2.10).

Hig Hig
Fig. 2.10

Proof.
a) GeF,
Obviously, G has the subgraphs Hy7 and H;g. Further, the graph G has at least
3 edges except of the edges of the subgraph Hiy. Each of these edges is incident
with at least one vertex of the subgraph Hyy. It follows that G has the subgraphs
H13 and ng.
b) G € F;5

Obviously, G has the subgraph Hig. Since G can not have two non-trivial com-
ponents it contains the subgraph Hi;. If the graph G contains at least one of the
subgraphs Hsg, Hay (Fig. 2.11) then it also has the graphs Hq3 and Hio.

<o <>

Hz() H21

Fig. 2.11

In the opposite case p=9 and G contains at least one of the subgraph Hss, Has
(Fig. 2.12). Hence G has the subgraph Hig and it is easy to verify that it also has
the subgraph Hy3. 0O
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< oS

Hyo Hss
Fig. 2.12

Lemma 2.11. If G1,G3 € Fp 12, p € {7,8,9} and A(G1) = a(G2) = 3 then |Eq 2| = 5.
Proof. The statement follows straightforwardly from Lemmas 2.6 - 2.10. [
Lemma 2.12. If G1,G3 € Fp 12, p € {7,8,9}, a(G1) = 3, a(G2) =4 then |E; 5| = 5.

Proof. According to Lemma 2.1 we can assume that G5 without its isolated vertices is not
a subgraph of K5. We distinguish several cases:

a) G1 € F;
According to Lemma 2.7 G has the subgraph His. We distinguish 4 cases for the
graph G:
(i) [E(U)] 23
A common subgraph is the graph H.
(i) [EU)| =2
If the considered edges are adjacent then a common subgraph is Hr.
If they are not adjacent then a common subgraph is Hyy (Fig. 2.13).

] |

Hyy
Fig. 2.13

(iii) |EWU)| =1
If |[E(U")] 2 1 then a common subgraph is Hyy. If |[E(U’)| = 0 then
there exists a vertex of degree at least 2 in U’ and at least one of the
graphs H7 and Hy4 is a common subgraph.

(iv) |[E(U)|=0
A common subgraph is Hisg.
b) Gy € Fy
We show that G5 contains at least one of the graphs from Lemma 2.8. We can
assume that |F(U)| £ 2 and each vertex from U’ has degree at most 1 in Go(U,U’)
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(in opposite case a common subgraph is H3). From this it follows that |E(U’)| = 1.
If p = 7 then a common subgraph is Hy4. Solet p # 7. If |[E(U)| 2 1 then a common
subgraph is Hys. If |[E(U)| = 0 then there exists a vertex of degree at least 2 in
G2(U’) and if moreover |E(U,U’)| = 2 then again Hi5 is a common subgraph. In
the opposite case p =9, |E(U’)| = 6 and a common subgraph is Hy.
Gy € F5
We show that G2 contains at least one of the graphs from Lemma 2.9. If |E(U,U")U
E(U")| > |U’| then at least one vertex from U’ has degree at least 2 in G2. Hence it
is easy to verify that at least one of the graphs Hs, Hy, Hy7 is a common subgraph.
In the opposite case |E(U)| =2 3 and a common subgraph is Hs.
Gy € Fy U Fy
We show that G5 contains at least one of the graphs from Lemma 2.10 (i.e. His,
Hiy7, His, Hyo).
(i) [E(U)| 2
If |[E(U,U")| 2 1 then a common subgraph is Hy3 or Hy7. If |E(U,U")| =
0 then according to Lemma 2.1 we can assume that |E(U’)| 2 1 and
a common subgraph is Hyg or Hyg.

(i) [EU)[=0
It is easy to check that G2 contains the graph Hig. [

Lemma 2.13. IfG1,G3 € Fp, pi2,p € {7,8,9}, a(G1) = 3 and A(G3) 2 5 then |Ey 2| 2 5.

Proof. We distinguish several cases:

a)

Gl € F;
We show that G5 contains a subgraph of the graph Hi5 having 5 edges.

(i) [E(U)] =2
In this case |E(U,U’") UE(U’)| 2 |U’| + 1 and therefore some vertex
from U’ has degree at least 2 in G5. A common subgraph is Hig.

(i) |EU)| 23

If there exist two adjacent edges in Go(U) then a common subgraph

is Hy. If there are no such edges then the common subgraph is Hoy4.
G € LU F3
According to Lemmas 2.8 and 2.9 it is sufficient to show that G2 contains at least
one of the graphs Hz and Hi3. Obviously, this is true if |[E(U)| = 2 or if some
vertex from U’ has degree at least 2 in G(U,U’). In the opposite case we have
|[E(U")| 2 2 and it follows that p =9 and |E(U,U’)| 2 2. Now it is easy to verify
that G5 contains Hsz or His.
Gy € Fy U Fy
We show that G2 contains at least one of the graphs Hy3, Hy7 and Hyg (see Lemma
2.10).

(i) |E(U)| 22
In this case G2 contains at least one of the graphs Hy3, H7.
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(ii) [EU)[ =1
In this case at least one vertex in U’ has degree at least 2. Hence Go
contains the graph Hyg. 0O

Theorem 2.14. diam F}, ,42 =2p — 6 for p € {7,8,9}.

Proof. By Lemmas 2.4, 2.5, 2.11, 2.12 and 2.13 it suffices to find two graphs G1,Gsy €
Fp pt2 with |Ey 2| = 5. Such graphs are depicted in Fig. 2.14 (one component of G; is a
circle). O

Gl GZ

SN

Fig. 2.14

3. Diameter of F} 3

In this section of the paper we will determine diam Fj, ;13 for p = 19.

Lemma 3.1. If G € F, 13, p 2 17 and A(G) = 3 then G contains the graph Hos (Fig.

11

Hoys

Fig. 3.1

Proof. Let v be a vertex of degree 3 in the graph G. If p = 7 then there exists an edge
wywsy such that w; ¢ {v,v1,ve,v3}, i =1,2. If p = 12 then there exists an edge wsw, such
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that w; ¢ {v,v1,v9,v3, w1, wa}, i = 3,4. If p 2 17 then there exists an edge wswe such
that w; ¢ {v,v1,va,v3, w1, we, w3, wa}, i =5,6. Thus G contains the graph Hos. O

Lemma 3.2. If G € F, 13, p 2 14 and A(G) = 3 then G contains the graph Hs (Fig.
3.2).

Hsg
Fig. 3.2

Proof. If p—4 < 2(p—6) i.e. p> 8 then G(U’) has a vertex w;y of degree at least 2. Let
way, ws are the vertices adjacent to wy in G(U’). If p 2 14 then there exists an edge such

that neither of its vertices belongs to {v, vy, ve,v3, w1, ws, w3} i.e. G contains the graph
Hy. O

Lemma 3.3. Let G € F}, 43 and A(G) = 3. Then G contains at least one of the graphs
H27, Hgg, Hgg and Hgo (Flg 33)

R

H27 H28 H29 HSO

Fig. 3.3

Proof. G has at least 6 vertices of degree 3. We thus get that there are two non-adjacent
vertices of degree 3 in GG. All four possible cases for these two vertices are depicted in the
Fig. 3.3. O

Lemma 3.4. Let G € F}, 43 and A(G) = 3. If G has at least two components with more
edges than vertices then it contains the graphs Hsy (Fig. 3.4) and Hoz.
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Hsq
Fig. 3.4

Proof. Obviously, each of the considered components of the graph G contains a vertex of
degree 3. Further it is sufficient to realize that such component has more than 3 edges. [

Lemma 3.5. Let G € F), 13, A(G) =3 and G have only one component H having more
edges than vertices.

(a) If H has the subgraph Hy; then it contains at least one of the graphs Hss (Fig.
35) and Hgl.
(b) If H has the subgraph Has then it contains at least one of the graphs Hso, H3s

(Fig. 3.5).

Hso Hss
Fig. 3.5

(c) If H has the subgraph Hag then it contains at least one of the graphs Hs4, Hss,

DO D S S

H34 H35 H?)G
Fig. 3.6

Proof. The graph H has at least 3 edges more than vertices.

(a) and (b): It is sufficient to realize that H contains more than 6 edges.

(c): If H has exactly 6 vertices then it contains the graph Hsg. If H has at least 7 vertices
then it contains at least one of the graphs Hsy, Hzs. [
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Lemma 3.6. Let G € F, ,43, p = 8 and a(G) = 3. If G contains the graph Hs, then it
contains the graph Hs; (Fig. 3.7).

Fig. 3.7

Proof. There are another p — 5 vertices in GG besides the vertices of Hsy. The subgraph
H of the graph G induced by these p — 5 vertices has at least p — 6 edges. If H does not
contain any vertex of degree 2 then p—5 2 2(p—6),ie. p<7. O

Lemma 3.7. If G contains at least one of the graphs Hsg, H3g (Fig. 3.8) then it contains
the graphs H27, Hzg, H29 and Hgo.

Fig. 3.8

Proof. The statement is obvious. [

Lemma 3.8. If A(G) =4 and q 2 21 then G contains the graph Hyo (Fig. 3.9).
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Fig. 3.9

Proof. |E(U")| 2 5 and hence G(U’) contains two independent edges. [

Lemma 3.9. If G € F, 13, A(G) = 4 and p = 19 then G contains the graph Hy4y (Fig.
3.10).

Hyy
Fig. 3.10

Proof. Obviously, if |[E(U)| + |E(U,U’)| < 10 and G does not contain Hyy then p — 5 2
2(p—11) i.e. p £ 17. We can thus assume that |E(U)|+ |E(U,U’)| = 11. Since A(G) =4
it holds |E(U)| + |E(U,U’")| < 12. We distinguish two cases:

(i) [EW)| +|EU,U)| =12
In this case |[E(U)| = 0 and every vertex from U has degree 3 in G(U,U’). We can
assume that there are at most 2 vertices from U’ of degree 0 in G(U’). In fact, in
the opposite case it holds (if G does not contain Hy1) p—8 = 2(p—13), i.e. p < 18.
If some vertex from U’ has degree 2 or 3 in G(U,U’) then G contains the graph in
Fig. 3.11.
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Fig. 3. 11

It follows that G contains the graph Hyi. So, let no vertex from U’ has degree
2 or 3 in G(U,U’). There are at most 3 vertices from U’ which have degree 4 in
G(U,U’). Let k be the number of them.

a) k=3
Since there are at most 2 vertices of degree 0 in G(U’) this case is
impossible.

b) k=2
In this case there are exactly 4 vertices in U’ of degree 1 in G(U,U’).
At least 2 of these 4 vertices have degree at least 1 in G(U’) and it
follows that G contains Hy;.

c) k<1
The statement is obviuos.

(i) [E@W)|+ |EW,U)| =11
In this case |[E(U)| £ 1. If there was an isolated vertex in G(U’) and G did not
contain the graph Hy; then it would hold p — 6 = 2(p — 12), i.e. p < 18. We can
thus assume that no vertex in G(U’) is isolated. It follows that no vertex from U’
has degree 4 in G(U,U’). The statement of the lemma holds if no vertex from U’
has degree 2 or 3 in G(U,U’). If some vertex u € U’ has degree 3 in G(U,U’) then
it is sufficient to realize that the vertex from U not adjacent to the vertex u has
degree at least 2 in G(U,U’). Since the vertex u is not isolated in G(U') then G
contains the graph Hy;.
If some vertex from U’ has degree 2 in G(U, U’) and is adjacent to vertices vy, vy € U
then it is sufficient to take into account that at least one of the vertices vz, v4 € U
has degree 4 and is not adjacent to the vertex v; for : =1,2. [0

Lemma 3.10. Let G1,G3 € Fp p13, p = 14 and A(G1) = a(G2) = 3. Then |E; 2| 2 6.
Proof. The statement is a consequence of Lemma 3.2. [
Lemma 3.11. Let G1,G3 € Fp 13, p = 18 and A(G1) = a(G2) =4. Then |E; 2| = 6.

Proof. The statement is a consequence of Lemma 3.8. [
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Lemma 3.12. Let G1,G3 € Fp 13, p 2 19 and A(G1) = 3, a(G3) = 4. Then |E; 5| 2 6.

Proof. First realize that if we prove that G2 contains at least one of the graphs Hos, Hog
then the statement of the lemma holds by Lemmas 3.1 and 3.2. We distinguish several
cases for GGa:

a) There are 2 independent edges in Go(U’)
al) A(Gz) 2 5

() I |EWU)| #0or |[E(U,U")| # 0 then G2 contains at least one of the
graphs Hos, Hag.

(i) If |[E(U)| = 0 and |E(U,U’)| = 0 then |E(U’)| 2 8 and hence G4
contains at least one of the graphs Has, Hog.

CLQ) A(Gz) =4
If |[E(U,U")| # 0 or |[E(U’)| 2 7 then G5 contains at least one of the
graphs Hss, Hag; in the opposite case it holds ¢ < 16, a contradiction.
b) |E(U’)| 2 2 and any two edges in G2(U’) are adjacent edges in U’
In this case G2(U’) contains the graph in Fig. 3.12

w1 %

N

w

Fig. 3.12

b1) there is an edge in G2(U,U’) which is not incident with any vertex
from {wq, wq, w}
In this case G5 contains Hag.

b2) a(G2) 25 and by) does not hold
We distinguish 3 subcases:

(i) [EW)|#0

In this case G5 contains Hag.

(ii) |[E(U)| =0 and the vertex w has degree at least 3 in G(U,U")
The statement holds by Lemmas 3.7 and 3.3.

(i) |[E(U)| = 0 and the vertex w has degree at most 2 in Go(U,U")
If |[E(U’")| = 2 then degree of wy or ws is at least 2 in G2(U, U’) (since
|[E(U,U")| 2 5) and hence G5 contains Hag. If |[E(U’)| 2 3 then again
G2 contains Hyg (since |E(U,U’)| 2 4).

b3) a(G2) =4 and by) does not hold
In this case ¢ < 20, a contradiction.
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c) [EWU)] =1
Cl) A(Gz) z 6
(

i) |[E(U)| 22

If there are two adjacent edges in U then GGo contains Hsg. Now let
us consider the opposite case. If A(G2) = 7 then G5 contains Has. If
A(G2) =6 then |E(U,U’)| 2 2 and hence G2 contains Has or Hag.

(i) [EU)[ =1
In this case |E(U,U")| 2 |U'|+ 2 and if G5 does not contain Hag then
it contains at least one of the graphs in Fig. 3.13.

Fig. 3.13

If G5 contains the graph a then the lemma holds by Lemmas 3.7 and 3.3. If G2
contains the graph 3 then G2 contains each of the graphs Hs7, Hog, Hag, H3p and
the statement holds by Lemma 3.3.

Cz) A(Gz) =5
If there are at least two edges in G2(U,U’) which are not adjacent
to the edge of the graph G3(U’) then G5 contains at least one of the
graphs Has, Hag. In the opposite case at least 3 edges from G5 (U, U’)
are incident with the same vertex of the edge of G3(U’). Then the
statement of the lemma follows from Lemmas 3.7 and 3.3.

Cg) A(Gz) =4

This case is not possible for ¢ = 18.
d) [EU")] =

o

A(Gz) 2 6

i) there is a vertex in U’ which has degree at least 2 and |E(U,U")| = 3
Then G2 contains at least one of the graphs in Fig. 3.14. In the case
«) the statement of the lemma follows from Lemmas 3.7 and 3.3. In
the case 3) Gy contains Hag. In case v it holds |E(U)|+|E(U,U")| = 6
and hence G5 again contains Hog.

S8
[y
—~~
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Fig. 3.14

(ii) there is a vertex in U’ which has degree at least 2 and |E(U,U’)| = 2
In this case |E(U)| 2 3 and if A(G2) = 6 then G4 contains each of
the graphs Ho7, Has, Hag, H3o (since ¢ = 22) and the statement of
the lemma holds by Lemma 3.3. If A(G3) = 7 then G2 contains Hag
or the graph Hys (Fig. 3.15).

Hyy
Fig. 3.15

The graph H4o contains the graphs Hy7, Hog and Hag. If the graph G does not
contain any of the graphs Hy7, Hyg and Hag then it contains Hsg by Lemma 3.3
and H37 by Lemma 3.6. The graphs Hys and Hs7 have a common subgraph which
is depicted in Fig. 3.16.
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Fig. 3.16

(iii) every vertex from U’ has degree at most 1 and there exists a vertex
from U of degree at least 2 in G2(U,U’)
In this case |[E(U)| 2 4. If G5 does not contain Hag then the statement
of the lemma follows from Lemmas 3.7 and 3.3.

( iv) there are no adjacent edges in G2(U,U’) and |E(U,U")| = 2
In this case |[E(U)| 2 4. If |[E(U,U’)| 2 3 then G5 contains Has. If
|E(U,U")| = 2 and a(G3) 2 7 then obviously a common subgraph is
Hys or Hog. If |E(U,U")| = 2 and A(G2) = 6 then G2 contains each
of the graphs Ho7, Hag, Hag and H3g (since ¢ = 22). Now use Lemma
3.3.

(v) [EWU) =1
In this case we have |E(U)| 2 4. We distinguish three subcases:
1) a(Gy) 2 9. If there is a vertex of degree at least 3 in G(U) then
the statement of the lemma holds by Lemmas 3.7 and 3.3. If there is
no vertex of degree at least 3 in G2(U) and G2 contains neither the
graph Hys nor the graph Hog then G5 contains the graph in Fig. 3.17.

Fig. 3.17

The statement of the lemma follows from Lemmas 3.3, 3.4 and 3.5 (the
component H from Lemma 3.5 contains at least one of the graphs Ho7,
Hzg, H29 and Hgo).

2) a(G2) € {7,8}

If ¢ = 18 then there exists a vertex of degree at least 3 in G2(U) and
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hence G5 contains the graph « in Fig. 3.14 and the statement of the
lemma holds by Lemmas 3.7 and 3.3.

3) a(G2) =6

This case is not possible for ¢ = 22.

dg) A(Gz) =95
Since |E(U')] = 0 and ¢ = 22 there is a vertex from U which has
degree at least 3 in Go(U,U’). Now, if we realize that there exists an
edge in G2(U,U’) which is not incident with the considered vertex of
degree at least 3 then we get that G2 contains Hag.

dg) A(Gz) =4
This case is not possible for ¢ = 17. [

Lemma 3.13. Let G1,G3 € F, 13, A(G1) =4, a(G2) 25 and p 2 19. Then |E; 5| = 6.

Proof. In wiew of Lemmas 3.8 and 3.9 it is sufficient to show that G5 contains at least one
of the graphs Hyg, Hy1.

a) E(U)#0
If A(G2) 2 6 then the statement of the lemma is obvious. If A(G2) = 5 then it is
sufficient to use the fact that |E(U,U")| + |E(U")| > 1.

b) [E(U")] =0
If A(G3) 2 6 and |E(U,U’)| = 2 then the statement obviously holds. So, it is
sufficient to consider two cases:

(i) a(G2) 26 and |E(U,U")| £ 1.
Obviously, the statement holds if A(G2) 2 8. If A(G2) = 7 then there
exists a vertex of degree at least 2 in G3(U) and hence G2 contains
the graph Hy;. The case A(G3) = 6 is impossible since g = 22.

(ii) a(G2) =5.
There exists a vertex from U of degree at least 2 in Go(U,U’). O

Lemma 3.14. Let G1,G3 € Fp p13, A(G1) 25, a(Gg) 25, p 2 19. Then
|E1 2| 2 6.

Proof. Obviously, the statement holds if A(G1) = 6 and A(G2) = 6. We distinguish two
cases:

a) a(Gy) =a(Gy) =5
It is sufficient to consider the case that none of the graphs Hys, Hyy (Fig. 3.18) is a
common subgraph of the graphs G; and G5. So we can assume that |E(G1(U,U’))| =0
and |E(G2(U"))| = 0.
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Hys Hyy
Fig. 3.18

We show that a common subgraph is the graph Hy;. If the graph G; did not
contain the graph Hy then it would hold p —6 = 2(p —12), i.e. p < 18. The graph
(2 contains the graph Hy; since |[E(U,U’| 2 14.
b) a(Gy) =5 and A(G2) 2 6.

If the graph G does not contain H44 then it contains each of the graphs Hys,
Hy;. The graph Gy contains the graph Hyy (the case A(Gg) > 6 is trivial and
if A(G2) = 6 then |[E(U,U’)| + |E(U’)] 2 1). If G2 does not contain Hyg then
|[E(U)| = 0 and |E(U,U’)| = 0. This implies |F(U’)| = |U’| + 4 and hence Go
contains the graph Hy;. [

Theorem 3.15. diam F}, ,43 = 2p — 6 for p = 19.

Proof. In view of Lemmas 3.10 - 3.14 it suffices to find two graphs G, G2 € F), 43 with

|Eq,2| = 6. Such a graph G is depicted in Fig. 3.19 and G2 is an arbitrary graph for
which A(G) =3. O

Fig. 3.19
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4. Some other results about diam Fj, ,

Theorem 4.1.

a) (1) diam F578 =2
(11) dial’nFs’g =6
(111) diamFg’ll =12
b) If p+3<q=< 2 and 7 < p < 18 then diam F), ; € {2¢q — 12,2q — 10}.

c) Ifp+3<q< 37” and p 2 19 then diam F, ;, = 2¢ — 12.

Proof.

a) (i) According to Theorems 5 and 2 from [3] we get
diamF57g = diamF572 = 2.

(ii) According to Theorem 5 from [2] we have ¢ ¢ = 3. Now by using Theorem 5 from

(3] we get
diamF&g = diam FG,G =2.6—-23=6.

(iii) According to Lemma 2.14 we have cg 19 = 5. Since cg 11 = ¢g 10, it is sufficient to
find two graphs G1,G2 € Fg 11 with |E; o] = 5. Such graphs are depicted in Fig.
4.1.

o

G
1 s

]
>

b) According to Lemma 2.14 and Theorem 14 from [1] we have ¢p 12 =5 for 7< p <
18. It implies ¢, , = 5 for ¢ = p+ 3. To show that ¢, , < 6 it is sufficient to find
two graphs G1,G2 € F, , with |E; 2| = 6. The graph G is depicted in Fig. 4.2
and G is an arbitrary graph for which A(G) = 3.

58



G

Fig. 4.2

c) By Theorem 3.15 we get ¢, , = 6. To show that ¢, , = 6 it is sufficient to find two
graphs G1, Gy € F, , with |E; 5| = 6. The graph G is depicted in Fig. 4.2 and G»
is an arbitrary graph for which aA(G) =3. O
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ON THE S-DISTANCE BETWEEN POSETS

PAVEL KLENOVCAN

ABSTRACT. V. Baldz, V. Kvasnicka and J. Pospichal [1] proved that the distances based on
maximal common subgraph and minimal common supergraph are identical. Here we shall
study an analogy for posets.

Throughout this paper all partially ordered sets are assumed to be finite. In [2] a
metric on a system of isomorphism classes of posets, which have the same cardinality, is
defined. Without loss of generality we can suppose that all posets are defined on the same
set P. We will often write a poset R instead of a poset (P, R).

Let B(P) be the set of all bijective maps of P onto itself. For any f € B(P) and
posets (P, R), (P, S) we denote by ds(R,S) the number defined by

(1) de(R,S) = |f(R)\ S|+ ]S\ f(R)],

where f(R) = {[f(a), f(b)]; [a,b] € R} (cf. [2]). Since the posets (P, R) and (P, f(R)) are
isomorphic, then

(2) dy(R,S) = |R| +[S] = 2|f(R) N S].
The distance of the posets (P, R), (P, S) is defined by

(3) d(R,S) = min{d;(R,S); f € B(P)}.

If we identify isomorphic posets, then (3) defines a metric on the set of all (finite,
non-isomorphic) posets defined on the same set P.

If a map f € B(P) is an isotone map of a poset (P, R) onto a poset (P,S), then
f(R) C S and d(R,S) =d¢(R,S) =|S| — |R| (cf. Remark 2 in [2]).

The following lemma is easy to verify (cf. Lemma 1 in [2]).

1991 Mathematics Subject Classification. 06A07, 05C12.
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Lemma 1. For any posets (P, R), (P, S) and any maps f,g € B(P) the following proper-
ties are satisfied:

(i) df(R,S) = dg(R,S) iff [f(R)NS|=|g(R)NS|,
(i) df(R,S) <dg(R,S) iff [f(R)NS]>|g(R)NS],
(iif) [J/(R)nS |:|Rmf HS)]-

Let (P, R), (P, S) be posets and let f € B(P). If d¢(R,S) = d(R,S), f is said to be
an optimal map of (P, R) onto (P, S) (cf. Definition in [2]). From Lemma 1 it follows that
f is an optimal map if and only if |f(R) N S| is maximal. Any isotone map f € B(P)) is
optimal (Remark 2 in [2]).

Let (P, R), (P, R') be posets. The poset (P, R') is called a w-subposet of the poset
(P, R) if there is a map f € B(P) with f(R') C R.

If a poset (P, R') is a w-subposet of posets (P, R), (P, S) then we will say that (P, R)
is a common w-subposet of (P, R) and (P, S).

Let {(P,R;); i € I} be a set all common w-subposet of posets (P, R), (P,S). If

there is m € I with |R;| < |R,,| for each i € I, then we will say that (P, R,,) is a mazimal
common w-subposet (MCWS) of posets (P, R), (P, S).

Let (P,Q) be a MCWS of posets (P,R), (P,S). The s-distance between posets
(P,R), (P, S) is the number defined by

(4) d*(R, S) = |R| +[S] - 2|Q).
Lemma 2. Let (P, R), (P,S) be posets. Then d(R,S) = d*(R,S).

Proof. If f € B(P) is an optimal map of (P, R) onto (P, S) then d(R,S) = df(R,S) =
|R| + |S| — 2|f(R) N S|. Tt suffices to show that the poset (P, f(R) N S) is an MCWS of
posets (P, R), (P, S).

If [a,b] € f(R)NS, then [f~1(a), f~1(b)] € R, f~! € B(P) and [idp(a),idp(b)] € S,
idp € B(P). Thus (P, f(R)N S) is a common w-subposet of (P, R), (P,S). Suppose on
the contrary that the poset (P, f(R)N.S) is not an MCWS. Let (P, Q) be an MCWS. Then

)

|f(R)N S| < |Q| and there are optimal maps h,g € B(P) with h(Q) C R and g(Q) C S.
From this we have

9(Q) = gh™"h(Q) C gh™(R)
and so
9(Q) C gh™(R)N' S
which gives
Q= 19(Q)] < [gh~"(R) N S|
We thus get
[f(R)NS| < |gh~ (R)NS].

Therefore by (ii)
d¢(R,S) > dyu-1(R,S), gh~' € B(P),
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a contradiction. [J
The next theorem follows from Lemma 2 immediately.

Theorem 3. Let F,, n € N, be a system of all (non-isomorphic) posets on a set P of the
cardinality n. Then the function d® on the system F, given by (4) is a metric.

Let (P,R), (P, R') be posets. If a poset (P, R’) is a w-subposet of a poset (P, R)
then we will say that (P, R) is a w-owerposet of a poset (P,R’). If a poset (P, R) is a
w-overposet, of posets (P, S), (P,Q) then (P, R) will be called a common w-owerposet of
(P,S) and (P,Q). Let {(P,R;); i € I} be a set all common w-overposet of posets (P, .S),
(P, Q). If there is m € I with |R,,| < |R;| for each i € I, then we will say that (P, R,,) is
a minimal common w-owerposet (mCWO) of posets (P, S), (P, Q).

Let (P, M) be an mCWS of posets (P, R), (P, S). We denote by d°(R, S) the number
defined by

(5) d°(R,S) = 2[M| - |R| - |S].
Proposition 4. Let (P, R), (P,S) be posets. Then d(R,S) < d°(R,S).

Proof. Let (P, M) be a mCWO of posets (P, R), (P,S). If f € B(P) is an optimal map of
(P, R) onto (P, S), then
d(R,S) = ds(R,S) = |R| +[S]| = 2|f(R) N S| =
= [f(R)|+ 1S =2[f(R) S| = [f(R)| + |S] = 2(|f (R)| + [S] = [f(R)U S|) =
=2[f(R) US| = |f(R)] = |S|=2[f(R) US| = |R[ - |S].
Since |f(R)U S| is minimal if and only if | f(R) N S| is maximal,
d(R,S) =2|f(R)U S| — |R| = |S| < 2|M| - |R[ - |S| = d°(R, S).

ds (R, S)

Proposition 5. Let (P,Q) be an mCWO of posets (P, R), (P, S). If d(R, S) = ,
= d(R,S) and

and |Q| = |f(R) U S|, then there exists a map f' € B(P) with ds (R, S)
(P, f'(R)U S) is a poset isomorphic to a poset (P, Q).

Proof. Since (P,Q) is an mCWO of posets (P, R), (P,S) there are isotone maps g,h €
B(P) with g(R) C @, h(S) C @ and so
dg(R,Q) =d(R,Q) = Q|- |R],  din(S,Q) =d(S,Q)=[Q|—|S].
From (iii) we have d(Q, S) = d,-1(Q, S) = |Q| — |S|. By assumption |Q| = |f(R)U S| we
obtain
A(R,Q) +d(S,Q) =dy(R, Q) + i, +(Q, ) = 21Q| — |R| — || =
=2|f(R)U S| — |R| = [S]=2(If(R)| + [S| = |f(R) N S| — |R| - |S]) =
=2(|R[+[S| = [f(R) N S| = [R| = |S]) = |R[ + |S| = 2|f(R) N S| =
=ds (R, S) = d(R,S5).
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As in the proof of Theorem 1 in [2] we obtain
A 14(R, ) < dy(R, Q) + dy, +(Q,9) = d(R, ).
Thus
dp-14(R,S) =d(R,S)
and so h~!g € B(P) is an optimal map of the poset (P, R) onto the poset (P, S).

It remains to prove that the relation structure (P, h~1g(R)US) is isomorphic to the
poset (P, Q). For all [z,y] € h™g(R) US we put ¢([z,y]) = [h(z), h(y)].

a) If [z,y] € S, then ¢([x,y]) = [h(z), h(y)] € Q, since h is an isotone map of (P, S)
onto (P, Q).

b) If [z,y] € h~1g(R \,)S', then there is [a,b] € R with [z,y] = [h"'g(a), " g(D)]

)
and thus ¢([z, y]) = [h(z), h(y)] = [Ah~ g(a), kh~"g(b)] = [g(a),g(b)] € Q, since g is an
isotone map of (P, R) onto (P, Q).

By the above, v is a map of h='g(R) U S to Q. Tt is obvious that the map 1 is
injective. Since |h1g(R)U S| = |Q|, the map ¢ is bijective. Thus 1! is a bijective map
of Q onto h=tg(R) U S and for [u,v] € Q,

™ ([u, v]) = [A7H(w), k™ (v)] € hHg(R) U S.

From this it follows that the relation structure (P,h~'g(R) U S) is a poset isomorphic to
the poset (P,Q). O

Example 6. Let (P,R), (P,S), (P,T) be posets with |R| = |S| = 16, |T| = 15 given in
Figure.

a4

asg

The map idp € B(P) is the only optimal map of the poset (P, R) onto the poset (P,S).
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The union idp(R) U S is not a partial ordering, since [a1, as], [as,a7] € idp(R) U S but
[a1,a7] ¢ idp(R)US. Let (P, Q) be an mCWO of the posets (P, R), (P, S). By Proposition
5, from |idp(R) US| = 17 it follows |Q| > 18. Thus d°(R,S) = 2|Q| — |R| — |S| > 4. The
poset (P,idp(R) U S U {[a1,ar]}) with |idp(R) U S U {[a1,a7]}| = 18 is a mCWO of the
posets (P, R), (P, S) and so d°(R, S) = 4.

Since the poset (P, T') is a w-subposet of the posets (P, R), (P, S), we have d°(R,T) =
1, d°(T,S) = 1. From this it follows that

2=d°(R,T)+d°(T,S) <d°(R,S) = 4.
Therefore d° is not a metric.

REFERENCES

[1] V. Balaz, V. Kvasnicka, J. Pospichal, Dual approach for edge distance between graphs, Cas. Pést. Mat.
114, No.2 (1989), 155-159.

[2] A. Haviar, P. Klenovcan, A metric on a system of ordered sets, Math. Bohemica (to appear).

DEPT. OF MATHEMATICS, MATEJ BEL UNIVERSITY,

ZVOLENSKA 6, 974 01 BANSKA BysTricA, SLOVAKIA

E-mail adress: klenovca@pdf.umb.sk

(Received October 3, 1995)

65



66



Acta Univ. M. Belii
Math. 1n0.3(1995), pp.67-74

A NOTE ON THE DISTANCE POSET OF POSETS

JubpiTA LIHOVA

ABSTRACT. Let FJ be the system of all non—isomorphic finite orders of a countable set P,
ordered in such a way that R < S if f(R) C S for a bijective map f : P — P. There are
investigated some properties of (F}, <).

In [3] a metric d on the system F,, of isomorphism classes of ordered sets of the same
finite cardinality n has been introduced. In [4] there is shown that this metric coincides
with the distance—metric on the covering graph of F,,. The system Fj,, can be partially
ordered. By the help of the above mentioned metric the author proves in [4] that the
ordered system Fj, is graded, i.e. all maximal chains with the same endpoints have the
same length. The ordered system F),, as each finite partially ordered set, is a multilattice.
A natural question arises. Is F,, a metric multilattice with respect to d, in the sense of [5]7

In this note there is proved that Fj, is not a metric multilattice with respect to
any metric by showing that Fj, is not a modular multilattice. In the second part some
properties of the ordered system of all finite orders of the same infinite set P are mentioned.

0. BASIC NOTIONS

A partially ordered set (M, <) is said to be a multilattice if, whenever a,b € M, u €
M,u > a,u > b, there exists a minimal upper bound v’ of {a,b} with v’ < u, and dually.
If, moreover, (M, <) is a directed set, then (M, <) is called a directed multilattice.

Let aVb (aAb) denote the set of all minimal upper bounds of {a, b} (maximal lower
bounds of {a,b}). A multilattice (M, <) is distributive if

a,bce M,(aAb)N(anc)#D,(avb)n(aVe)#0=b=c,
and modular if
a,byce M,b<c,(anb)N(anc)#D,(avb)n(aVe)#D=b=c.
(For the above definitions see [1].)
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By a metric multilattice is meant a multilattice with a metric d fulfilling the following
conditions (cf. [5]):

Ml. a < b < ¢ implies d(a,b) + d(b,c) = d(a, c),
M2. if u € aAb,v € aV b, then d(a,b) = d(u,v).
In [5] there is proved:

0.1. Theorem. A metric multilattice is modular.

0.2. Theorem. A directed modular multilattice of locally finite length is a metric mul-
tilattice.

1. PROPERTIES OF F),

Let F,,(n € N) be the set of all (non-isomorphic) orders of a set P of cardinality
n. Set R < S (R,S € F,) if there exists a permutation f of P satisfying f(R) C S (the
symbol f(R) denotes the set {[f(a), f(b)] : [a,b] € R}). In other words, R < S means
that there exists an isotone bijection of (P, R) onto (P, S). The poset (F,,, <) is called the
distance poset (of orders of an n—element set) (cf. [4]).

The following theorem is proved in [4].

1.1. Theorem. The distance poset (F,, <) is a graded poset with the least element and
the greatest element.

The diagrams of (F3, <) and (Fy, <) are depicted in Fig. 1 and Fig. 2, respectively.
Evidently (F1, <) is a one element set and (F3, <) is a two element chain. The least element
of (F,, <) is the discrete order, i.e. the order in which only comparable elements are the
couples of equal elements and the greatest element is the linear order. Let us remark that
(Fy, <), as a finite bounded partially ordered set, is a directed multilattice.

Fig. 1 Fig. 2

IfR,SeF,,R<S and S covers R, we will write R < S. The following lemma,
proved in [4] will be useful.
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1.2. Lemma. Let R,S € F,,, R < S, f be a permutation of P satisfying f(R) C S. Then
R < S if and only if S — f(R) = {[a,b]}, where a <g .

It is easy to see that (Fy, <), (Fa, <) and (F3, <) are distributive lattices. In contrast
with this, there holds:

1.3. Lemma. Ifn > 4, then (F,,,<) is not a lattice.

Proof. Let R,S € F,, be as in Fig. 3 and Fig. 4, respectively. Using 1.2 it is easy to see
that U shown in Fig. 5 and its dual U° are covered by R, S and V in Fig. 6 and its dual

V? cover both R and S. Hence U and U° are maximal lower bounds of {R, S} and V,V?
are minimal upper bounds of {R, S}.

Fig. 3 Fig. 4 Fig. 5

As we have remarked, (F),, <) is a multilattice, hence for any R,S € F,, and any
U,V € F, satisfying U < R, S <V there exists a maximal lower bound U’ of {R, S} and
a minimal upper bound V' of {R,S} with U < U’ and V' < V. In 1.4 and 1.6 there is
described the set of all maximal lower bounds of {R, S} and the set of all minimal upper
bounds of {R, S}, respectively.

1.4. Lemma. Let R,S,U € F,,,U < R,U < S. Then U € RA S if and only if for each
couple of permutations f,g of P with f(U) C R,g(U) C S there is f~Y(R)Ng~1(S) = U.

Proof. Clearly for any permutation h of P and any order T of P, h=!(T) is an order
of P and further the intersection of two orders of P is an order of P less than or equal
to each of them. So if U < R,U < S, then for each couple of permutations f,g of
P with f(U) C R,g(U) C S there is U C f~Y(R)ng=1(9), f~Y{R)Nng~(S) < R,
fTYR)Ng™L(S) < S. Now if U is a maximal lower bound of {R, S}, then U = f~1(R) N
g 1(S). Conversely, if U < U’ < R,S and h, f1,g1 are permutations of P such that
hU) C U, f1(U") € R,g1(U") C S, then fi(h(U)) C R,g1(R(U)) € S, (f; H(R)) N
h=Y (g7 '(8)) = h™ (fT (R)Ngy H(S) 2 A1 (U) D U.

Let us remark that it can happen that f;'(R)Ng;'(S) = U for some permutations
f1,g1 of P and at the same time f; '(R) N gy *(S) D U for some other permutations fa, go
of P, as the following example shows.
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Fig. 6 Fig. 7

1.5. Example. Let U, R, S be as in Fig. 7, Fig. 8 and Fig. 9, respectively. Define ¢ to
be the identity map on P = {z1,...,2,},9 = (x374). Then i~ 1(R)Ni~1(S) = U while
i"Y(R)Ng~1(S) D U.

xr
Ty T4 °
/ ® --- o To ® - o
Ty I T4 T
Ir1T I3 T
Fig. 8 Fig. 9

Analogously can be proved:

1.6. Lemma. Let R,S,V € F,,, R<V,S <V. ThenV € RV S if and only if for each
couple of permutations f,g of P with f(R) C V,g(S) C V, V is the transitive cover of

FR)Ug(S).

Considering the same R, S as in 1.5 and V as in Fig. 10, V =4(R) U g1(S), but V
properly contains the transitive cover of i(R) U g2(S) for g1 = (z12324), 92 = (x324).

Now we are going to investigate (F,,, <) for n > 4 from the view of its distributivity
and modularity. Obviously (Fy, <) it is not distributive and a straightforward testing
yields that (Fy, <) is modular.

T4
2 e - o o .- o
Ty Tn
T z3
Fig. 10 Fig. 11

1.7. Theorem. Ifn > 5, then the multilattice (F),, <) is not modular.

Proof. Let R,S,T,U,V be as in Fig. 11, 12, 13, 14 and 15, respectively. Then U < § <
V,U<R=<T <V,by 12 and V € SV R, because S # R. Let us suppose that there
exists U’ € F,, satisfying U’ > U, U’ < S,T. Since S,T are incomparable orders, using 1.1
we obtain that U’ must be covered by S and T. If we find all orders covered by S, using
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1.2, we see that the order in Fig. 16 is the only one covered also by 7', but it is not greater
than U. We have a contradiction.

°® ° o o
Fig. 12 Fig. 13
. . .
. .« .. .
Fig. 14 Fig. 15

Using 0.1 and 0.2 we obtain:

1.8. Corollary. If n > 5, then the multilattice (F,,,<) is not a metric multilattice.
(Fy, <) is a metric multilattice, (Fy, <), (F, <) and (F3, <) are metric lattices.

Note that if n < 4, the metric d introduced in [3] (for the definition see below) fulfils
the conditions M1 and M2.

2. DISTANCE POSET F}

In this section P will be any countable set (in fact, it could be of any infinite
cardinality). An order R of P will be said to be finite if R contains only finitely many
couples of distinct elements. Let F denote the system of all (non—isomorphic) finite orders
of P. It can be partially ordered by

R < S if there exists a bijective map f: P — P with f(R) C S.

Evidently (FZ,<) has the least element (the discrete order of P), but it contains no
maximal elements, so it is of infinite length.

Denote by F] the set of all orders R € F with the property that there exists an
n—element subset P’ of P satisfying

la,b] € R,a # b= {a,b} C P'.
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2.1. Theorem. For each n € N(F,, <) is isomorphic to (F} ,<). F, is an interval of
F* with the discrete order of P as the least element. Further F| C Fy C Fi C ... and
F* = UpenF?.

This statement is evident.

The preceding theorem yields immediately that (F*, <) is of locally finite length and
graded. So (F*, <) is a directed multilattice. If R, S € F, let us denote by RV, S(RA,S),
RV, S(R A, S) the set of all minimal upper bounds (maximal lower bounds) of {R, S} in
(F*,<) and (F], <), respectively. It is easy to verify:

2.2. Theorem. Let R,S € I} and let ny be the least positive integer such that both R
and S belong to I}, . Then RN, S = R Apy S,RVy S = Up>p, RV, S.

One can see that for any R, S € F; the set R A, S is finite. Since some R, S € F};
can have minimal upper bounds in various F; (cf. the following example), it is not quite
evident that the same holds for the set RV, S.

o o 11

Fig. 16 Fig. 17
A\. * )

Fig. 18 Fig. 19
./I\/. * /I\. I/I *

Fig. 20 Fig. 21

2.3. Example. Let R, S be as in Fig. 17 and Fig. 18, respectively. Then each of Figures
19, 20, 21 represents a minimal upper bound of {R, S}.

2.4. Theorem. For any R, S € F the set RV, S is finite.

Proof. Let R,S € F}, V € RV, S. We are going to show that V contains at most card
R+ card S couples of elements a,b with a <y b. Suppose that this is not the case. Let
f, g be bijective maps P — P satisfying f(R) C V,g(S) C V. Then there exist a,b with
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a <y b such that [a,b] ¢ f(R)Ug(S). Then in view of 1.2 V' — {]a, b]} is an order covered
by V. Evidently f(R) CV —{[a,b]}, g(S) C V —{][a,b]}, so V—{][a, b]} is an upper bound
of {R, S} less than V, a contradiction.

Using 1.7 and 2.2 we obtain:
2.5. Theorem. The multilattice (F, <) is not modular.
In view of 0.1 we have:
2.6. Corollary. The multilattice (F, <) is not a metric multilattice.

Nevertheless, there can be introduced a metric into Fj, but not satisfying both
M1 and M2. Namely, the metric d on the system F,, of all non-isomorphic orders of an
n—element set P,, defined in [3] by

d(R,S) = min {d¢(R,S): f is a permutation of P,},

where d¢(R,S) = card (f(R) — S) + card (S — f(R)), evidently yields a metric on F,
too.

In [4] there is proved that if R, S € F,, d(R,S) = §(R,S), where (R, S) is the
distance of vertices R, S of the covering graph of F,, (Th. 2.2). Further by 2.1 of [2]
d(R,S) = h(R)—h(S) (h denotes the height) provided that S < R, thanks to the fact that
(Fy, <) is a graded poset.

So we have:

2.7. Theorem. An order R € F} has the height k in the partially ordered set (F, <) if
and only if card {[a,b] € R:a # b} = k.

Proof. Evidently the height of R in (F}, <) is the same as in F),, if R € F),. Therefore
h(R) = k if and only if d(R,D) = k with D being the discrete order. But obviously
d(R,D) = card {[a,b] € R: a # b}.
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CONSISTENT ORTHOGONAL ATOMIC PARTITIONS

PETER MALICKY

ABSTRACT. The present paper defines consistent orthogonal atomic partitions of two elements
of an orthollatice. Then this notion is studied in the realm of ortholattices associated with a
vector space with a scalar product over an ordered field.

This paper deals with ortholattices in which every element is a union of finitely
many pairwise orthogonal atoms. Let us recall the notion of an ortholattice - [1], p. 75.

Definition 1. Let L be a lattice with element 0 and 1 and a mapping 1: L. — L,a —
s a* such that

0<a<l1 for any a € L
att=a for any a € L
(aAb)T =at Vb, (aVvb)t =at AbT for any a,be L
ahNat =0, aVat =1 for any a € L .

Then L is said to be an ortholattice. We define a L b if and only if a < b+, we say that a
and b are orthogonal in this case.

Definition 2. Let L be an ortholattice. A sequence ai,...,a; of pairwise orthogonal
atoms of L is said to be an orthogonal atomic partition of an element v € L, if u =
arV---Vag.

If v is another element of L with an orthogonal atomic partition bq,...,b,,, then these
two orthogonal atomic partitions are said to be consistent if a; L b; for 1 < 4 < k,
1 <j<mandi#j. (Relation a; L b; is not required.)

The definition of consistent orthogonal atomic partitions is motivated by
Theorem 1.

1991 Mathematics Subject Classification. 06C15, 12J15, 15A18.
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Example 1. Let F' be an ordered field and X be a finite dimensional vector space over F
with a scalar product - , i.e. symmetric bilinear positively defined form with values in F'.
The case F' = R is well known, see [2], pp. 432 — 465. Many results and basic notions may
be easily extended to the general case. We need mainly Gram-Schmidt ortogonalization,

i.e. the following procedure. Let u;, ..., u, be linearly independent vectors of X. Define
vectors ay, ..., a, by induction
k—1 (g - ;)
a1 =u; and ap = up — E Al A2 a; for 1<k<m.
(ai c

=1

Then we obtain an orthogonal system of vectors which generate the same subspace as
Ul, ..., Upy. S0, any subspace of X has an orthogonal basis. When any nonnegative element
of the field F' has a square root, then any orthogonal system may be orthonormalized.

Let L(X) be the lattice of all subspaces of X and put Ut ={v € X : u-v =0 for
all u € U} for a subspace U of X.
Then we obtain an ortholattice in which any element has an orthogonal atomic partition,
because any subspace of X has an orthogonal basis. Example 2 shows that consistent
orthogonal atomic partitions of two subspaces need not exist. On the other hand Theorem
2 gives a sufficient condition under which consistent orthogonal partitions exist.

Definition 3. Let F' be an ordered field and X be a finite dimensional vector space over
F with a scalar product - . A linear operator A : X — X is said to be selfadjoint if
(Az) -y =x- Ay for all z,y € X.

Let U be a subspace and P : X — X be a selfadjoint linear operator such that P? = P
and P(X) = U, then P is said to be the orthogonal projection onto U.

Proposition 1. Let F' be an ordered field, X be a finite dimensional vector space over F

with a scalar product and a1, ...,a; be an orthogonal basis of a subspace U of X. Then
k1 .
the formula Pr = ) (z - a:)

=1 (a; - a;)

a; defines uniquely the orthogonal projection onto U.

Theorem 1. Let X be a finite dimensional real vector space with a scalar product and
U and V' be subspaces of X with dim(U) = ky and dim(V) = ko. Then there are bases
ai,...,ag, and by,..., by, of U and V respectively such that

(1) lail| =1 = ||bj]| for 1 <i<kyandj<ky
(2) a;-a; =0 for 1<i<j<k
(3) bi-bj =0 for 1 <i<j<ko
(4) a;-b; =0 for i#£j, 1 <i<kyandl<j<ko
(5) a; -b; >0 for 1 <i < min(ky, ko)
The following Lemma shows the properties which the bases aq,...,ar, and by,...,

b, must have.
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Lemma 1. Let F' be an ordered field, X be a finite dimensional vector space over F' with
a scalar product, U and V' be subspaces of X with bases a1,...,ax, and by,...bg,, which
satisfy relations (2) - (4). Then all a; are eigenvectors for PQ and all b; are eigenvectors
for QP, where P and () denote orthogonal projections onto U and V respectively.

Proof. Since ai,...,ar, and by,...,bg, form orthogonal bases of U and V then Px =

ki (x-ay) k2 (x - b;)

= a; and Qx =
,; (a; - a;) ,; (bi - b;)

We may assume kq < ko. For 1 < i < ky relation (4) implies

(a; ai)ai and Qa; = (i - by) b; .

b; for all z € X by Proposition 1.

Pb; =

Therefore
(a; - b;)? (a; - b;)?

(ai - a;)(bi - b;) (ai - a;)(bi - b;)
which means that a; and b; are eigenvectors for PQ) and QP. If ky <4 < ko then Pb; =0
and QPb; = 0 and b; is an eigenvector for QP.

PQCLZ' = a; and QPb, = bz s

Proof of Theorem 1. Let P and @ be the orthogonal projections onto U and V respec-
tively. Let uy € U and uy € U. Then (PQuy) - us = (Qui) - (Puz) = Quq - ug =
= uy - Quy = Puy - Qua = uy - (PQus), which means that the restriction of PQ onto U
is a selfadjoint linear operator. There is an orthonormal basis a1, ...,a; of U such that
PQa; = \;a; for some \; € R, see [2], p. 461. Now, consider the elements Qa;. Let
1 ;é ] and Z,j S {1,...,k1}. Then a; ~Qaj = Pai 'QCL]' = a; 'PQCL]' = a; ()\ja]-) =
= Aj(a; - a;) =0 and

(Qai - Qaj) = (a; - Q%a;) = (a; - Qa;j) =0 .
Put k3 = dim(Q(U)). Obviously ks < min(ky, k2). We may assume that Qa; # 0 for

1 <3 <ksand Qai =0 for k3 <1 < ky. Put bj = ||ga3|| for 1 S] < k3. If ks = kz, the
a;
proof is complete. If k3 < ko, take an orthonormal basis ¢y, ..., cx,_k, of VN Q(U)L and

put by, 4; = c; for 1 < j < k3 — ky. It is sufficient to verify a; -¢; =0 for 1 <7 < k; and
1 <j<ky—ks. Wehavea; c; =a;-(Qcj) =(Qa;)-c; =0.

Example 2. Let X be Q* with the standard scalar product, u; = (1,0,0,0), uy =
= (0,1,0,0), vy = (1,1,1,1), v2 = (1,-2,—2,3), U and V be linear spans of uy, uy and
v1, vz respectively. Note that uy L us and vy L us. Using Proposition 1, it is easy to see
that PQuq = %(Hul + 5ug) and PQuy = 3—16(5u1 + 17ug). It means that the restriction

of P(Q) onto U has the matrix % (él 1?) with respect to the basis {uy, us}. The eigenvalues
of this matrix are 55(14 + v/34), which are irrational and PQ has no eigenvectors in U.

By Lemma 1. consistent orthogonal atomic partitions of U and V' do not exist.

Example 2 and Lemma 1 indicate that the existence of consistent atomic partitions
for subspaces U and V is connected with the solvability of algebraic equations over the
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field F'. In fact, in Theorem 1 is essential only the fact, that the field or real numbers
is a maximal ordered field ([3], pp. 276 — 282), which means that every polynomial is a
product of linear polynomials and quadratic polynomials with the negative discriminant.
The following theorems shows that the condition of maximality of the ordered field F' may
be weakened according to dim(X).

Theorem 2. Let X be a n-dimensional vector space with a scalar product over an or-
dered field F' with the property, that any polynomial of the degree < [%] is a product of
linear polynomials and quadratic polynomials with the negative discriminant. Then for
any vector subspaces U and V of X there are bases aq,...,ar, and by, ..., by, satisfying
relations (2) - (5). Relation (1) may be satisfied whenever every nonnegative element of F'
has a square root, which is automatically satisfied for n > 4.

Proof. The case n < 3 may be easily studied. So, assume n > 4. In this case any
nonnegative o € F' must have a square root, because g(A\) = A2 — « is a polynomial of
degree < [§] with the nonnegative discriminant and it must be reducible. We may assume
dim(U) < dim(V'). We have

n > dim(U + V) = dim(U) + dim(V) — dim(U N V) > [dim(U) — dim(U N V) ]+
+ [dim(V) — dim(U N V)] > 2[dim(U) — dim(U N V)],

which implies [dim(U) — dim(U NV)] < [§].

Analogically to Theorem 1. the restriction of PQ onto U is a selfadjoint linear
operator. Denote this restriction by A. Let f(A) be the characteristic polynomial of A.
For x € UNV we have Az = PQx = z. It means that f(A) is divisible by (A — 1)™,
where m = dim(U N'V). Therefore f(A) = (A — 1)™g(A), where deg(g) = deg(f) —m =
= dim(U) —dim(UNV) < [§]. Since deg(g) < [§], the polynomial g is a product of linear

and quadratic polynomials with the negative discriminant. Let K be the complexification
deg g
of F. Then g(A\) = [] (A—=X\;), where \; € K. Every J; is an eigenvalue of the selfadjoint

i=1
operator A and in fact A; € F. (The proof of this fact is fully analogical to the case
F = R For this case see [2], p. 460.) Now, analogically to the real case ([2], p. 461)
using induction it may be constructed an orthonormal basis a1, ..., ag, of U consisting of

eigenvectors of A. The proof may be finished in the same way as the proof of Theorem 1.

Let K be either the complexification of an ordered field F' or the quaternion algebra
over F'. All results of this paper may be reformulated for the case, when F' is replaced by
K. The axioms for the scalar product are the following

r-y€ K forall z,ye X
y-xv=(v-y)

(az) -y =afz-y)
(T1+m2) y=m1-y+m2-Yy
x-x>0forx#£0.
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(If z-y = a+0i, then (z-y)* = a—pFi. If z-y = a+Gi+vyj+0k, then (z-y)* = a—Fi—vyj—0k.)

In the reformulation of Theorem 2 F' has the same property and X is a vector space
over K.

It would be interesting to characterize the class of ortholattices in which any two
elements have consistent orthogonal atomic partitions. By the results of the present paper
this problem is connected with eigenvalues when it is considered in the realm of ortholat-
tices associated with a vector space with a scalar product over an ordered field. So, in a
general case this problem may be difficult. Therefore any partial result will be interesting.
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STRONGLY IRREDUCIBLE STRINGS

BOHUSLAV SIVAK

ABSTRACT. The ”strong irreducibility” of strings is defined and it is proved that certain
special strings of 0’s and 1’s are strongly irreducible. This fact has found an application (see
[1]) in the study of discrete dynamic systems by the methods of the symbolic dynamics.

1. Introduction

Let T be a finite set of symbols. The string over 7T is a finite sequence of symbols
from the set T'. The length of the string w is the number of symbols in the string w, this
number will be denoted by |w|. For example, |abac| = 4. The empty string will be denoted
by e. Trivially, || = 0. The concatenation of the strings v and v will be denoted by u - v
or by uv. For example, the concatenation of the strings v = 001, v = 10 is the string
uv = 00110. The concatenation of several identical strings will be written in the form of

the formal power: u° = ¢, u' = u, u? = uu, etc.

Definition. Let B be a string over T'. The string B is called reducible iff it can be written
in the form

B =Wk, k> 2.

The string B is called irreducible iff it is not reducible. The string B is called
strongly irreducible iff the following two conditions are satisfied:

(1) - the string B is irreducible,
(2) - the string A™ B is irreducible for every m > 2 and every irreducible string A # B.

Examples. Put T' = {0,1}. Following strings over T are reducible:
e, 00, 11, 000, 111, 0000, 0101, 1010, 1111.

Following strings are irreducible:
0, 1, 01, 10, 001, 010, 011, 100, 101, 0010.

It is easy to see that the string 01 is strongly irreducible. The string 1001 is irre-
ducible but not strongly irreducible. In fact,

1991 Mathematics Subject Classification. 20M35.
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(010)% - 1001 = (01001)2.

Similarly, the string 10101011 is irreducible but not strongly irreducible. In fact,
(01)3-10101011 = (0101011)2.

This example can be generalized: for every integer m > 2, the string (10)™ - 11 is
irreducible but not strongly irreducible.

Definition. Let U be a string of the length > k. The string Pref(U) is the prefix of the
length k. Similarly, the string Post fx(U) is the postfix of the length k.

Examples. The string 011010 has the following prefixes:
e, 0, 01, 011, 0110, 01101, 011010.

The same string has the following postfixes:
e, 0, 10, 010, 1010, 11010, 011010.

We leave to the reader the verification that the prefixes and the postfixes of the
string 1111 are idenical.

Lemma 1.1. Let D, E be arbitrary strings and let x, y be positive integers such that
D* = EY. Then there exist positive integers ¢, j and a string Z such that
D=7 E=27,

Remark. A common generalization of our Lemma 1.1, Lemma 1.2 and Lemma 1.3 is
proved in [2].

Proof of Lemma 1.1. We can assume that the strings D, E are nonempty. Let ¢ = (z,y)
be the greatest common divisor of the integers x,y. Then

x=c-j,y=c-i, (i,j) = 1.

By the assumption of the lemma,

l)c~j:E'c~i7
c-j-|D|=c-i-|E]
j-|D|=i-|El

By the last equality, there exists a positive integer h such that
DI =h-i, |B|=h-j

The string D7 = E* can be uniquely written in the form
Di=E'=27,-Z5...Z;;,
%1 =12%2] = - = |Zij] = h.
By these equalities,
D=7 ...27;,
D = Zi—i—l N ZQ.,',

D= Zi~(j—1)+1 ... le,
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Consequently, Z,, = Z, whenever the difference of the indexes p, ¢ is a multiple of
¢. Similarly,
E=17...2;,
E=7Zj1... %5,

E = Z(i—l)-j—{—l o Zz]

and Z, = Z, whenever the difference of the indexes p, ¢ is a multiple of 5. We know
that (i,7) = 1. It follows that all of the strings Zy, Zs,..., Z;.; are identical.

Lemma 1.2. Let D, E be irreducible strings and let z, y be positive integers such that
D* = EY. Then
r=vy, D=F.

Proof. It suffices to apply Lemma 1.1.

Lemma 1.3. Let D, E be irreducible strings and let z, y be positive integers such that
D* -EY=FEY.-D* Then D = FE.

Proof. Suppose the assertion of this lemma is false. Then we can choose a counterexample

(D, E,z,y) such that the length of the string D* - E¥ is minimal. We can assume the

inequality |D| < |E| in this counterexample. Several powers of the string D can be prefixes

of the string E (trivially, D° is a prefix of the string F). Let ¢ be the maximal integer

such that the string D? is a prefix of the string £. Then we can write F in the form
E=D1-F, D is not a prefix of F.

Substituting the last equation into the assumption of lemma, we obtain
D*.(D1-F)! = (D1 F)!. D",
Put W = (D4 F)”"". Then we can write
D*te.F. W =D1.-F.-W - D®,
D*-(F-W)=(F-W)-D=.
The string D is not a prefix of F', and so the string F' is a prefix of D. Now it is
easy to check that |F' - W| < |EY|. By our assumption of the minimality, the string F'- W
is a power of the string D:
F-(D1-FY'=D% 2z>1,
EY=(D1-F)Y =D1-F-W = DIt%

contrary to Lemma 1.2.

Lemma 1.4. Let D, E be arbitrary strings such that the string DFE is irreducible and
DFE = ED. Then exactly one of the strings D, E is empty.

Proof. It suffices to apply Lemma 1.3.
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2. The fundamental theorem

Lemma 2.1. Let A, C be irreducible strings and let B be arbitrary string such that
Am.B=C* m>2, k>2 |A<|C|<m-]|A|

Then there exist non-empty strings F', G and a non-negative integer s such that
A= (FGQ)’T . F, C=A""1.FG,
B=GF-A""?%.FG . CF2.

Proof. The string A is a prefix of the string C' and the string C' is a prefix of the string
A™. Therefore we can write the string C in the following form:
C=A"-D, 0<|D|<]A|, 1<r<m.

(The equality D = & would contradict the irreducibility of C.) Substituting the
equality C' = A" - D into the assumption of lemma, we obtain
A™ . B = (A" - D)¥,
A™.B=A".D.(A"-D)" 1,
AmT.B=D.(A"-D)* "

It follows immediately that the string D is a prefix of A:
A=D-E, |E|>0,
DE-(DE)Y" " *.B=D.(DE)"-D" ',
E-(DE)""'.B=(DE)"-D" ",
The inequality m —r —1 > 0 would contradict Lemma 1.4. It follows that r = m —1
and
E-B=(DE)".D" "
Let s be the maximal integer such that the string D? is a prefix of the string E.
Then there exists a string F' such that
E=D*-F, D isnot a prefix of F.

The strings A, C', E - B can be written as follows:
A=D-E =D F
C=Am"1.D,

m— k—
D F.-B= (D . )" . p)

From this we conclude that

F-B=DF-(D**'-F)"?.D. (D' - F)" ' . D)

We know that the string D is not a prefix of F', and so the string F' is a (proper)
prefix of D:
D=F-G, 0<|G|<|D|.

Substituting this equality into the preceding ones, we complete the proof.
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Lemma 2.2. Let A, C' be irreducible strings and let B be arbitrary string such that
Am.B=C* m>2, k>2, |C|>m-]|A|

Then there exists a non-empty string D such that
C=A".-D, B=D--Ck1,

Proof. The string A™ is a prefix of the string C'. It follows that there exists a string D
such that C' = A™- D. (The string D is non-empty because C'is irreducible.) Substituting
this equation into the assumption of lemma, we obtain
A™. B = (A™. D),
A™.B=A™.D.(A™. D)
B=D-(A™.D)""' = D.Ck1,

Theorem 2.1. Let A, C be irreducible strings and let B be arbitrary string such that
A™.B=CF, m>2, k>2.

Then there is satisfied exactly one of the following three conditions:
(1) C = A, B= AF—m,
(2) there exist non-empty strings F', G and a non-negative integer s such that
A= (FG)T . F, C=A""1.FG,
B=GF- -A™2.FG.CF?2,
(3) there exists a non-empty string D such that
C=A".-D, B=D-Ck1,

Proof. According to Lemma 2.1 and Lemma 2.2, we can suppose that
0<|C| <A

The string A is a prefix of the string C* and so it can be written in the form
A=C"-D, r>1, 0<|D|<|C|.

Substituting this equality into the assumption of the lemma, we obtain
(CT-D)™-B=CF,
Cr-D-(C"-D)"'.B=CF,

D-(CT-DY" . B=CkT.
Therefore the string D is a proper prefix of the string C"

C=D-E, |E|l>0,
D-((DE)"-D)"""-B=(DE)*",
D-((DE)"-D)™'-B=DE - (DE)*"1,

(DE)"-D)" '-B=E-(DE)* """,

Applying the prefix of the length |DFE|, we obtain DE = ED, contrary to Lemma
1.4.

Theorem 2.2. Let the string B be irreducible but not strongly irreducible. Then B can
be written in the form

B=G-F-H-F-G,
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where H is an arbitrary string and F', G are non-empty strings.
Proof. Apply Theorem 2.1.

Corollary. Every string of the length 3 containing at least two different symbols is
strongly irreducible.

Remark. The condition in Theorem 2.2 is necessary but not sufficient. For example, the
string 10101 is strongly irreducible and the string 11111 is not irreducible.

3. Applications to concrete strings

Put T = {0,1}. Every non-negative integer j < 2™ can be uniquely written in the
form of a string over T of the length n. This string will be denoted by Cod(n,j). For
z €T, put

B(n,z) = Cod(n,0) - Cod(n,1)...Cod(n,2" — 1) - z.

Example. Put n = 3. Then

Cod(3,0) = 000, Cod(3,1) = 00L,
Cod(3,2) = 010, Cod(3,3) = 011,
Cod(3,4) = 100, Cod(3,5) = 101,
Cod(3,6) =110, Cod(3,7) = 111,
B(3,0) = 0000010100111001011101110,
B(3,1) = 0000010100111001011101111.

Lemma 3.1. The string B(n, z) is irreducible.

Proof. For any string w over T, the number of the occurences of the symbols x in w is
usually denoted by #,(w). It is evident that

[#0(B(n,2)) — #1(B(n, 2))| = 1.

If the string B(n, z) would not be irreducible, we could write
B(n,z)=K™, m>?2

and both numbers #o(B(n, 2)), #1(B(n, z)) would be multiples of m, a contradic-
tion.

Lemma 3.2. The string B(n, z) can not be written in the form
B(n,z)=G-F-H-F -G,

where H is an arbitrary string and F', G are non-empty strings.
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Proof. Suppose, contrary to our claim, that the string B(n, z) can be written in the form
B(n,z)=G-F-H-F -G,

where H is an arbitrary string and F', G are non-empty strings. Let us denote
d=|GF|=|FG|.

The symbol 1 occurs in the strings GF' and F'G. Consequently, d > 2n. Moreover,
it is obvious that
Prefy,(B(n,z)) = 021 .1,
Post fany1(B(n, 2)) € {1"~t01m0, 1"~ t01"+1}

and the string 0>"~! has only one occurence in B(n, z) - in the role of the prefix.
The rest of this proof is left to the reader.

Theorem 3.1. For every positive integer n and every z € {0,1}, the string B(n,z) is
strongly irreducible.

Proof. It suffices to apply Theorem 2.2, Lemma 3.1 amd Lemma 3.2.
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