ON ALMOST COMPLEX STRUCTURES ON FIBRE BUNDLES

Anton Dekrét

ABSTRACT. If α is an almost complex structure on a manifold M then there is not a connection on M induced by α . In this paper the problem of connections on a fibre bundle $\pi: Y \to M$, dim M = dim of fibres, which can be constructed from a given almost complex structure α on M only is explored.

INTRODUCTION

Let α be an almost complex structure (ACS) on a manifold M, dim M=2m, α is a (1,1)-tensor field on M such that $\alpha^2=-Id_{TM}$. It is known, see [3], [4], that there is no connection on M, linear connection on the tangent bundle $p_M:TM\to M$, which is canonically induced by α . If α is an ACS on a fibre bundle $\pi:Y\to M$, dim M is the dimension of fibres, then the question of connections on Y entirely determined by α arises. Examples of such fibre bundles are $p_M:TM\to M$ and the cotangent bundle $\pi:T^*M\to M$. In this paper we construct connections from the given (1,1)-tensor field α on Y with emphasis on the ACS-case. If Y=TM then there are some special geometric objects on TM which are in interesting relations to our topic. We have discussed them in [2]. In this paper all maps and manifolds are supossed to be smooth.

Connections and almost complex structures on Y

Let (x^i, y^i) be a local fibre chart on a fibre bundle $\pi: Y \to M$, dim M is the dimension of fibres

Let us recall that a connection Γ on TY can be considered as a (1,1)-tensor field h_{Γ} (horizontal form of Γ), such that $T\pi h_{\Gamma} = T\pi, h_{\Gamma}(VY) = 0$, where $T\pi$ is the tangent map of the map π and VY is the vector bundle of all vertical vectors on Y, $h_{\Gamma} = dx^i \otimes \partial/\partial x^i + \Gamma^i_j(x,y)dx^j \otimes \partial/\partial y^i$. Then $h_{\Gamma}(TY) = H\Gamma$ is the so-called horizontal subbundle of Γ ; $(x^i, y^i, dx^i, dy^i) \in H\Gamma$ if and only if $dy^i = \Gamma^i j dx^j, \Gamma^i_j(x,y)$ are said to be the functions of Γ .

Let $\alpha = (a^i_j(x,y)dx^j + b^i_j(x,y)dy^j) \otimes \partial/\partial x^i + (c^i_j(x,y)dx^j + h^i_j(x,y)dy^j) \otimes \partial/\partial y^i$ be a (1,1)-tensor field on Y. It is called vertical if $\alpha(VY) \subset VY$.

Denote $B: T\pi\alpha|_{VY} = b_i^i dy^j \otimes \partial/\partial x^i$.

It means that B can be considered as a vector bundle morphism $VY \to TM$ over π or $VY \to Yx_MTM$ over $Id|_Y$, i.e. as a section $Y \to V^*Y \otimes_Y TM$.

¹⁹⁹¹ Mathematics Subject Classification. 53C05, 58A20.

Key words and phrases. almost complex structure, tensor fields, connections.

Lemma 1. A (1,1)-tensor field α is vertical iff B=0.

Proof is evident from the local form of α and B.

Remark 1. If B is regular, i.e. if it is an isomorphism, then we get the inverse vector bundle isomorphism $B^{-1}: Yx_MTM \to VY$ over $Id|_Y$, i.e. a section $B^{-1}: Y \to T^*M \otimes \otimes_Y VY, B^{-1} = \tilde{b}^i_j dx^j \otimes \partial/\partial y_i, \tilde{b}^i_k b^k_j = \delta^i_j$, i.e. a semibasic (1,1)-vector form with values in VY.

We will consider two cases.

1. $B \neq 0$, i.e. $\alpha(VY) \not\subset VY$, i.e. α is not vertical.

Let $\Gamma, dy^i = \Gamma^i_j dx^j$, be a connection on Y. Let $X = \eta^i \partial/\partial y^i$ be an arbitrary vertical vector on Y. Then $\alpha(X) = b^i_j \eta^j \partial/\partial x^i + h^i_j \eta^j \partial/\partial y^i$ is Γ -horizontal, i.e. $\alpha(X) \in H\Gamma$, if and only if $\Gamma^i_k b^k_j \eta^j = h^i_j \eta^j$. It means that $\alpha(VY) \subset H\Gamma$ iff

$$\Gamma_k^i b_i^k = h_i^i.$$

It immediately gives

Proposition 1. If and only if B is regular there is a unique connection Γ^2_{α} on Y such that $H\Gamma^2_{\alpha} = \alpha(VY)$.

The relation (1) induces that if B is regular then the functions of the connection Γ^2_{α} are $\Gamma^i_j = h^i_k \tilde{b}^k_j$.

We will construct another connections on Y when B is regular. Let $X = \xi^i \partial/\partial x^i + \eta^i \partial/\partial y^i$ be a vector on Y. Then $\alpha(X) = (a_j^i \xi^j + b_j^i \eta^j) \partial/\partial x^i + (c_j^i \xi^j + h_j^i \eta^j) \partial/\partial y^i$ is vertical if and only if

$$a_j^i \xi^j + b_j^i \eta^j = 0.$$

This leads

Proposition 2. If and only if B is regular there is a unique connection Γ^1_{α} on Y such that $\alpha(H\Gamma^1_{\alpha}) = VY$, i.e. with the functions $\Gamma^i_i = -\tilde{b}^i_k a^k_i$.

Remark 2. Recall that if φ is a semibasic (1,1)-form on Y with values in VY, i.e. if φ is a section $Y \to T^*M \otimes_Y VY$ and h_{Γ} is the horizontal form of a connection Γ on Y then $h_{\Gamma} + \varphi$ is the other connection on Y. So if B is regular then $h_{\Gamma^1_{\alpha}} + cB^{-1}$ and $h_{\Gamma^2_{\alpha}} + cB^{-1}$, $c \in \mathbb{R}$, are another connections on Y.

The (1,1)-tensor form α is a vector bundle morphism $TY \to TY$ over $Id|_{TM}$. Then

$$\alpha^2 = \alpha\alpha = \left[(a_s^i a_j^s + b_s^i c_j^s) dx^j + (a_s^i b_j^s + b_s^i h_j^s) dy^j \right] \otimes \partial/\partial x^i + \left[(c_s^i a_j^s + h_s^i c_j^s) dx^j + (c_s^i b_j^s + h_s^i h_j^s) dy^j \right] \otimes \partial/\partial y^i.$$

So α is an ACS on Y, i.e. $\alpha^2 = -Id|_{TY}$, iff

$$(3) \quad a_{s}^{i}a_{j}^{s}+b_{s}^{i}c_{j}^{s}=-\delta_{j}^{i}, \quad a_{s}^{i}b_{j}^{s}+b_{s}^{i}h_{j}^{s}=0, \quad c_{s}^{i}a_{j}^{s}+h_{s}^{i}c_{j}^{s}=0, \quad c_{s}^{i}b_{j}^{s}+h_{s}^{i}h_{j}^{s}=-\delta_{j}^{i}.$$

It is easy to see that if B is regular then the third and fourth equations of the relations (3) are the consequence of the first and second ones.

Proposition 3. Let α be a (1,1)-tensor field on Y such that B is regular. Then $\Gamma^1_{\alpha} = \Gamma^2_{\alpha}$ if and only if α^2 is vertical.

Proof. α^2 is vertical iff the second equation of (3) is satisfied, i.e. iff $a_j^i = b_s^i h_k^s \tilde{b}_j^k$. Then ${}^1\Gamma_j^i = -\tilde{b}_s^i a_j^s = h_k^i \tilde{b}_j^k = {}^2\Gamma_j^i$. Conversally, if $\Gamma_\alpha^1 = \Gamma_\alpha^2$ then $-\tilde{b}_s^i a_j^s = h_s^i \tilde{b}_j^s$, i.e. $-a_s^i b_j^s = b_s^i h_j^s$, i.e. α^2 is vertical.

We will focus ourselves to the connections Γ which are invariant according to α , i.e. $\alpha(H\Gamma) \subset H\Gamma$.

Let $h_{\Gamma} = dx^i \otimes \partial/\partial x^i + \Gamma^i_j dx^j \otimes \partial/\partial y^i$ be an arbitrary connection on Y. Then

$$\alpha h_{\Gamma} = (a_i^i + b_k^i \Gamma_i^k) dx^j \otimes \partial/\partial x^i + (c_i^i + b_k^i \Gamma_i^k) dx^j \otimes \partial/\partial y^i.$$

Let $\overline{\Gamma}$ be another connection given by the equation $dy^i = \overline{\Gamma}^i_j dx^j$. Then $\alpha(H\Gamma) \subset H\overline{\Gamma}$ if and only if

(4)
$$\overline{\Gamma}_k^i(a_j^k + b_u^k \Gamma_j^u) = c_j^i + h_k^i \Gamma_j^k \quad \text{or} \quad$$

(5)
$$c_j^i = \Gamma_k^i a_j^k - h_k^i \Gamma_j^k + \Gamma_k^i b_u^k \Gamma_j^u \quad \text{for } \overline{\Gamma} = \Gamma.$$

Consider the space $VY \otimes_Y T^*M$ of all semibasic VY-valued (1,1)-forms on Y. Let $\gamma = \gamma_i^i dx^j \otimes \partial/\partial y^i \in T^*M \otimes_Y VY$. Denote

$$\alpha^{-}: \gamma \to \alpha \gamma = b_t^i \gamma_j^t dx^j \otimes \partial/\partial x^i + h_t^i \gamma_j^t dx^j \otimes \partial/\partial y^i, \ T^*M \otimes_Y VY \to T^*M \otimes TY,$$

$$\alpha^{+}: \gamma \to \gamma \alpha = (\gamma_k^i a_j^k dx^j + \gamma_k^i b_j^k dy^j) \otimes \partial/\partial y^i, \ T^*M \otimes_Y VY \to T^*Y \otimes VY.$$

Note that if B is regular then $\alpha^-(B^{-1}) = h_{\Gamma^2_{\alpha}}$ and $\alpha^+(B^{-1})$ is the vertical form $v_{\Gamma} = Id_{TY} - h_{\Gamma^1_{\alpha}}$ of the connection Γ^1_{α} .

Definition 1. Two (1,1)-tensor fields α_1, α_2 on Y will be called (+, -)-equivalent if $\alpha_1^- = \alpha_2^-, \ \alpha_1^+ = \alpha_2^+$.

It is evident that the relations ${}^{1}a_{j}^{i}={}^{2}a_{j}^{i}$, ${}^{1}b_{j}^{i}={}^{2}b_{j}^{i}$, ${}^{1}h_{j}^{i}={}^{2}h_{j}^{i}$ are the coordinate conditions for α_{1},α_{2} to be (+,-)-equivalent.

The relation (4) immediately yields

Proposition 4. Let $\Gamma, \overline{\Gamma}$ be connections on Y. Then in every class of the (+, -)-equivalent (1,1)-tensor fields on Y there exists a unique (1,1)-tensor field $\alpha_{\Gamma,\overline{\Gamma}}$ such that $\alpha_{\Gamma,\overline{\Gamma}}(H\Gamma) \subset H\overline{\Gamma}$.

If $\Gamma = \overline{\Gamma}$ then we use the denotation α_{Γ} instead of $\alpha_{\Gamma,\Gamma}$.

Proposition 5. Let α be such a (1,1)-tensor field on Y that B is regular. Then $\alpha_{\Gamma^1_{\alpha}} = \alpha_{\Gamma^2_{\alpha}}$ and $\alpha_{\Gamma^1_{\alpha}}$ cannot be an almost complex structure on Y.

Proof. By the relation (5) in both cases of Γ^1_{α} and Γ^2_{α} we get $c^i_j = h^i_t \tilde{b}^t_s a^s_j$. So $\alpha_{\Gamma^1_{\alpha}} = \alpha_{\Gamma^2_{\alpha}} = (a^i_j dx^j + b^i_j dy^j) \otimes \partial/\partial x^i + (h^i_t \tilde{b}^t_s a^s_j dx^j + h^i_j dy^j) \otimes \partial/\partial y^i$.

If $\alpha_{\Gamma_{\alpha}^{1}}$ is an ACS then the first and second equations of (3) read

$$a_s^i a_j^s + b_s^i h_t^s \tilde{b}_k^t a_j^k = -\delta_j^i, \quad \tilde{b}_t^i a_j^t + h_t^i \tilde{b}_j^t = 0.$$

Then $a_s^i a_j^s - b_s^i \tilde{b}_t^s a_k^t a_j^k = -\delta_j^i$. It is not possible. So $\alpha_{\Gamma_\alpha^1}$ cannot be an almost complex structure on Y.

Definition 2. Let $(1,1)_B$ denote the set of all (1,1)-tensor field α on Y such that B is regular. We will say that two (1,1)-tensor field $\alpha_1, \alpha_2 \in (1,1)_B$ are (+)-equivalent if $\alpha_1^+ = \alpha_2^+$.

In coordinates, α_1 and α_2 are (+)-equivalent iff ${}^1\!a^i_j = {}^2\!a^i_j$, ${}^1\!b^i_j = {}^2\!b^i_j$, $\det^1\!b^i_j \neq 0$, $\det^2\!b^i_i \neq 0$.

Proposition 6. In every class of all (+)-equivalent (1,1)-tensor fields there is a unique almost complex structure on Y.

Proof in coordinates. A class of all (+)-equivalent (1,1)-tensor fields is given by the local functions $a_j^i, b_j^i, \det b_j^i \neq 0$. By the first and second equations of the relation (3) a tensor field of this class is an ACS iff $c_j^i = -\tilde{b}_j^i - \tilde{b}_k^i a_s^k a_j^s, \ h_j^i = -\tilde{b}_s^i a_s^k b_j^k$. It completes our proof.

Remark 3. The same can be said for the class of (-)-equivalent tensor fields.

Remark 4. If α is an ACS on Y then α is vertical and so $\Gamma^1_{\alpha} = \Gamma^2_{\alpha}$.

Proposition 7. Let Γ be a connection on Y. Let $B: Y \to V^*Y \otimes_Y TM$, $B = b^i_j dy^j \otimes \partial/\partial x^i$, be a vector bundle isomorphism $VY \to TM$ over π . Then there exists a unique almost complex structure α on Y such that $T\pi\alpha|_{VY} = B$ and $\Gamma^1_\alpha = \Gamma = \Gamma^2_\alpha$.

Proof. Let Γ_j^i be the functions of Γ . Let α be an arbitrary (1,1)-tensor field on Y such that $T\pi\alpha|_{VY} = B$ and $\Gamma_{\alpha}^1 = \Gamma = \Gamma_{\alpha}^2$. Then $\Gamma_j^i = -\tilde{b}_k^i a_j^k$, $\Gamma_j^i = h_k^i \tilde{b}_j^k$, i.e. $a_j^i = -b_s^i \Gamma_j^s$, $h_j^i = \Gamma_s^i b_j^s$ and the second equation of (3) is satisfied. By the first equation of (3) α is an ACS iff $c_j^i = -\tilde{b}_j^i - \Gamma_s^t b_u^s \Gamma_j^u$. So such an ACS locally exists and is unique.

We are turning to the second case of α .

2. Let
$$B=T\pi\alpha|_{VY}=0$$
, i.e. $\alpha(VY)\subset VY$. We have
$$\alpha=a^i_jdx^j\otimes\partial/\partial x^i+(c^i_jdx^j+h^i_jdy^j)\otimes\partial/\partial y^i,$$

$$A:=T\pi\alpha=a^i_jdx^j\otimes\partial/\partial x^i$$

 $H := \alpha|_{VY} = h_i^i dy^j \otimes \partial/\partial y^i.$

So A is a section $Y \to T^*M \otimes_Y TM$ determining a vector bundle morphism $TY \to TM$ over $\pi: Y \to M$ or $Yx_MTM \to Yx_MTM$ over Id_Y and H is a section $Y \to V^*Y \otimes VY$ determining a vector bundle morphism $VY \to VY$ over Id_Y .

Let $\Gamma, \overline{\Gamma}$ be two connections on Y with the local functions $\Gamma_j^i, \overline{\Gamma}_j^i$. When B = 0 the equations (4) and (5) read

$$(4') c_j^i = \overline{\Gamma}_k^i a_j^k - h_k^i \Gamma_j^k,$$

(5')
$$c_j^i = \Gamma_k^i a_j^k - h_k^i \Gamma_j^k.$$

Proposition 4 can be reformulated as follows

Proposition 8. Let $H: Y \to V^*Y \otimes VY$, $A: Y \to T^*M \otimes_Y TM$ be two sections. Let $\Gamma, \overline{\Gamma}$ be two connections on Y. Then there is a unique vertical (1,1)-tensor field $\alpha(A,H,\Gamma,\overline{\Gamma})$ on Y such that $\alpha|_{VY} = H$, $T\pi\alpha = A$, $\alpha(H\Gamma) \subset H\overline{\Gamma}$.

If $\Gamma = \overline{\Gamma}$ we use the denotation $\alpha(A, H, \Gamma)$ instead of $\alpha(A, H, \Gamma, \overline{\Gamma})$.

In the case of a vertical (1,1)-tensor field α the coordinate conditions (3) for α to be an ACS are of the form

(3')
$$a_s^i a_j^s = -\delta_j^i, \quad c_s^i a_j^s + h_s^i c_j^s = 0, \quad h_s^i h_h^s = -\delta_j^i.$$

Preserving the above denotations we have the following vector bundle morphism on $T^*M \otimes_Y VY$ over Id_Y :

$$H^{-}: \gamma \to H\gamma = h_{k}^{i} \gamma_{j}^{k} dx^{j} \otimes \partial/\partial y^{i}, \ \gamma \in T^{*}M \otimes_{Y} VY, \text{ so } H^{-} = \alpha^{-},$$

$$A^{+}: \gamma \to \gamma A = \gamma_{k}^{i} a_{j}^{k} dx^{j} \otimes \partial/\partial y^{i}, \text{ so } A^{+} = \alpha^{+},$$

$$\mathcal{H}: A^{+} - H^{-}: \gamma \to (\gamma_{k}^{i} a_{j}^{k} - h_{k}^{i} \gamma_{j}^{k}) dx^{j} \otimes \partial/\partial y^{i},$$

$$\overline{\mathcal{H}}: = A^{+} + H^{-}: \gamma \to (\gamma_{k}^{i} a_{j}^{k} + h_{k}^{i} \gamma_{j}^{k}) dx^{j} \otimes \partial/\partial y^{i}.$$

The relation (5') immediately gives

Proposition 9. Let α be a such vertical (1,1)-tensor field on Y that the map \mathcal{H} is a vector bundle isomorphism on $T^*M \otimes_Y VY$ over Id_Y . Then there is a unique connection Γ on Y such that $\alpha(H\Gamma) \subset H\Gamma$.

Lemma 2. If a vertical (1,1)-tensor field α is an almost complex structure on Y then the maps \mathcal{H} and $\overline{\mathcal{H}}$ are not isomorphisms on $T^*M \otimes_Y VY$.

Proof. The map $(H^- + A^+)\mathcal{H} = H^-\mathcal{H} + A^+\mathcal{H} : \gamma \to (h_t^i \gamma_k^t a_j^k - h_t^i h_k^t \gamma_j^k) + (\gamma_t^i a_k^t a_j^k - h_t^i \gamma_k^t a_j^k)$ is a vector bundle morphism on $T^*Y \otimes_Y VY$. If α is on ACS on Y then by (3') we get $(H^- + A^+)\mathcal{H} = 0$. If \mathcal{H} is regular then $H^- + A^+ = 0$. But the equation $H\gamma = -\gamma A$ is satisfied for all $\gamma \in T^*M \otimes_Y VY$ if and only if $H = k \cdot Id = -A$, $k \in \mathbb{R}$. Then $h_k^i h_j^k = k^2 \delta_j^i$, i.e. $k^2 = -1$. It is contrary with $k \in \mathbb{R}$. Analogously the supposition " $\overline{\mathcal{H}}$ is regular" leads to contradiction.

Remark 5. If α is a vertical ACS on Y then according to (5') such a connection Γ that $\alpha(H\Gamma) \subset H\Gamma$ can but not have to exist. If it exists then it does not need to be unique.

Remark 6. Let $A: Y \to T^*M \otimes_Y TM$ be an ACS on Yx_MTM . Let $H: Y \to V^*Y \otimes VY$ be an ACS on VY. In view of the relation (3') there exists a vertical ACS α on Y such that $T\pi\alpha = A$, $\alpha|_{VY} = H$ and is not unique.

Proposition 10. Let $A: Y \to T^*M \otimes_Y TM$ be an ACS on Yx_MTM . Let $H: Y \to V^*Y \otimes VY$ be an ACS on VY. Let Γ be a connection on Y. Then the vertical (1,1)-tensor field $\alpha(A, H, \Gamma)$ described in Proposition 8 is an almost complex structure.

Proof. By Proposition 8, $\alpha(A, H, \Gamma)$ is the unique vertical (1,1)-tensor field on Y such that $\alpha(A, H, \Gamma)|_{VY} = H$, $T\pi\alpha(A, H, \Gamma) = A$ and $\alpha(A, H, \Gamma)(H\Gamma) \subset H\Gamma$. If $A = a_i^i dx^j \otimes A$

 $\otimes \partial/\partial x^i$, $H = h^i_j dy^j \otimes \partial/\partial y^i$ and Γ^i_j are the functions of Γ then the coordinates c^i_j of $\alpha(A, H, \Gamma)$ are determined by (5'). So $\alpha(A, H, \Gamma) = a^i_j dx^j \otimes \partial/\partial x^i + [(\Gamma^i_k a^k_j - h^i_k \Gamma^k_j) dx^j + h^i_j dy^j] \otimes \partial/\partial y^i$. The functions a^i_j, h^i_j satisfy the first and third equations of (3'). Then $c^i_s a^s_j + h^i_s c^s_j = (\Gamma^i_k a^k_s - h^i_k \Gamma^k_s) a^s_j + h^i_s (\Gamma^k_s a^k_j - h^s_k \Gamma^k_j) = 0$. So $\alpha(A, H, \Gamma)$ satisfies the relations 3 and is an almost complex structure.

Remark 7. Let $\pi: Y \to M$ be a vector fibre bundle. Let α be a VB-(1,1)-tensor field, i.e. $\alpha(X)$ is a linear projectable vector field on Y for all linear projectable vector fields X on Y. In a local fibre chart $\alpha = a^i_j(x)dx^j \otimes \partial/\partial x^i + [c^i_{jk}(x)y^k dx^j + h^i_j(x)dy^j] \otimes \partial/\partial y^i$, see [1]. In this case $\alpha|_{VY} = H$ is a vector bundle morphism on Y over Id_M with the coordinate expression: $\overline{x}^i = x^i$, $\overline{y}^i = h^i_j(x)y^j$. These equations with the added following ones $d\overline{x}^i = dx^i$, $d\overline{y}^i = h^i_{jk}y^j dx^k + h^i_j dy^j$, where we use $\frac{\partial f}{\partial x^i} := f_i$, determine the tangent map TH. Let Γ , $\Gamma^i_j(x,y) = \Gamma^i_{jk}y^j$, be a linear connection on Y. Then it is easy to deduce that the equations

$$\Gamma^i_{js}h^s_k - h^i_s\Gamma^s_{jk} = h^i_{kj}$$

are the coordinate conditions under which $TH(H\Gamma) \subset H\Gamma$. The solution Γ^i_{js} of these equations can but not has to exist. Let $\alpha(H\Gamma) \subset H\Gamma$. Then by (5'): $c^i_{kj} = \Gamma^i_{sj}a^s_k - -h^i_s\Gamma^s_{kj}$. If Γ is without torsion then the conditions $TH(H\Gamma) \subset H\Gamma$, $\alpha(H\Gamma) \subset H\Gamma$ lead to

(6)
$$\Gamma_{js}^i(h_k^s - a_k^s) = h_{kj}^i - c_{kj}^i.$$

If H-A has sense (for instance in the case of y=TM) and if H-A is regular then there is a unique solution Γ^i_{js} of (6). For example if A=-H, and H is regular then $\Gamma^i_{js}=\frac{1}{2}(h^i_{ks}-c^i_{ks})\tilde{h}^k_s$. In view of Proposition 10 we can say that if α is a symmetric VB-almost complex structure on TM such that A=-H, then there exists a unique symmetric linear connection such that $TH(H\Gamma) \subset H\Gamma$,

 $\alpha(H\Gamma) \subset H\Gamma$. We will deal in detail with such an almost complex structure in our other paper.

REFERENCES

- [1] Cabras, A., Kolář, I., Special tangent valued forms and the Frölicher Nijenhuis bracket, Arch. Mathematicum (Brno) **Tom 29** (1993), 71 82.
- [2] Dekrét, A., Almost complex structures and connections on TM, to appear.
- [3] Janyška, J., Remarks on the Nijenhuis tensor and almost complex connections, Arch. Math. (Brno) **26** No. 4 (1990), 229 240.
- [4] Yano, K., Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, New York (1964).

DEPARTMENT OF MATHEMATICS, TU ZVOLEN, MASARYKOVA 24, 960 53 ZVOLEN, SLOVAKIA

E-mail address: dekret@vsld.tuzvo.sk

(Received September 5, 1995)