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METRICS ON SYSTEMS OF FINITE ALGEBRAS

ALFONZ HAVIAR

ABsTRACT. In this paper four different metrics on a system of n-element algebras of the
same type are presented. For groupoids and lattices the maximal distance of algebras is also
determined.

INTRODUCTION

In [1], [5] and [3], [4], metrics on systems of graphs and posets, respectively, are investi-
gated. In this paper we show an analogous way of defining metrics on a system of pairwise
non-isomorphic finite algebras of the same type.

In universal algebra, isomorphic algebras are not usually considered to be different.
Assuming that two n-element algebras of the same type are not isomorphic one can seek
for a bijection compatible with the operations as much as possible. Such an approach
yields the first way of defining the metric. The concept of the homomorphism generalizes
that of the isomorphism, and in our second approach, it motivates the definition of a
measure of difference between algebras. Our third approach is based on the fact that two
non-isomorphic algebras may have ‘large’ isomorphic subalgebras. The distance of algebras
depends on the cardinality of these isomorphic subalgebras. As it turned out for systems
of graphs, the approach based on subgraphs can be replaced by that based on supergraphs
[2]. A similar idea can be applied also to the class of all finite algebras of the same type.

The second (homomorphic) metric and the third (substructure) metric can also be
considered for finite algebras of the same type having different cardinalities, as in the
proofs that these functions are metrics the cardinalities of algebras are not relevant. The
first metric could also be modified (similarly as for graphs) for algebras of the same type
but different cardinalities. However, it is hard to decide how much the metric depends on
the difference of cardinalities of algebras and on the difference between algebraic properties
of given algebras.

The concept of a metric reflects a ‘distance’ between classes containing isomorphic
algebras. However, in order to simplify the terminology we will speak on a ‘distance’
between algebras.

We will particularly focus our attention to the metrics on systems of groupoids and
lattices where we also determine the maximal distance of two algebras.
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Throughout this paper the set N, ={0,1,...,n — 1} is taken as a universe of n-
element algebra. By S,, we denote a system of pairwise non-isomorphic n-element algebras
of the same type. By G, (L£,,) we denote the system of all pairwise non-isomorphic n-
element groupoids (lattices). The maximal distance between algebras on the system G,
(L) in a metric d; will be denoted by D;(Gy,) (D;(£y)). The number D; will be called
the diameter of the system G,, (L,,).

1. ISOMORPHISM METRIC

Let A= (A,Fy,....,F,), B=(B,F|,...,F!) ben-element algebras of the same
type. We denote by M (A, B) the set of all bijections of A onto B. Let f € M(A, B) and
let F;, 1<j5<m bea k-ary operation of A. For k>1 we put

D;(f) = {lay,...,ar] € A% f(Fj(ax, ..., ax)) # Fj(f(ay), ..., f(ar))}

and for £ =0

{17 51277
Let
D(f) = D1(f)U---U D (f),
and
(1) diso(A, B) = min{| D(f) |; f € M(A, B)},

where | D(f) | is the cardinality of the set D(f).

Theorem 1.1. The function d;s, given by (1) is a metric on the system S,, (of pairwise
non-isomorphic n-element algebras of the same type).

Proof. Clearly, d;so(A,B) =0 if and only if A =B.

If  f(Fj(as,...,ax)) # Fi(f(a1),..., f(ar)) forabijection f: A — B, k-ary opera-
tion Fj, k > 1, and elements ay,...ax then  f= (Fj(b,...,bx)) # Fj(f = (b1), -, f (b))
for the elements by = f(ay1),...,b = f(ag). It follows d;so(A,B) = d;is0(B, A).

Let diso(A,B) =| D(f) |, diso(B,C) =| D(g) | and d;s0(A,C) =| D(h) | .
obvious that | D(go f) |>| D(h)|. We shall have established
| D(f) | + | D(g) |>| D(h) | if we prove that

It is

(1a) | D(f) | +1D(g) =] D(ge f) |-
The inequality (la) follows easily from the fact that [ay,...,ax] € D(f) or

[f(a1),.... flax)] € D(g), if [a1,...,a] € D(gof) and F;e D(f) or Fj e D(g) if
F; € D(go f), respectively.
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Theorem 1.2. D;,(G,) =n> if n>2,
Diso(Lp)=(Mn—2)>—(n—2) if n>4

Proof. a) Of course, d;s,(G1,Gs) <n? holds for any n-element groupoids Gy, Go.
We define the operations o and * on the set N, ={0,...,n—1}, n>2, by

rzoy=ux for every number z

{y, if z#y
TRy = ]
x4+ 1, if z=y

(we compute modulo n). It follows immediately that  f(zoy) # f(z) * f(y) for any
permutation f of N, and any numbers z,y € N,,. Therefore we have

diso((Mna 0)7 (an *)) =n’.

b) Let Ly = (Ly,V,A,0,1), Ly = (L2, V,A,0,1) be n-element lattices. Let f: Ly — Lo
be a 0, 1-preserving bijection. It follows immediately that

(1b) | D(f) 1< (n=2)* = (n - 2).

The equality  diso(Li,La) = (n —2)2 — (n —2)  holds if L is the n-element chain and
L, is the n-element lampion (a lattice of height 2 with n-2 atoms), n >4 . O

2. HOMOMORPHISM METRIC

Let A,B be n-element algebras of the same type. If f: A — B is a homomorphism
then f(A) is a subuniverse of B. We call f(A) the homomorphic image of A in B. If there
is no homomorphism f : A — B we define the homomorphic image of A in B to be (.

Let S, be a system of pairwise non-isomorphic n-element algebras of the same type.
We define the distance of algebras A,B € S, by

(2) dn(A,B) = A[ = [ f(A) [+ [B|-1g(B)],

where f is a homomorphism A — B such that the cardinality of f(A) is maximal
possible. Analogously, for ¢g: B — A.

Theorem 2.1. The function dj, given by (2) is a metric on the system S,,.

Proof. We see at once that dp(A,B)=0 iff A =B and d,(A,B)=d,(B,A).

Let A,B,Cc S, and let

fitA—>B, g:B—=C, h:A—C,

F:B—A G:C—B, H:C—A,
be such homomorphisms that f(A),..., H(C) are maximal homomorphic images. We
want to prove the inequality

| AT=ThA) | +[C = H(O)|<
<AT=[fA) I+ BI=[FB)[+|B|-|g(B)[+[C|-]G(C)].
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It is sufficient to show that

(2a) | f(A) [+ [g(B)|<| B |+ [h(A) |
and
(2b) | F(B) |+ [G(C) || B|+ | H(C)|.

We are going to prove (2a) ((2b) can be proved in the same way). Since

| h(A) [=] g(f(A)) | it suffices to show that | g(B) | — | g(f(A)) |<[B|—=[f(A)], ie

(2¢) | 9(B) = g(f(A) [<[ B—f(A)].

The inequality (2¢) follows from

| B = f(A) =] 9(B = f(A)) [>| 9(B) — g(f(A)) | .

If there are no homomorphisms from A to B or from B to C (i.e. if f(A) = 0 or
g(B) = (), the inequality (2a) also holds.

Remark. We note that the proof runs if we drop the assumption that A, B, C are algebras
of the same cardinality.

Theorem 2.2. Dy(G,)=2n if n>2,
Dn(Ly)=2n-2 if n>T.

Proof. a)lt is evident that Dy (G,) < 2n. We will find two non-isomorphic groupoids
whose congruence lattices are trivial and the sets of idempotent elements are empty.
We define the operations o and * on the set N, = {0,1,...,n—1} n>2 by

io(n—1)=ix(n—-1)=1i+1,
joi=ixi=i+1,
tok=ixk=k+2 if i=k+2,...n—1,

tok=1, ixk=k otherwise

(we compute modulo n). Now, we are going to show that the groupoids (N,,o) and
(N, *) have only trivial congruences. Let © € Con(N,,o), i0j and i < j. The equality
i+1=j implies io(n—1)0O(i+1)o(n—1), i.e. i+10i+2, analogously i+ 20i+ 3,
etc., hence © = N2 If i+1<j wehave i0i©joi, i.e. i+ 10i+2, and this again
yields © = N2. In the same manner one can see that (N,,*) has trivial congruences.
It is obvious that (N,,o) and (N,,x*) are non-isomorphic and they do not contain any
idempotent elements. Hence dp,((Ny,0), (Np,*)) = 2n.

b) It is sufficient to find two non-isomorphic lattices such that they have no non-trivial
congruences. It is immediate to check that the n-element lampion and the lattice depicted
in Fig. 1 (n > 7) have only trivial congruences.

O
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Fig. 1

3. SUBSTRUCTURE METRIC.

Let A,B be n-element algebras of the same type. We call an subalgebra A; of A a
common subalgebra of A and B if there exists a subalgebra B; of B such that A; and B,
are isomorphic. In this case we denote the universe A; of Ay by Sap. Otherwise (i.e. if
there are no isomorphic subalgebras of A and B) we put Sap = (). We define the distance
of algebras A and B by

(3) ds(A,B) =| A|+[B|-2.|Sas |,

where | Sap | is the maximum of cardinalities of common subuniverses of A and B.
Theorem 3.1. The function ds given by (3) is a metric on the system S,.

Proof. We will prove only the triangle inequality. Let

ds(A,B)=| A|+|B| 2| Sap |,
ds(B,C)=| B |+ |C|-2.]Shc |,
ds(A, C) =| A+ [C | =2.|Sac |,

and let f and h be embeddings of S 45 into B and S4¢ into C, respectively and let g be
an embedding of Sp¢ into C. It suffices to prove that

(3a) | B|+|Sac |>| Sap |+ | Ssc |-

It is easily seen that B’ = f(Sap) N Spc is a subuniverse of the algebra B. Further, it
is evident that

(3b) | B|+|B"|>| f(SaB) | + | SBc |=| SaB | + | SBc | -
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The subalgebras of A and C with subuniverses f !(B’) and g(B’) are isomorphic,
therefore

(3¢) | B [<] Sac | -

Combining (3c¢) with (3b) we have (3a).
If Syp=0 or Spc =0, the inequality (3a) is evident. Sqc = () implies B’ = and
again (3a) holds. 0O

Theorem 3.2. D,(G,)=2n if n>2,
Ds(Ly,)=2n—-6 if n>4.

Proof. a) For example, the groupoids (N,,, o) and (N, *) with operations given by

ror=x*xr=x+1,
zoy=x if zH#uy,
rxy=y if x#y,

(we compute modulo n) have the distance 2n. The details are left to the reader.

b) Every n-element lattice (n > 4) contains a 3-element chain. From this we have
Dy(L,) < 2n — 6. The distance of the n-element chain and the n-element lampion is
2n — 6.

Remark. We note that the proof runs if we drop the assumption that A, B, C are algebras
of the same cardinality.
The next examples show that the metrics d;s,, dj, and ds are independent.

Example 1. Let (G,0), (H,x) and (K,.) be the groupoids given by Cayley’s tables 1, 2
and 3, respectively.

ol a b * c d . 0 1
a| b a c| ¢ d 0] O 0
b| b a d| ¢ d 1] 0 1
Tab. 1 Tab. 2 Tab. 3

We can easily check that

dst(G H) =4= ( ) > dh(G H) 3
dioo(H,K) = 1 < d,(H,K) — 2 — dh(H ),
diso(G,K) = 3 = dy (G, K) < dy(G, K) = 4.

Example 2. Let (Li,V,A) be the 4-element lattice of height 2 (the lampion) and
(La,V,A) the 4-element chain. It is obvious that
diso(L1,Lo) = 4 > d(L1, Ly) = 3 > dy(Ly, Ly) = 2.
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4. SUPERSTRUCTURE METRIC

Let 7 be a type of algebras. We define a metric on the system of all pairwise non-
isomorphic n-elements algebras of the type 7 as follows.
Let A,B be n-element algebras of the type 7. We define the distance of A and B by

(4) dsu(A,B)=2.[Oap |~ [A| [ B],
where O4p is a minimal algebra (with respect to the cardinality of its universe) of the

type 7 which contains subalgebras isomorphic to A and B.

Theorem 4.1. The function dg, given by (4) is a metric on the system of all pairwise
non-isomorphic n-element algebras of the type T.

Proof. We will show that (similarly as on a system of graphs)
ds.(A,B) = ds(A,B).
By (3)
ds(A,B)=| A|+ | B|—-2.|SaB |

where Syp is a maximal algebra (with respect to the cardinality of its universe) such
that there exist a subalgebra A; of A which is isomorphic to S4p and a subalgebra
B; of B which is isomorphic to Sap . Without loss of generality we can assume that
A1 =By =S48. Let C =AUB and let F be k-ary operation symbol of 7, k£ > 1. Fix
an element b € A. We define the operation F' on the set C in the following way:

If ay,...,a,a€ A and F(ay,...,ax) =a in A or

ai,...,ag,a € B and F(ay,...,a;) =a in B

then F(ai,...,ar) =a. Otherwise F(ay,...,ar) ="b.

Now, we have

dsy(A,B) <2.[C|—[A[=|B[=2(A[+[B|~[Sap )= [A] | B[=
=|A|+|B|-2.|Sap |= ds(A,B).

On the other hand, we can suppose that A C O4p and B C O4p, whence
| Oap [Z| A+ B[ [ANB[2[A]+|B|—|SaB |-
Therefore,
dsy(A,B)=2.104a|—|A|—=|B|>|A|+|B|-2.|Sap |=ds(A,B).

g

Unlike previous metrics d;s,, dp,, ds, the function given by (4) may not be a metric on
any system of non-isomorphic n-element algebras of the same type (like groups, rings, etc.).
However, we can prove the next statement.
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Theorem 4.2. The function dg, given by (4) is a metric on the system L,, of all pairwise
non-isomorphic n-element lattices.

Proof. Let Ly = (L1,<;y), Ly = (L3,<5) be lattices and L;» be a maximal lattice
such that there exist a sublattice L} of L; isomorphic to Lis and a sublattice L} of Lo
isomorphic to Lis. We can assume that Lj =L, = Lis and 0,1 € Lis. As the ordering
on L =1LULs; we take the transitive closure of the union of the orderings <; and
<4. To finish the proof proceed similarly as in the proof of Theorem 4.1 [

Corollary. Dg,(G,) =2n if n>2,
Dgy(Ly)=2n—-6 if n>4.
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