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THE STUDY OF AFFINE COMPLETENESS
FOR QUASI-MODULAR DOUBLE P-ALGEBRAS

MIROSLAV HAVIAR

ABSTRACT. In this paper we study affine complete and locally affine complete algebras in
the class of quasi-modular double p-algebras. We generalize Beazer’s characterization of
affine complete double Stone algebras with a non-empty bounded core [B 1983] to the class of
quasi-modular double S-algebras with a non-empty bounded core. We prove that finite regular
double p-algebras are the only finite affine complete quasi-modular double p-algebras with a
non-empty core and that Post algebras of order 3 are the only affine complete quasi-modular
double S-algebras with a non-empty finite core. In distributive case, we derive the Beazer
result and we construct an example of an infinite regular double Stone algebra which is not
affine complete. We finally show that the Post algebras of order 3 are the only locally affine
complete (in a stronger sense of [P 1972]) quasi-modular double S-algebras with a non-empty
bounded core.

1. Introduction.

One of the topics of universal algebra rapidly developed in the last decades has been
the study of affine complete algebras. Let us recall that an n-ary function f on an algebra
A is called compatible if for any congruence 6 on A, a; = b; (0) (a;,b; € A), i =1,...,n
yields f(a1,...,a,) = f(b1,...,b,) (6). Obviously, every polynomial function of A4, i.e. a
function that can be obtained by composition of the basic operations of A, the projections
and the constant functions, is compatible. By H. Werner [W 1971], an algebra A is called
affine complete if the only compatible functions on A are the polynomial ones. Hence one
can imagine affine complete algebras as algebras having many congruences.

The first results in this topic are due to G. Gritzer. In [G 1962] he showed that
every Boolean algebra is affine complete and in [G 1964] he characterized affine complete
bounded distributive lattices as those which do not contain proper Boolean subintervals.
In [G 1968] he formulated a problem of characterizing affine complete algebras which was
later reformulated in [C-W 1981] as follows: characterize affine complete algebras in your
favourite variety. In [C-W 1981] one can also find a list of particular varieties in which all
affine complete members were characterized. Some new items in the list are mentioned in
[Ha-P1 1995].

Also a ”local” version of affine completeness has been studied. Let us recall that an
algebra A is said to be locally affine complete if any finite partial function in A™ — A (i.e.
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function whose domain is a finite subset of A™) which is compatible (where defined) can
be interpolated by a polynomial of A (see e.g. [P 1972] or [Kaa-P 1987]; the notion ‘locally
affine complete’ has also another, weaker meaning in the literature - see e.g. [Sz 1986] or
[Ha-P1 1995].)

In [B 1982] R. Beazer characterized affine complete algebras in the class of Stone algebras
with bounded dense filter and in [B 1983] he gave a similar characterization in the class
of double Stone algebras with a non-empty bounded core. Locally affine complete Stone
algebras (in the weaker sense of [Sz 1986]) were characterized in [Ha 1993] and affine
complete algebras in the variety of all Stone algebras were recently described in [Ha-
P11995]. Another generalization of the first Beazer result, to the class of so-called principal
p-algebras, was presented in [Ha 1995].

In this paper we generalize the second Beazer result and its consequences (3.1-3.3)
into a larger class of all quasi-modular double S-algebras with a non-empty bounded core
(Theorem 3.14). First we show that for a quasi-modular double p-algebra L with a non-
empty bounded core K (L) = [k,l], affine completeness of L yields affine completeness of
K (L) as a bounded lattice (Theorem 3.4). Consequently, we get that finite regular double
p-algebras are the only finite affine complete quasi-modular double p-algebras with a non-
empty core and that Post algebras of order 3 are the only affine complete quasi-modular
double S-algebras with a non-empty finite core (3.7 and 3.8). In distributive case, we derive
(3.15-3.17) the second Beazer result and its consequences. Then we construct an example
of an infinite regular double Stone algebra which is not affine complete with regard to
Beazer’s question in [B 1983].

We finally show that Post algebras of order 3 are the only locally affine complete quasi-
modular double S-algebras with a non-empty bounded core (3.19-3.20).

2. Preliminaries.

A p-algebra (pseudocomplemented lattice or PCL) is an algebra L = (L;V,A,*,0,1)
where (L;V,A,0,1) is a bounded lattice and * is the unary operation of pseudocomple-
mentation, i.e. = < a* iff x Aa = 0. By a distributive (modular) p-algebra (L;V,A*,0,1)
we mean that the lattice L is distributive (modular). Further, recall that a Stone algebra
is a distributive p-algebra satisfying the Stone identity

(S) ¥Vt =1.
In general, p-algebras satisfying (S) are called S-algebras.

Besides distributive and modular p-algebras, a larger variety of quasi-modular p-algebras
was introduced and studied [Ka-Me 1983]. This subvariety of p-algebras is defined by the
identity

(xAy)VZF)ANx=(xAy)V (2" Ax).
It is known (see [Ka-Me 1983; 6.1]) that quasi-modular p-algebras satisfy the identity
r=x*N(x V).

An algebra L = (L;V,A*,7,0,1) is called a (quasi-modular) double p-algebra, if
(L;v,A*,0,1) is a (quasi-modular) p-algebra and (L;V,A,7,0,1) is a dual
(quasi-modular) p-algebra, i.e. z > a* if and only if a V 2 = 1.

A double S-algebra is a double p-algebra satisfying the identities

r*Vr*=1and zT AxTT = 0.
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A double Stone algebra is a distributive double S-algebra. A double Stone algebra in which
so-called determination principle,
a* =b* and a™ = bT implies a = b,
holds is called a three-valued Lukasiewicz algebra.
In a double p-algebra L, the sets B(L) = {z € L; z = 2**} and B(L) = {z €
L; © = z*t*} give Boolean algebras (B(L);</,A,*,0,1) and (B(L);Vv,A,%,0,1) where
rvy = (xVy**and z Ay = (x Ay)*™*. If L is a quasi-modular double S-algebra,

then B(L) (= B(L)) is a subalgebra of L (cf. [Ka-Me 1983; 6.8] and [Ka 1974]) and
ot =g, ot =gt

The sets D(L) = {z € L; #* = 0} and D(L) = {z € L; x+ = 1} form a filter and
an ideal of L, respectively. The set K(L) = D(L) N D(L) is the core of L. The class
of quasi-modular double S-algebras with non-empty core includes bounded lattices with a
new zero and unit adjoined, Post algebras of order n > 2, injective double Stone algebras,
ete.

Congruences on double p-algebras are lattice congruences preserving the operations *
and T. The congruence ® of a double p-algebra defined by

x = y(®) if and only if z* = y* and T = y*

is called the determination congruence. A double p-algebra is regular (i.e. two congruence
relations having a congruence class in common coincide) if and only if ® = w (see [V 1972]).
Regular double p-algebras form a variety defined by the identity (zAz1)V (yVy*) = yVy*.
Further, a regular double p-algebra L is distributive (see [Ka 1973b]). In [B 1976] regular
double p-algebras were shown to be congruence permutable, hence the variety of regular
double p-algebras is arithmetical. A (quintuple) construction of regular double p-algebras
was presented in [Ka 1974].

A special subclass (not a subvariety) of the variety of regular double Stone algebras (i.e.
three-valued Lukasiewicz algebras) form Post algebras of order 3, which are defined by the
condition |K(L)| =1 (see e.g. [B 1983]).

Let L = (L;V,A*,7,0,1) be a quasi-modular double p-algebra with a non-empty
bounded core K (L) = [k,l]. Since L satisfies the identities x = z** A (z V z*) and
x =zt V (x Azt), it obviously satisfies the equations =z = z** A (zV k) and =z =
ztt Vv (x Al). Thus L satisfies the equation

(1) r=zttV (@A (xVE)AL.

In [Mu-En 1986; Theorem 5] it was shown that the filter D(L) of a quasi-modular p-
algebra L = (L;V,A,*,0,1) is a neutral element in the lattice F'(L) of all filters of L. So if
D(L) = [k), then for all z,y € L, ([z)V[y))A[k) = ([z)A[k))V ([y) A[k)) holds in F(L).
Consequently, (zAy)Vk= (xVEk)A(yVEk) forall z,y € L. Thus in a quasi-modular
double p-algebra L with a non-empty bounded core K (L) = [k,[], the elements k,[ are
distributive.

For these and other properties of double p-algebras as well as for the standard rules of
computation in double p-algebras we refer to [B 1976] or [Ka 1973b].

In the second part of this preliminary section we present a collection of results concerning
(local) affine completeness of some classes of algebras which will frequently be used in our

investigations.
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We start with basic Gratzer’s results.
2.1 Theorem ([G 1962]). Any Boolean algebra is affine complete.

Let us recall that a function f : L™ — L on a lattice L is order-preserving if z; < y;
(xi,y; € Ly, i =1,...,n) implies f(z1,...,2,) < f(y1,...,Yn). It is well-known that every
polynomial function on a lattice is order-preserving.

2.2 Theorem ([G 1964; Corollaries 1,3]). Let L be a bounded distributive lattice. The
following conditions are equivalent.

(1) L is affine complete;

(2) every compatible function on L is order-preserving;

(3) L contains no proper Boolean interval.

When omiting the distributivity of L, one can prove (at least) the following:

2.3 Proposition. If a lattice L contains a Boolean interval [a,b] (a < b), then L is not
affine complete.

Proof. Define a function f : L — [a,b] by the rule f(z)= ((x Va)Ab)" , where’ denotes
the complement in the Boolean interval [a,b]. For any non-trivial congruence ® € Con(L)
and z =y (®) (z, y € L) we have ((zVa)Ab) = ((yVa)Ab) (@), ie. fisa compatible
function of L. But f is not order-preserving because f(a) = b, f(b) = a, therefore f
cannot be represented by a lattice polynomial. Hence L is not affine complete. [

2.4 Corollary. A finite lattice L is affine complete if and only if |L| = 1. O

If the property we study is the local affine completeness (in the sense of [P 1972]), then
the trivial lattices are the only members of the variety of all lattices having this property:

2.5 Proposition. A lattice L is locally affine complete if and only if |L| = 1.

Proof. Let L be locally affine complete and let a,b € L, a < b. The function f =
{(a,b),(b,a)} is a finite partial compatible function on L, thus by hypothesis it can be
interpolated on {a, b} by a polynomial of L, which is an order-preserving function. But we
have f(a) =b, f(b) = a, a contradiction. [

On the other hand, there are varieties of which all members are locally affine complete.
The following result (see [P 1979] or [P 1982] or [P 1991]) characterizes them as arithmeti-
cal, i.e. congruence-distributive and congruence-permutable (meaning that the congruence
lattice of each algebra in such variety is distributive and every two congruences permute):

2.6 Theorem. A variety V is arithmetical if and only if for each algebra A € V, a finite
partial function f on A can be interpolated by a polynomial function of A just in the case
f is Con(A)-compatible.

This also yields that every finite algebra in an arithmetical variety is affine complete.
The following technical lemma will be used several times in the sequel (and we repeat
its proof from [Ha 1992]):
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2.7 Lemma. Let D = (D,V,A, f1,..., fx,0,1) be any algebra such that its reduct
(D,V,N,0,1) is a bounded distributive lattice and the algebra D is a subdirect prod-
uct of 2-element algebras. Let f’,g' : D™ — D be partial compatible functions with
domains F' and G (F,G C D"), respectively, let S := F NG and let SN {0,1}" # @.
For any (0,1)-homomorphism h : D — {0,1} between the algebra D and a 2-element
algebra 2 = {0,1}, denote h(S) := {(h(z1),...,h(z,)) € {0,1}"; (1,...,2,) € S} and
let h(S) = h(SN{0,1}™) hold. Then f'" = ¢’ identically on S if and only if f' = ¢
identically on S N {0,1}".

Proof. Let f' = ¢’ identically on S N {0,1}". Suppose on the contrary that there exists
an n-tuple (dy,...,d,) € S such that f'(dy,...,d,) =a#b=g'(dy,...,dy). Since a # b
in D which is a subdirect product of 2-element algebras, there exists a ‘projection map’
h:D — {0,1}, which is a (0, 1)-homomorphism between the algebra D and some algebra
2 = {0, 1}, such that h(a) # h(b). Define functions f3, g5 : h(S) — {0,1} by the following
rules:

fé(h(xl)v sy h((L‘n)) = h(fl(xlv SR :L‘n)),

gh(h(z1),...,h(xy)) = h(g'(z1,...,2,)) where (zy,...,x,) € S.
Obviously, f5, g4 are well-defined, since f’, g’ preserve the kernel congruence of the ho-
momorphism h. Obviously, f3 = g5 identically on h(S), because h(S) = h(S N {0,1}"),
h(0) =0, h(1) =1 and f’ = ¢’ identically on S N{0,1}". Therefore

h(a) = h(f'(d1,... . dn)) = fo(R(d1), ..., h(dn)) = g3(h(d1), ..., h(dn)) =

h(g'(di,...,dy,)) = h(b), a contradiction. Hence f’ = ¢ identically on S and the proof is
complete. [

In order to abbreviate some expressions, we shall often use the notation x for an n-tuple
T1,...,op), and f(X) for f(z1,...,z,) in the next section. Further, x* and x* will denote
(z%,...,z5) and (z7,...,z}), respectively, (XVk)Al will abbreviate ((x1VE)AL ..., (2, V
k) Al) , ete.

3. Afinne completeness.
We start this section with Beazer’s characterization of affine complete double Stone
algebras with a non-empty bounded core and its consequences.

3.1 Theorem ([B 1983; Theorem 5]). Let L be a double Stone algebra having
a non-empty bounded core K (L). The following conditions are equivalent.

(1) L is affine complete;

(2) K(L) is an affine complete distributive lattice;

(3) No proper interval of K (L) is Boolean.

3.2 Corollary ([B 1983, Corollary 6]). Any Post algebra L = (L;V,A,* 7,0, 1) of order
3 is an affine complete double Stone algebra.

3.3 Corollary ([B 1983, Corollary 7]). A finite double Stone algebra having a non-empty
core is affine complete if and only if it is a Post algebra of order 3.

In the first part we generalize 3.3 to a larger class of double S-algebras.
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3.4 Theorem. Let L be a quasi-modular double p-algebra with a non-empty bounded
core K(L) = [k,l]. If L is affine complete then K (L) is an affine complete lattice.

Proof. Let L be affine complete. Similarly as in [B 1983], for any compatible function
fx : K(L)™ — K (L) we define a function f : L™ — L by
f@1,- o mn) = fr((x1 VE)AL ..., (xn VE) AD).

Obviously, f | K(L)" = fx and f preserves the congruences of L. Thus by hypothesis, f
can be represented by a polynomial po(x1,...,z,) of L. From now we proceed as follows:
we apply the formulas (zAy)* =2* v y*, (xVy)* =2*Ay*, (tAy)T =2t Vy" and
(xVy)T =at Ayt in po(x) everywhere it is possible (see Example 3.5 below) and we
obtain a polynomial p1(x1,...,z,) of the partial algebra (L;V, A, 7, A, ,0,1) with two
partial operations 7 and A defined only for elements of B(L) and B(L), respectively.

Let x € K(L)". Then fg(x) = f(X) = p1(X), and moreover, in p;(X) we can put
zf =1, ¥ =0foralli = 1,...,n. Hence each part of the form (...)* or (...)T in p; (X) can
be rewritten as a constant symbol equal to 0 or 1 if in the brackets were variables only, or
as a constant of B(L) or B(L) if there was at least one constant symbol of L in the brackets
(see again 3.5). Rewriting the polynomial p;(X) in this way, we obtain a polynomial py(X)
of the lattice (L;V,A,0,1). If ay,...,a,, are all constant symbols in pa(X), then ps(X)
can be expressed as a term #(X,a) of the algebra (L;V,A,0,1,a1,...,a,). Now using the
lattice homomorphism ¢ : L — [k, 1], ¢(%x) = (z V k) Al (note that in Section 2 we showed
that the elements k,[ are distributive), we get

fK(i) = (p(t(ia 5’)) = t((p(xl)a R @(wn)a <P(a1)7 AR @(am))

hence fx(X) can be represented by a polynomial of the lattice K(L). The proof is com-
plete. O

3.5 Example. We illustrate the method described in the proof of Theorem 3.4 on a
simple example. Let L be a quasi-modular double p-algebra with a non-empty bounded
core K(L) = [k,l], fk(x1,22,23) be a compatible function of the lattice K(L) and let
po(w1, w9, 23) = [(1 A a*) V (25 AD)]T A
be a polynomial of L representing the function f(z,z2,23) : L> — L associated to the
function fx as in the proof of Theorem 3.4. In the first step, we get the polynomial
p1(71,22,73) = [(T1 Aa*)T A (2 AD)TIAxs =[(a7 Vart) A (zFT VT Azs.
In the second step, by putting :U—f =1, a:éH = 0 we obtain a polynomial
pa(r1,22,23) = bt A x3, which is a term t(zq1,z2,23,b7) of the algebra
(L; A, V,0,1,0T). Finally, we get
fc (21,22, 73) = t(p(71), @(22), p(x3), 9(bT)) = [(0F V k) A A (23 V ) A,
hence fg(x1,%2,x3) is a polynomial function of the lattice K(L). O

3.6 Corollary. Let L be a quasi-modular double p-algebra with a non-empty bounded
core K (L) = [k,l]. If K(L) contains a proper Boolean interval then L is not affine complete.

Proof. The result follows from Theorem 3.4 and Proposition 2.3. [J

3.7 Corollary. A finite quasi-modular double p-algebra with a non-empty core is affine
complete if and only if it is a regular double p-algebra.

Proof. The necessity follows from 3.4 and 2.4. Since the variety of all regular double
p-algebras is arithmetical, all its finite members are affine complete by 2.6. [J
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The next result generalizes 3.3 to a larger class of double S-algebras:

3.8 Corollary. Let L be a quasi-modular double S-algebra with a non-empty finite core.
Then L is affine complete if and only if L is a Post algebra of order 3.

Proof. Affine completeness of L yields |[K(L)| = 1 by 3.4 and 2.4. Hence L is a regular
double p-algebra, so L is distributive. Thus L is a Post algebra of order 3. The converse
follows from 3.2. [

3.9 Example. Take the lattice M, of height 2 having an infinite number of atoms and
any Boolean algebras By, Bs. The lattice Ly = By @ M, ® By (® means linear sum)
obviously gives a quasi-modular double p-algebra with the core K(L;) = M. (For
B, = By = 1, the quasi-modular double S-algebra L1 = 1® M, &1 is depicted in Figure
la.) By 3.6, Ly is not affine complete.

L1 L2
‘(‘)’ S
K(L;) =My
Figure 1a Figure 1b

Now let By and By be finite Boolean algebras and D be a finite distributive lattice.
Construct a quasi-modular double p-algebra Lo such that the zero of By will be identified
with the unit of D and the zero of D will be identified with the unit of By. By 3.7, Lo is
affine complete if and only if |[D| = 1. Hence the regular double p-algebra Lo in Figure 1b
(By =23, By =2% and D = 1) is affine complete. [

R. Beazer’s technique employed in 3.1 was based on the fact that subdirectly irreducible
double Stone algebras are very simple - the chains with at most four elements. This and also
a ‘good behaviour’ of the operations * and T in double Stone algebras enabled him to find
an exact form of the polynomials representing compatible functions. However, if we turn to
a larger class of double S-algebras, which contains various subdirectly irreducible algebras,
the situation becomes more complex and Beazer’s method seems to be non-applicable.

Therefore we employ a technique based on the fact that in the class of quasi-modular
double S-algebras with a non-empty bounded core, every element can be decomposed on
two ‘closed’ elements and an element of the core - see the equation (1) in Section 2. Hence
the elements from the range of any compatible function can be decomposed in this way,
too. Since the set of all closed elements of a quasi-modular double S-algebra L forms
a Boolean subalgebra B(L) (= B(L)) and we assume that the core K (L) is a bounded
lattice, it would be natural to reduce the property of affine completeness of L into that
of B(L) (= B(L)) and K(L). (This idea is, in fact, in accordance with a general idea of
approaching quasi-modular p-algebras presented in [Ka 1980; p. 559].)
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The main problem which arises when realizing the idea of the reduction is how to
decompose a compatible function f : L™ — L into (well-defined) functions of B(L) (=
B(L)) and K (L), respectively. As we shall see, the first part of this task concerning B(L)
(= B(L)) can be quite easily managed, while the second is difficult so that we are forced
to deal with partial functions of the lattice K (L).

In the sequel, by L = (L;V,A,*,7,0,1) we always mean a quasi-modular double S-
algebra having a non-empty bounded core K (L) = [k,l]. In such case, the map ¢ : L —

K(L), ¢(z) = (z V k) Alis alattice homomorphism. Further, we abbreviate (xV k) Al as

p(x).

To any compatible function f : L™ — L we associate a partial function fj : K (L)
K (L) as follows:

(2)  fr(pE), o), 0(x), 0(x7), (X)) = 0(f(X) (e L")
and fj is undefined elsewhere.

5n_>

3.10 Lemma. The function fj; defined above is a well-defined partial compatible function
of the lattice K(L).

Proof. To show that fz preserves the congruences of K (L) where defined, let 0k be a con-
gruence of K (L) and go(:vZ) = go(yf) (k) forz;,y; € L,i=1,...,n, j€{-2,-1,0,1,2}
where 20 = z, 2! = o1, 22 = 21+, 27! = 2*, 272 = 2**. We associate to the congruence
Ak an equivalence relation 7 on L defined by
(3) =y (Ar) if and only if p(27) = ¢(y’) (k) for all j € {—2,-1,0,1,2}.

Since L is a quasi-modular double S-algebra, i.e. B(L) (= B(L)) is a sublattice of L,
one can easily verify that 0 is a congruence on L. Hence we have z; = y; (Ar), thus
f(x) = f(y) (0L) as f is compatible on L. Now again by (3) ¢(f(X)) = ¢ (f(y)) (OKk), i.e.
[} preserves the congruences of K (L) where defined. To show that f7 is well-defined, use
the same method with 0 = Ag(r), the smallest congruence of K(L). [

3.11 Definition. We shall say that L satisfies an ‘extension’ property

(E) if for any compatible function f : L™ — L, the partial compatible function fJ, :
K(L)>™ — K (L) defined by (2) can be extended to a total compatible function of
the lattice K (L).

We will present two situations when the condition (E) is satisfied (and later on the third
in 3.17).

3.12 Proposition. If L is affine complete then L satisfies (E).

Proof. Let f}. be the function associated to a compatible function f : L™ — L. We define
a function f; : L™ — L by f1(X) = ¢(f(X)) . This is evidently compatible on L, hence
by hypothesis it can be represented by a polynomial p(x1,...,z,) of L. Using de Morgan
laws for * and T, p(X) can be rewritten as [(x, x*,x**, x*, xT1) for some lattice polynomial
l(x1,...,%5,) of L. Further, using the homomorphism ¢, one can show that for all x € L™
o@D 0@ = G(fR) = HE) = pE) = U&xHE5HE) =
= ‘P(l(i’i*vi**’i—i_’i—l"’_)) =U(p(x),..., (P()N(—H_))a
where I'(z1,...,x5y,) is a polynomial of the lattice K(L). Then, of course, I’ is the required
total compatible extension of the partial function fj.. O
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Let L be a quasi-modular double S-algebra with a non-empty core K (L) = [k, ] such
that K (L) is a Boolean lattice. Let fj : K(L)>™ — K (L) be the partial function from (2)
and let S be its domain. Define a function g(z1,...,zs5,) on K(L) by the rule

q(x1,. .., T5n) = V frc(ar, ... asn) Ay A+ A Ysn,
acSn{k,i}5n

where y; = , o =k

(2

Obviously, fi = ¢ identically on S N {k,l}°" and ¢ is compatible on K(L). One can
verify that (K(L);V, A, k,l) with the partial compatible functions fj and ¢ satisfy the
assumptions of Lemma 2.7. Hence by the conclusion of Lemma 2.7 fj = ¢ identically on
S, thus the compatible function ¢(z1,...,zsy,) is a total extension of the function fj . So
we have showed:

3.13 Proposition. Let L be a quasi-modular double S-algebra with a non-empty core
K (L) which is a Boolean lattice. Then (E) is fulfilled in L.

Now we present a characterization theorem and its consequences.

3.14 Theorem. Let L be a quasi-modular double S-algebra with a non-empty bounded
core K(L) = [k,l]. Then L is affine complete if and only if K(L) is an affine complete
lattice and L satisfies (E).

Proof. The necessity follows from Theorem 3.4 and Proposition 3.12. Now let K (L) be an
affine complete lattice and let L satisfy (E). Let f: L™ — L be a compatible function on
L. Since L satisfies the equation (1), we can write

4) fE=fE®TFVE*AFE)VE) AL forany X = (z1,...,2,) € L".
We shall show that the right side of (4) can be replaced by a polynomial of the algebra L.

To replace f(X)** (and similarly f(X)™") in (4) by a polynomial of L, we define a partial
function ff : B(L)?*™ — B(L) on the Boolean algebra B(L) (= B(L) ) by

Fh 50 = Q)™ (fR)T) (e L)
and f}; is undefined elsewhere. Obviously, fj; is well-defined since «} = y7, =y, i=
1,...,n yields z; = yz(CID) (the determination congruence), which follows f(x ) = f(y)(® )
thus f( * = f)** (f(x)TT = f(y)TT). Further, for any congruence 6p f B(L) w
define an equivalence relation 7 on L by = =y (0r) if and only if z* = y* (0p) and

+ (0p). Since B(L) (= B(L)) is a subalgebra of L, 0, is obviously a congruence
of L containing fp. Using 01, one can easily show that f preserves the congruences of
B(L) where defined. Let S be the domain of f}, i.e.
S ={(x*x"); xe€ L"} C B(L)*

Note that if (é,f)) = (a1, apn,b1,...,b,) € SN{0,1}2" then a; = 1 implies b; = 1.
One can easily verify that the function fj can be interpolated on the set S N {0,1}?" by
a Boolean polynomial function b : B(L)?*" — B(L) defined as follows:

b(xy,. .., Ton) = \V (Fe@, D) Azf* A Aale AxB A Aaby

(a, B)eSn{o 1}2n

where ! = z;, 20 = 2} = 7 = 2. By Lemma 2.7, f = b identically on the whole set S,
hence for any X € L™ we have

FER™ (fEFT) = fEXT) = b(E", %),
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Therefore f(x)** (and similarly f(x)*+) can be replaced in (4) by some polynomial
by (x*,xT) (ba(x*,xT)) of the algebra L.

Now we associate to f(X) the partial function ff : K(L)** — K(L) defined by (2).
By (E) there exists a total compatible function fx : K(L)*™ — K (L) which extends fJ.
Affine completeness of K (L) yields that fx can be represented by a lattice polynomial
l(x1,...,2s5,). Hence in (4) we have for any x € L",

F() = ba (x5, xF) v (01 (X5, %F) Al(p(%), 9(X%), 9(X™), 0(XT), p(xF7)))
where (%) means (XV k) Al:= ((z1 VE)ANL ..., (zo VE) AL).

So f is a polynomial function of the algebra L and the proof is complete. [J

We shall finally derive the Beazer characterization of double Stone algebras with a
non-empty bounded core.

3.15 Lemma. Let L be a double Stone algebra with a non-empty bounded core K(L) =
[k,l] and x,y € L. Then for the lattice homomorphism ¢ : L — K(L), ¢(z) = (x V k) Al
we have

o(x*) = p(y*) if and only if @(x**) = p(y**) and

p(z*) = p(y") if and only if p(z™F) = p(y**).

Proof. Let o(z%) = p(y*). The identities T A z™ = 0 and zT v 2™+t = 1 imply
e(xt)Np(ztt) =k, p(x™) Vp(xtt) =1 for any = € L. Hence

e(@*h) = (py™) Ap(y*h)) vV e(atF) = (p(a*) V e(@*h)) A (e(yth) V o(@tT)) =
eyt v p(att).
In the same way one can show @(y™1) = p(y*+) V p(zTT). The converse statement as
well as the proof of the first statement are analogous. [J

**)

3.16 Lemma. Let L be a double Stone algebra with a non-empty bounded core K(L) =
[k,l], k <l and let € L such that p(z*), p(z**), p(z), @(x™T) € {k,1} for the lattice
homomorphism ¢ : L — K(L), ¢(z) = (x V k) Al. Then ¢(z*) =1 implies ¢(z**) =k
and analogously, p(xz1) = [ implies p(z+) = k.

**)

Proof. Let o(x*) = [. It is obvious that ¢(z**) = [ would yield [ = ¢(z*) A ¢(x
= p(z")

©(0) = k, a contradiction. Analogously, if ¢(z7) =1 = @(z™), then [
e(xtt) = p(0) = k, using the dual Stone identity zt Aztt =0. O

> |l

3.17 Proposition. Let L be a double Stone algebra with a non-empty bounded core
K (L) = [k,!] such that K(L) contains no proper Boolean interval. Then L satisfies (E).

Proof. If k = [, then L is a Post algebra of order 3 and trivially, L satisfies (E). So let us
further assume that k < [.

Let fi : K(L)>™ — K(L) be the partial compatible function associated to a compatible
function f : L™ — L. Let T = {(xV k)AL ....((x*T VE)Al); x € L"} be the domain
of fi. We shall show that f}, can be interpolated on the set 7'M {k,1}°" by the following
polynomial of the lattice K(L):

(5) q(z1,...,250) = V (fr(b1,. . bsn) Ayt A== Aysn),
beTn{k,1}5"
where y; = .
l, if b; = k.
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Let % be any (fixed) vector from T N {k,1}°". If b # % and bj # x; for some n < j < 5n,
then either b; =1, x; = k and then frp(b)Ay1 A---Ays, =k orb; =k, z; =1 and
then by Lemmas 3.15, 3.16 there exists s, n < s < 5n such that z; = k,bs = [, thus again

fic(b) Ay1 A -+ Ays, = k. Hence it suffices to take into account in (5) only conjunctions
f}((f)) Ayi A -+ A ys, such that b; = z; for all n < 7 < 5n and moreover, b; < x; for
1<¢<n. So
(]("I,‘l,...,.’1357,,):~ v ) (f}((bl,...,bn,fl)n_‘_l,...,.’B5n).
beTN{k,1}", b<x
In next we show that fj(b) < fi(X) for any b € T N {k,1}°" such that b; = z; for
it =n+1,...;5nand b; < x; for s = 1,...,n. For s = 1,...,n denote us; = by if
bs = x5, otherwise us = u. We get a unary compatible function g : K(L) — K(L), g(u) =
fae (U1, Uy Ty, - .o, T5p) and we want to show that fi (b) = g(k) < g(I) = fi ().
Since g(k) = g(u) (brat(k,u)) and g(u) = g(I) (Aat(u,l)) for any u € K(L), we get
g(u) Vu=g(k)Vuand
g(u) Au=g(l) A u.
This means that for any u € [g(1),g(k) V g(l)], g(u) is the relative complement of u in this
interval, which is therefore Boolean. By hypothesis (K (L) contains no Boolean interval)
this implies g(k) < ¢(1), what was to be proved. Hence
q(x1, ... T5p) = fre(w1,...,25,) for any x € T N{k,1}°", and by applying Lemma
2.7, q(z1, - .., x5y,) is the required total compatible extension of the partial function ff. O

From 3.14 and 3.17 we now get the Beazer result 3.1 and its consequences.

By Theorem 2.6 every finite algebra in an arithmetical variety, is affine complete. Hence,
as Beazer concluded in [B 1983], any finite regular double p-algebra is affine complete.
Afterwards he raised a question whether or not every infinite regular double p-algebra is
affine complete.

Later on, K. Kaarli and A.F. Pixley [Kaa-P 1987] proved that an arithmetical variety
of finite type is affine complete if and only if it has definable principal congruences and
all its subdirectly irreducible members are finite and have no proper subalgebras. It is
well-known that the variety of all regular double p-algebras has infinite subdirectly ir-
reducible members, e.g. infinite Boolean algebras with a new unit adjoined. Moreover,
every subdirectly irreducible regular double p-algebra having more than two elements has
a proper subalgebra {0,1}. Hence the variety of all regular double p-algebras is not affine
complete, and consequently, it must exist an infinite regular double p-algebra which is not
affine complete.

Next we construct an example of an infinite regular double Stone algebra which is not
affine complete. This has been motivated by techniques in [P 1993].

3.18 Example. Let 3 = ({0,a,1};V,A,*,7,0,1) be the 3-element double Stone alge-
bra with the core {a}. Let L be a subalgebra of 3“ consisting of the sequences x =
(1,22, 23,...) which are 0 for all but finitely many n or are 1 for all but finitely many n.
One can easily check that L is a regular double Stone algebra with an empty core.
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Let f: L — L be defined componentwise as follows:

1 if n is odd

Tn if n is even.

6 = {

We shall show that f(x) = f(7)(0(x,¥)) for any X,y € L. Let X,y € L. By construction
of L, there is a natural number K such that
x=(z1,..., ok, T, T, 3,...), x€{0,1}
S/:(yla---ayKayayaya"')’ yE{O,l}
For x € {0,1}, let = denote the constant sequence (z,x,z,...). Congruence-distributivity
yields that congruences on finite subdirect products are ‘skew-free’, hence

0(x,5) = 0(x1,y1) x - x O(2k, yK) X 0(z, ).

Now it is clear that f(X) = f(¥)(0(X,¥)), thus f is a compatible function on L. Suppose
that L is affine complete. Then f is a polynomial function of L, thus there is an (m+1)-ary

term ¢ of L and elements ¢!, ...,¢™ € L such that
fx) =tx,et, ..., ™).
For the constants ¢, ...,¢™ there is a natural number N such that for i = 1,...,m
&= (c,ch, ... e, et e L), ¢ e{o,1).

Take x € L such that x,, = x,,41 = 0 for some even n > N. Then we get
0=2,=fX)n=t0,c',....,c™) = f(X)nst1 = 1,

a contradiction. Hence f cannot be represented by a polynomial of L, so L is not affine
complete. [

We finally turn to local affine completeness and we present ‘local versions’ of the previous
results. As we shall see, much easier descriptions can be obtained.

3.19 Theorem. Let L be a quasi-modular double p-algebra with a non-empty bounded
core K(L) = [k,l]. L is locally affine complete if and only if L is a regular double p-algebra.

Proof. If L is locally affine complete then analogously as in the proof of 3.4 (the only
difference is that the functions fg, f are finite partial compatible functions in this case)
one can show that K (L) is a locally affine complete lattice, thus by 2.5, |K(L)| = 1. Hence
L is a regular double p-algebra. The converse follows from 2.6. O

Corollary 3.20. Post algebras of order 3 are the only locally affine complete quasi-
modular double S-algebras with a non-empty bounded core.

Proof. If L is a locally affine complete quasi-modular double S-algebra with a non-empty
bounded core K (L) = [k,l], then by 3.19 L is a regular double Stone algebra (i.e. a three-
valued Lukasiewicz algebra). Moreover, since |K(L)| = 1, L is a Post algebra of order
3. O
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