NOTE ON ZEROS OF THE CHARACTERISTIC POLYNOMIAL OF BALANCED TREES

1 PAVOL HÍC AND 2 ROMAN NEDELA

ABSTRACT. A graph G is called integral if all the zeros of the characteristic polynomial $P(G; \lambda)$ are integers. A tree T is called balanced if the vertices at the same distance from the centre of T have the same degree. In the present paper we investigate the properties of the zeros of characteristic polynomials of balanced trees.

1.INTRODUCTION

A graph G is called *integral* if it has an integral spectrum, i.e. if all the zeros of the characteristic polynomial $P(G; \lambda)$ are integers. The identification of all integral graphs seems to be intractable. However, that of various families of integral graphs was investigated in [1, 3, 4, 5]. In [3] integral balanced trees were studied. A tree T is called balanced if the vertices at the same distance from the centre of T have the same degree. According to the parity of the diameter of a tree balanced trees split into two families. We shall code a balanced tree of diameter 2k by the sequence $(n_k, n_{k-1}, \ldots, n_1)$, where n_j $j = 1, \ldots, k$ denotes the number of succesors of a vertex at distance k - j from the centre. In [3] it is proved that all zeros of the characteristic polynomial of the balanced tree with the sequence $(n_k, n_{k-1}, \ldots, n_1)$ are zeros of the following recursively defined polynomial $P_k(x)$:

Definition 1.

$$P_0(x) = x$$

 $P_1(x) = x^2 - n_1$
 $P_j(x) = x \cdot P_{j-1}(x) - n_j \cdot P_{j-2}(x)$
where $j = 2, ..., k$.

This fundamental observation allows us to reduce the study of spectra of balanced trees to the study of properties of polynomials $P_k(x)$. The aim of this note is to prove some basic results on the sequence $\{P_k(x)\}\ k=0,1,\ldots$ Results proved here are used in [3].

¹⁹⁹¹ Mathematics Subject Classification. 05C50.

Key words and phrases. graph, characteristic polynomial, tree.

2.RESULTS

In what follows we always assume that a sequence $\{n_j\}$ j=1,2... of positive integers is given. It is easy to verify by induction on k, that for the terms of the sequence $\{P_k(x)\}$ of polynomials defined by Definition 1 the following statements hold:

Proposition 1.

```
a. P_k(0) > 0, for k \equiv 3 \pmod{4};
```

b.
$$P_k(0) < 0$$
, for $k \equiv 1 \pmod{4}$;

- c. $P_k(0) = 0$, for $k \equiv 0$ or 2 (mod 4);
- d. $P_k(x)$ is decreasing in point 0 for $k \equiv 2 \pmod{4}$;
- e. $P_k(x)$ is increasing in point 0 for $k \equiv 0 \pmod{4}$.

Now, let x_i be the smallest positive zero of polynomial $P_i(x)$ (i=1,2,...). Denote by $\{x_k\}$ the sequence of the smallest positive zeros corresponding to the sequence $\{P_k(x)\}$. The following theorem shows that the above notation is correct.

Theorem 1. For every $i \ge 1$ there exists a positive zero of the polynomial $P_i(x)$. Moreover, using the above notation the following statements hold:

a. $\{x_{2k+1}\}$ is decreasing;

b. $\{x_{2k}\}$ is decreasing;

c. $x_{2k+2} > x_{2k+1}$, for $k=0,1,\ldots$

Proof. a. We shall proceed by induction on k. If k=0, then from $P_1(x) = x^2 - n_1$ we have $x_1 = \sqrt{n_1}$. If k=1, then $P_3(x) = x^4 - (n_1 + n_2 + n_3)x^2 + n_1.n_3$. By Proposition 1.a we get for $x \in \{0, x_1 > n_1\}$

(1)
$$P_3(0) > 0$$
,

(2)
$$P_3(x_1) = x_1 P_2(x_1) - n_3 P_1(x_1) = x_1 [x_1 P_1(x_1) - n_2 x_1] = -n_2 x_1^2 < 0.$$

Using (1) and (2) we deduce that there exists $y \in (0, x_1)$ for which $P_3(y) = 0$. It follows $x_3 < x_1$.

Now, let $x_1 > x_3 > \cdots > x_{2k-1} > 0$. We shall investigate the polynomial $P_{2k+1}(x)$. According to whether $2k + 1 \equiv 3$ or $1 \pmod{4}$ we distinguish two cases (see Proposition 1):

Case 1. $P_{2k+1}(0) > 0$;

Case 2. $P_{2k+1}(0) < 0$.

We shall deal only with the Case 1. The proof in the case 2 can be done similarly.

If $P_{2k+1}(0) > 0$, then by Proposition 1, $P_{2k-1}(0) < 0$ and it follows, that for every $x \in (0, x_{2k-1})$ we have $P_{2k-1}(x) < 0$ because of x_{2k-1} is the smallest positive zero of

 $P_{2k-1}(x)$. Hence,

$$P_{2k+1}(x_{2k-1}) = x_{2k-1}P_{2k}(x_{2k-1}) - n_{2k+1}P_{2k-1}(x_{2k-1}) =$$

$$= x_{2k-1}P_{2k}(x_{2k-1}) =$$

$$= x_{2k-1}[x_{2k-1}P_{2k-1}(x_{2k-1}) - n_{2k}P_{2k-2}(x_{2k-1})] =$$

$$= -x_{2k-1}n_{2k}P_{2k-2}(x_{2k-1}).$$

Further, substituting $x = x_{2k-1}$ into the equality

$$P_{2k-1}(x) = xP_{2k-2}(x) - n_{2k-1}P_{2k-3}(x)$$

we get

$$0 = x_{2k-1}P_{2k-2}(x_{2k-1}) - n_{2k-1}P_{2k-3}(x_{2k-1})$$

and

$$n_{2k-1}P_{2k-3}(x_{2k-1}) = x_{2k-1}P_{2k-2}(x_{2k-1}).$$

By Proposition 1 and the fact $x_{2k-1} \in (0, x_{2k-3})$ the left part of the last equation is positive and it follows

$$P_{2k-2}(x_{2k-1}) > 0.$$

Hence,

$$P_{2k+1}(x_{2k-1}) = -x_{2k-1}n_{2k}P_{2k-2}(x_{2k-1}) < 0.$$

Since $P_{2k+1}(0) > 0$, there exists $x_{2k+1} \in (0, x_{2k-1})$ which is a zero of $P_{2k+1}(x)$.

b. We shall proceed by induction on k. If k=1, then from $P_2(x) = x^3 - (n_1 + n_2).x$ it follows $x_2 = \sqrt{n_1 + n_2}$. If k=2, then $P_4(x) = x.P_3(x) - n_4.P_2(x)$. By Proposition 1.c and 1.e for $x \in \{0, x_2 > \text{the polynomial } P_4(x) \text{ satisfies the following properties:}$

(3)
$$P_4(x^+) > 0$$
, for some $x^+ \in O_{\epsilon^+}(0)$,

(4)
$$P_4(x_2) = x_2 P_3(x_2) - n_4 P_2(x_2) = x_2 [x_2 P_2(x_2) - n_3 P_1(x_2)] =$$
$$= -x_2 n_3 P_1(x_2) = -x_2 n_3 (x_2^2 - n_1) < 0.$$

Here $O_{\epsilon^+}(0)$ denotes a sufficiently small right open neighbourhood of 0. Using (3) and (4) we see that there exists $x_4 \in (0, x_2)$ such that x_4 is a zero of $P_4(x)$.

Now, let the statement hold for every n < k i.e.

$$0 < x_{2k-2} < x_{2k-4} < \dots < x_4 < x_2.$$

Consider the polynomial $P_{2k}(x)$. According to Proposition 1.d and 1.e we have to distinguish two cases:

(5)
$$k \text{ is odd and } P_{2k}(x^+) < 0, \text{ for } x^+ \in O_{\epsilon^+}(0);$$

(6)
$$k \text{ is even and } P_{2k}(x^+) > 0, \text{ for } x^+ \in O_{\epsilon^+}(0).$$

We shall examine only Case (6). Case (5) can be handled in a similar way. Substituting $x = x_{2k-2}$ into the equation

$$P_{2k}(x) = xP_{2k-1}(x) - n_{2k}P_{2k-2}(x)$$

we have

(7)

$$P_{2k}(x_{2k-2}) = x_{2k-2}P_{2k-1}(x_{2k-2}) =$$

$$= x_{2k-2}[x_{2k-2}P_{2k-2}(x_{2k-2}) - n_{2k-1}P_{2k-3}(x_{2k-2})] =$$

$$= -x_{2k-2}n_{2k-1}P_{2k-3}(x_{2k-2})$$

On the other hand, using the substitution $x = x_{2k-2}$ in the equation

$$P_{2k-2}(x) = xP_{2k-3}(x) - n_{2k-2}P_{2k-4}(x)$$

we have

(8)
$$x_{2k-2}P_{2k-3}(x_{2k-2}) = n_{2k-2}P_{2k-4}(x_{2k-2})$$

Hence, using Proposition 1.d and 1.e $P_{2k-4}(x_{2k-2}) > 0$. Combining (7) and (8) we obtain

$$P_{2k}(x_{2k-2}) < 0.$$

According to $P_{2k}(x^+) > 0$ for $x^+ \in O_{\epsilon^+}(0)$ there exists $x_{2k} \in (0, x_{2k-2})$ such that x_{2k} is a zero of the polynomial $P_{2k}(x)$.

c. The statement is trivial for k=0, since $x_2 = \sqrt{n_1 + n_2} > \sqrt{n_1} = x_1$. Now, let the statement hold for every n < k; i.e.

(9)
$$x_{2k} > x_{2k-1}$$

Suppose n = k + 1. We shall restrict ourselves to the case $P_{2k+2}(x^+) > 0$. The case $P_{2k+2}(x^+) < 0$ can be handled similarly. By Definition 1 we have

$$P_{2k+2}(x) = xP_{2k+1}(x) - n_{2k+2}P_{2k}(x)$$

According to Theorem 1.a and (9)

$$x_{2k+1} < x_{2k-1} < x_{2k}$$
.

By Proposition 1.d and by the assumption $P_{2k+2}(x^+) > 0$. It follows $P_{2k}(x) < 0$ for every $x \in (0, x_{2k+1})$. On the other hand, $P_{2k+1}(x) > 0$ for every $x \in (0, x_{2k+1})$. Hence, $P_{2k+2}(x) > 0$, for $x \in (0, x_{2k+1})$ and it follows that the smallest zero x_{2k+2} of the polynomial $P_{2k+2}(x)$ is greater than x_{2k+1} . \square

Corollary 1. If the polynomial $P_{2k+1}(x)$ has only integer zeros then 1 is not the zero of $P_{2k}(x)$.

Proof. Let $x_{2k} = 1$ be the smallest zero of $P_{2k}(x)$. Using Theorem 1. a; and c;

$$1 = x_{2k} > x_{2k-1} > x_{2k+1} > 0$$
,

for every $k = 1, 2, \ldots$ However, this contradicts the fact that x_{2k+1} is integer. \square

A sequence $\{n_i\}_{i\in I}$, where I is an interval (finite or infinite) of integers ≥ 1 is called *integral* if the corresponding polynomials $P_j(x)$ $j=1,\ldots$ have only integral zeros.

Corollary 2. There is no infinite integral sequence.

Corollary 3. Every integral sequence $(n_k, n_{k-1}, ..., n_1)$ has $a \text{ length } \leq \min\{2\sqrt{n_1}, \sqrt{n_1 + n_2}\}.$

References

- [1] F. C. Bussemaker, and D. Cvetković, *There are exactly 13 connected cubic integral graphs*, Publ. Elektrotech. Fak., Ser. Mat. Fiz., vol. 544, (1976), pp. 43-48.
- [2] D. Cvetković, M. Doob, and H. Sachs, Spectra of graphs, VEB Deutscher Verlag d. Wiss., Berlin, (1980).
- [3] P.Híc, R. Nedela, Integral balanced trees, submitted to Math. Slovaca.
- [4] A. J. Schwenk, and M. Watanabe, *Integral starlike trees*, J. Austral. Math. Soc. A 28 ((1979)), 120-128.
- [5] M. Watanabe, Note on integral trees, Math. Rep. Toyama Univ., (1979), pp. 95-100.

¹DEPARTMENT OF MATHEMATICS, INFORMATICS AND PHYSICS,

Faculty of Education,

Trnava University, Hornopotočná 23, 918 43 Trnava, Slovakia,

E-mail address: phic@ uvt.mtf.stuba.sk

²Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 00 Banská Bystrica, Slovakia

E-mail address: nedela@ bb.sanet.sk

(Received September 10, 1995)