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NOTE ON ZEROS OF THE CHARACTERISTIC
POLYNOMIAL OF BALANCED TREES

lpavoL Hic AND 2ROMAN NEDELA

ABSTRACT. A graph G is called integral if all the zeros of the characteristic polynomial
P(G; ) are integers. A tree T is called balanced if the vertices at the same distance from the
centre of T have the same degree. In the present paper we investigate the properties of the
zeros of characteristic polynomials of balanced trees.

1.INTRODUCTION

A graph G is called integral if it has an integral spectrum, i.e. if all the zeros
of the characteristic polynomial P(G;\) are integers. The identification of all integral
graphs seems to be intractable. However, that of various families of integral graphs was
investigated in [1, 3, 4, 5]. In [3] integral balanced trees were studied. A tree T is called
balanced if the vertices at the same distance from the centre of 7" have the same degree.
According to the parity of the diameter of a tree balanced trees split into two families.
We shall code a balanced tree of diameter 2k by the sequence (ng, ng_1,...,n1), where n;
j=1,...,k denotes the number of succesors of a vertex at distance k — j from the centre.
In [3] it is proved that all zeros of the characteristic polynomial of the balanced tree with
the sequence (ng,ng—1,...,n1) are zeros of the following recursively defined polynomial

Py (x):
Definition 1.
Py(z) ==z
Pi(z) = 2% —ny
Pj(z) = ©.Pj_1(x) — n;.Pj_(x)
where j =2,...,k.
This fundamental observation allows us to reduce the study of spectra of balanced

trees to the study of properties of polynomials Py(x). The aim of this note is to prove
some basic results on the sequence {Py(z)} k = 0,1,.... Results proved here are used in
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2.RESULTS

In what follows we always assume that a sequence {n;} j = 1,2... of positive
integers is given. It is easy to verify by induction on k, that for the terms of the sequence
{Px(z)} of polynomials defined by Definition 1 the following statements hold:

Proposition 1.
a. P,(0) >0, for k =3 (mod 4);

b. P,(0) <0, for k=1 (mod 4);

c. P,(0)=0, for k=0 or2 (mod 4);

d. Py(x) is decreasing in point 0 for k = 2 (mod 4);
e. Pyx(z) is increasing in point 0 for k =0 (mod 4).

Now, let z; be the smallest positive zero of polynomial P;(x) (i=1,2, ... ). Denote
by {z} the sequence of the smallest positive zeros corresponding to the sequence { Py (z)}.
The following theorem shows that the above notation is correct.

Theorem 1. For every i > 1 there exists a positive zero of the polynomial P;(x). More-
over, using the above notation the following statements hold:

a. {Tak41} is decreasing;

b. {xax} is decreasing;

C. Lokt > Tok41, for kZO,l, ...

Proof. a. We shall proceed by induction on k. If k=0, then from P;(z) = 2% — n; we have
11 = /n1. If k=1, then P3(x) = z* — (n1 +ns + n3)z® + ni.n3. By Proposition 1.a we get
for x €< 0,21 >

(1) P3(0) > 0,

(2) P3(.T1) = Zl?lpz(.l'l) — TL3P1(£E1) = ml[lel(:L"l) — 7’1,21'1] = —TL2IL'% < 0.

Using (1) and (2) we deduce that there exists y € (0,21) for which Ps(y) = 0. It follows
r3 < T1.

Now, let z1 > x3 > --- > ;1 > 0. We shall investigate the polynomial Psyy1(z).
According to whether 2k +1 =3 or 1 (mod 4) we distinguish two cases (see Proposition
1):

Case 1. Pyg41(0) > 0;
Case 2. Py41(0) < 0.
We shall deal only with the Case 1 . The proof in the case 2 can be done similarly.

If Py;11(0) > 0, then by Proposition 1, Par_1(0) < 0 and it follows, that for every
x € (0,295_1) we have Pop_1(z) < 0 because of xor_1 is the smallest positive zero of
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Psj_1(z). Hence,

Pojt1(22k—1) = 2op—1Por(®2r—1) — nog+1Pok—1(22k—1) =
= zop_1Pok(z2k-1) =
= Zop—1]Tak—1Pok—1(Tak—1) — norPor—2(z2k-1)] =

= —Zop_1N2kPor—2(Tak_1)-

Further, substituting x = x95_1 into the equality
Pop—1(z) = xPop—2(x) — nog—1Pok—3(x)
we get
0 = wop_1Por—2(Tar—1) — nar—1Por—3(T2x_1)
and

nok—1Pak—3(x2k—1) = Top—1Pok—2(2k—1).

By Proposition 1 and the fact z9x_1 € (0, x2;_3) the left part of the last equation
is positive and it follows
Poy_z(wap_1) > 0.

Hence,
Popy1(w2r-1) = —wap—1nok Por—2(z21-1) < 0.
Since Pog+1(0) > 0, there exists zog+1 € (0, x25—1) which is a zero of Pogy1(x).
b. We shall proceed by induction on k. If k=1, then from Py(z) = 23 — (n1 + ns).x

it follows x93 = /n1 + ng. If k=2, then Py(z) = z.P3(x) — n4.Py(z). By Proposition 1.c
and 1.e for z €< 0,29 > the polynomial Py(z) satisfies the following properties:

(3) Py(zt) > 0, for some 2+ € O (0),
(4) P4(.’I,'2) = 1‘2P3(.’L'2) — 7”L4P2(.”L'2) = (IJQ[ZL'QPQ(.CL‘Q) — n3P1(x2)] =
= —{L'QTL3P1(£L'2) = —.’1,'277,3(1'% — nl) < 0.

Here O.+(0) denotes a sufficiently small right open neighbourhood of 0. Using (3) and (4)
we see that there exists x4 € (0,22) such that x4 is a zero of Py(z).

Now, let the statement hold for every n < k i.e.

0 < Xop—o < Tog—g < -+ < x4 < To.

Consider the polynomial Py (x). According to Proposition 1.d and 1.e we have to
distinguish two cases:

(5) k is odd and Py (1) <0, for 7 € O+ (0);
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(6) k is even and Py (1) > 0, for 27 € O (0).
We shall examine only Case (6). Case (5) can be handled in a similar way. Substi-
tuting « = x9x_o into the equation
Poy(z) = 2 Pop—1(x) — nopPog—2(x)

we have

(7)

Poj(xor—2) = xap_2Pop_1(x25_2) =
= Tog_o[Tok—2Pok—2(Tar_2) — Nog—_1Pok—3(T2p_2)] =

= —Zop—2N2k—1Por—3(Tak—2)
On the other hand, using the substitution © = x9;_o in the equation
Pop_o(x) = xPop—_3(x) — nap—2Por—a(x)
we have
(8) Tok—2Pop—3(xak—2) = Nok—2Pog—a(T2k—2)
Hence, using Proposition 1.d and 1.e Pa_4(z25—2) > 0. Combining (7) and (8) we obtain
Py (z25—2) < 0.

According to Pog(z) > 0 for 2T € O+ (0) there exists zox € (0, 295 _2) such that xoy is a
zero of the polynomial Py ().

c. The statement is trivial for k=0, since x5 = \/n1 + ny > /n1 = 1. Now, let the
statement hold for every n < k; i.e.

9) Tak > T2k—1

Suppose n = k + 1. We shall restrict ourselves to the case Pogyo(zt) > 0. The case
Pypyo(zt) < 0 can be handled similarly. By Definition 1 we have

Popyo(7) = 2Pogy1(7) — nagyoPor(x)
According to Theorem 1.a and (9)
Toak+1 < Tag—1 < T2k-

By Proposition 1.d and by the assumption Pgio(zT) > 0. It follows Pap(z) < 0 for
every © € (0,z2541). On the other hand, Pagy1(z) > 0 for every = € (0, z2r4+1). Hence,
Psjio(x) > 0, for € (0, 29541) and it follows that the smallest zero xax42 of the polyno-
mial Pogy2(x) is greater than zop4q. O
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Corollary 1. If the polynomial Py (x) has only integer zeros then 1 is not the zero of
sz (.Z’)

Proof. Let xo,, = 1 be the smallest zero of Pog(z). Using Theorem 1. a; and c;
1 =wop > o1 > Top41 > 0,

for every k=1,2,.... However, this contradicts the fact that zo;1 is integer. O

A sequence {n;}icr, where I is an interval (finite or infinite) of integers > 1 is called
integral if the corresponding polynomials Pj(z) j = 1,... have only integral zeros.

Corollary 2. There is no infinite integral sequence.
Corollary 3. Every integral sequence (ng,ng—1,...,n1) has
a length < min{2,/n1,\/n1 + na}.
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