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THE EDGE DISTANCE IN SOME FAMILIES OF GRAPHS 11

PAVEL HRNCIAR AND GABRIELA MONOSZOVA

ABSTRACT. The edge distance between graphs is defined by the equality d(G1,G2) = |E1| +
|E2| — 2|E1,2] + |[V1] — |V2|| where |A] is the cardinality of A and E1 2 is the edge set of a
maximal common subgraph of G1 and Ga. Further, diam Fp ¢ = maz{d(G1,G2);G1,G2 €
Fp.q} where Fjp ¢ denotes the set of all graphs with p vertices and g edges. In the paper
we prove that for p € {7,8,9} diam Fp py» = 2p — 6 and for p 2 19 and p+ 3 £ ¢ < %p
diam Fp ¢ = 2q — 12.

1. Preliminaries

A graph G = (V, E) consists of a non-empty finite vertex set V' and an edge set E.
In this paper we consider undirected graphs without loops and multiple edges. A subgraph
H of the graph G is a graph obtained from G by deleting some edges and vertices; notation:
H C G. By a(G) we denote the maximal degree of vertices of the graph G. A graph G
is a common subgraph of graphs G, G5 if there exist graphs Hy, Hs such that H; C G4,
H2§G2 andngG, HggG

A maximal common subgraph is a common subgraph which contains the maximal
number of edges.

The edge distance of the graphs G; = (V1, E1) and Gy = (Va, E») is defined (see [3])
by

(1) d(G1,G2) = |E1| + |Ea| — 2|E1 2

+l[Va] = [Val|

where |E1|, |Fa|, |[Vi|, |V2| are the cardinalities of the edge sets and the vertex sets, re-
spectively and |E1 5| is the number of edges of a maximal common subgraph G s of the
graphs G and Gbs.

Throughout this paper, by F), , we denote the set of all graphs with p vertices and
q edges. Further, diam F), ;, := max{d(G1,G2); G1,G> € F, 4}. If dlam F, ; = d(G, H) and
Cp,q 1s the number of edges of a maximal common subgraph of the graphs G, H then

(2) diam F, ; = 2q — 2¢; 4.
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Denote by v a firmly chosen vertex of a maximal degree in the considered graph G and
by v1,va,..., v the vertices adjacent to v (here k = A(G)). Denote U := {vy,va,..., 0%}
and U' :=V — {v,v1,...,v5}. The subgraph of the graph G induced by the vertex set
X (X C V) we denote by G(X) and the set of its edges by E(G(X)) or briefly by E(X).
The subgraph of the graph G which contains all edges with one vertex in the set U and
the other in the set U’ is denoted by G(U,U’) and the set of its edges by E(U,U’).

This paper is a continuation of the articles [1] and [2] but it can be read indepen-
dently on them.

2. Diameter of F), ;o

In [1] diam F}, pyo is determined for all p except of p € {7,8,9}. In this section of
the paper we will show that diam F}, ,4o = 2p — 6 for p € {7,8,9}.

Lemma 2.1. Let G1,G2 € Fp, pyo, p € {7,8}. If the graph G, without its isolated vertices
is a subgraph of the graph K5 then |E; 2| 2 5.

Proof. 1t si sufficient to show that G5 has a subgraph with 5 vertices and with at least 5
edges. It is easy to check this fact by distinguishing the following cases:

a) a(G2) =3
(i) [EW)[ 22
(i) [EU)| =1
If |[E(U,U")| = 0 then G3(U’) is the complete graph K.

(iii) |EU)[=0
If every vertex from U’ has degree at most 1 in Go(U,U’) then G(U")

has at least 3 edges.
b) a(G2) 24
(i

) [EU)[21
(ii) There is a vertex in U" whose degree in G(U,U’) is at least 2

(iii) If none of the previous two cases is valid then G5 (U’) is the complete
graph K3 and |E(U,U’)|=3. O

Lemma 2.2. Let G € F), 12, p € {7,8,9} and a(G) = 4. Then G contains at least one
of the graphs Hy, Hy (Fig. 2.1).
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H1 H2

Fig. 2.1

Proof. Suppose that |E(U)| = 0 and simultaneously |E(U,U’)|] = 0. Then |E(U")| =
|U’| + 3 which is impossible since |[U'| £ 4. O

Lemma 2.3. Let G € Fp 12, p € {7,8,9}, ao(G) =4 and |[E(U)| = |[E(U')| =0. Then G
contains the graphs Hs and H, (Fig. 2.2).

Fig. 2.2

Proof. Since |[E(U,U’)| = |U’| + 3, at least one of the following holds:

(i) there are at least 2 vertices of degree at least 2 in U’
(ii) there is a vertex of degree at least 3 and another vertex of non-zero degree in U’ [0

Lemma 2.4. If G1,G2 € Fp py2, p € {7,8,9} and A(G1) = a(G2) =4 then |Eq 2| 2 5.

Proof. In view of Lemma 2.2 it is sufficient to consider the case when exactly one of the
graphs Gy, G5 contains the graph H; and exactly one of them contains the graph Hs.
Without loss of generality we can assume that the graph G contains the graph H; and
the graph G2 contains the graph H,. According to Lemma 2.1 we can also assume that
the graph G without its isolated vertices is not a subgraph of the graph K5. According
to the above facts, we have |E(G1(U"))| 2 1. If |[E(G2(U"))| 2 1 then a common subgraph
is the graph Hj (Fig. 2.3).
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Hs
Fig. 2.3

So let |E(G2(U"))| = 0. According to Lemma 2.3 the graph G5 contains the graphs Hj
and Hy. If |[E(G1(U))| 2 3 then the graph G contains the graph Hs. In the opposite case
we have |[E(G1(U"))| 2 |U'| + 1 whence |U'| = 4. Then the graph G; contains the graph
H, and the proof is finished. [0

Lemma 2.5. Let G1,G2 € Fppt2, p € {7,8,9}, a(G1) 2 4 and a(G2) = 5. Then
|E12| 2 5.

Proof. The statement of the lemma is trivial if A(G1) > 4. Two cases are possible:

a) |[E(G1(U,U")] 21,

b) |E(G1(U,U"))| = 0.
In the case a) a common subgraph is the graph Hy. Obviously, if the graph G2 did not
contain the graph Hy then it would be |E(G2(U))| = 0 and |E(G2(U,U’))| = 0. This
yields |[E(G2(U"))| > |U'| and it is impossible.

In the case b) we can assume according to Lemmas 2.1 and 2.2 that G contains the

graph Hg (Fig. 2.4). Clearly, the statement holds if |[E(G2(U))| 2 1 or |E(G2(U,U"))| 2 1.
Now it is sufficient to realize that at least one of these inequalities must be valid for the
graph Go. O

Hg
Fig. 2.4

Let F ={G € F;9U Fg 10U Fy 11; o(G) = 3}. Let us consider the next subsets of
F
F; contains all graphs which have the subgraph H7 (Fig. 2.5),
F, contains all graphs from F' — F; which have the subgraph Hg (Fig. 2.5),
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F3 contains all graphs from F' — F; which have the subgraph Hg (Fig. 2.5),
Fy contains all graphs from F' — F; which have the subgraph H,, (Fig. 2.5),
F5 contains all graphs from F' — F; which have the subgraph H; (Fig. 2.5).

1 <> O
PSS

HlO Hll

Fig. 2.5

Lemma 2.6. F1UF2UF3UF4UF5:F.

Proof. Obviously, each graph G € F' has at least 4 vertices of degree 3. If there are no
two non-adjacent vertices of degree 3 then G contains Hy. If there are two non-adjacent
vertices of degree 3 then G must contain at least one of the graphs Hg, Hg, Hyig and
Hy. O

Lemma 2.7. If G € F; then G has the subgraph Hys in Fig. 2.6.

1

His
Fig. 2.6

Proof. We know that the graph G has the subgraph H; and apart from the vertices of this
subgraph G it has other p — 4 vertices. The subgraph of the graph G induced by these
p — 4 vertices has at least p — 5 edges and consequently it has a vertex of degree at least
2. O

Lemma 2.8. IfG € F, then it contains the graphs Hz, Hy, Hi3 and Hy4 (Figs. 2.2, 2.7).
Moreover, if p # 7 then G contains also the graph Hys (Fig. 2.7).
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H13 H14 H15
Fig. 2.7

Proof. The component of the graph G which contains the graph Hg must also contain a
vertex which does not belong to Hg, i.e. G contains the graph Hy¢ (Fig. 2.8). Obviously,
if p # 7 then G has an edge which is not incident with any vertex of the subgraph Hg. [

Hyg
Fig. 2.8

Lemma 2.9. If G € F3 then it contains the graphs Hs, Hy, Hy3 and Hy7 (Figs. 2.2, 2.7,
2.9).

Hy7
Fig. 2.9

Proof. Obviously, G contains the graphs Hs and Hy7. Since G contains the graph Hg and
has at least 9 edges, it has an edge which is not incident to any vertex of the circle in
the considered subgraph Hg. Therefore G contains Hy. Apart from the edges of Hg there
must exist another edge in G which is incident with at least one vertex of Hg. It follows
immediately that G contains Hq3. [
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Lemma 2.10. IfG € FyU F5 then G contains the graphs Hys, Hy7, Hig and Hqg. (Figs.
2.7, 2.9, 2.10).

Fig. 2.10

Proof.
a) GeF,
Obviously, G has the subgraphs Hy7 and Hig. Further, the graph G has at least
3 edges except of the edges of the subgraph Hig. Each of these edges is incident
with at least one vertex of the subgraph H;y. It follows that G has the subgraphs
H13 and ng.
b) G € F;

Obviously, G has the subgraph Hig. Since G can not have two non-trivial com-
ponents it contains the subgraph Hy;. If the graph G contains at least one of the
subgraphs Hag, Hoy (Fig. 2.11) then it also has the graphs Hy3 and Hig.

<o <>

H20 H21

Fig. 2.11

In the opposite case p=9 and G contains at least one of the subgraph Hss, Has
(Fig. 2.12). Hence G has the subgraph Hqg and it is easy to verify that it also has
the subgraph Hy3. O
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H22 H23
Fig. 2.12

Lemma 2.11. If G1,G3 € Fp 12, p € {7,8,9} and a(G1) = a(G2) = 3 then |Eq | 2 5.
Proof. The statement follows straightforwardly from Lemmas 2.6 - 2.10. [J
Lemma 2.12. If G1,G3 € F, p12, p € {7,8,9}, a(G1) =3, a(G2) =4 then |E; 2| 2 5.

Proof. According to Lemma 2.1 we can assume that G2 without its isolated vertices is not
a subgraph of K5. We distinguish several cases:

a) G1 S F1
According to Lemma 2.7 G has the subgraph Hi,. We distinguish 4 cases for the
graph Ga:
(i) [EWU)[z3
A common subgraph is the graph H-.
(ii) [E(U)| =2
If the considered edges are adjacent then a common subgraph is H7.
If they are not adjacent then a common subgraph is Hay (Fig. 2.13).

<] |

Hyy
Fig. 2.13

(iii) [E(U)| =1
If |[E(U’")| 2 1 then a common subgraph is Hay. If |[E(U’)| = 0 then
there exists a vertex of degree at least 2 in U’ and at least one of the
graphs H7 and Hsy4 is a common subgraph.

(iv) [EU)[=0
A common subgraph is His.
b) Gq € Iy
We show that G2 contains at least one of the graphs from Lemma 2.8. We can
assume that |[E(U)| £ 2 and each vertex from U’ has degree at most 1 in Go(U, U’)
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(in opposite case a common subgraph is H3). From this it follows that |[E(U’)| = 1.
If p = 7 then a common subgraph is Hy4. Solet p # 7. If |[E(U)| 2 1 then a common
subgraph is Hys. If |[E(U)| = 0 then there exists a vertex of degree at least 2 in
G2(U’) and if moreover |E(U,U’)| 2 2 then again Hys is a common subgraph. In
the opposite case p =9, |E(U’)| = 6 and a common subgraph is Hy.

C) G € F3
We show that G5 contains at least one of the graphs from Lemma 2.9. If |E(U, U")U
E(U")| > |U'| then at least one vertex from U’ has degree at least 2 in G. Hence it
is easy to verify that at least one of the graphs Hs, Hy, Hq7 is a common subgraph.
In the opposite case |E(U)| 2 3 and a common subgraph is Hs.

d) G, € FyU Fs
We show that G5 contains at least one of the graphs from Lemma 2.10 (i.e. His,
Hiy7, Hig, Hig).

i) [EU)| 2
If |[E(U,U")| 2 1 then a common subgraph is Hy3 or Hy7. If | E(U,U")| =
0 then according to Lemma 2.1 we can assume that |E(U’)| = 1 and
a common subgraph is Hyg or Hig.

(ii) |[EU)[=0
It is easy to check that G2 contains the graph Hig. [

Lemma 2.13. IfG1,G2 € Fp p12,p € {7,8,9}, a(G1) = 3 and a(G2) 2 5 then |Ey 2| 2 5.

Proof. We distinguish several cases:

a) G e Fy
We show that G5 contains a subgraph of the graph Hj, having 5 edges.

(i) [EU)| =2
In this case |E(U,U") U E(U")| 2 |U'| + 1 and therefore some vertex
from U’ has degree at least 2 in G3. A common subgraph is Hig.

(i) [BW)| 23
If there exist two adjacent edges in G5(U) then a common subgraph
is Hy. If there are no such edges then the common subgraph is Hoy.

b) Gi1 € FUF3

According to Lemmas 2.8 and 2.9 it is sufficient to show that G5 contains at least
one of the graphs Hs and Hy3. Obviously, this is true if |[E(U)| 2 2 or if some
vertex from U’ has degree at least 2 in G2(U,U’). In the opposite case we have
|E(U")| 2 2 and it follows that p = 9 and |E(U,U’)| 2 2. Now it is easy to verify
that G5 contains Hs or His.

C) G € F4U Fy

We show that G2 contains at least one of the graphs Hy3, H17 and Hig (see Lemma
2.10).

i) [EU)| =2
In this case G5 contains at least one of the graphs Hys, Hy7.
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(ii) |[EU)[ =1
In this case at least one vertex in U’ has degree at least 2. Hence G2
contains the graph Hyg. U

Theorem 2.14. diam F), ;19 = 2p — 6 for p € {7,8,9}.

Proof. By Lemmas 2.4, 2.5, 2.11, 2.12 and 2.13 it suffices to find two graphs G1,Gy €

F, pt2 with |Eq 5| = 5. Such graphs are depicted in Fig. 2.14 (one component of G is a

circle). 0O

G1 G2

SN

Fig. 2.14

3. Diameter of F), .3

In this section of the paper we will determine diam F, , 43 for p = 19.

Lemma 3.1. If G € F, 13, p 2 17 and o(G) = 3 then G contains the graph Has (Fig.

111

Hys

Fig. 3.1

Proof. Let v be a vertex of degree 3 in the graph G. If p = 7 then there exists an edge
wyiwsg such that w; ¢ {v,v1,v9,v3}, 1 =1,2. If p 2 12 then there exists an edge wzw, such
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that w; ¢ {v,v1,ve,v3, w1, wa}, 1 = 3,4. If p = 17 then there exists an edge wswg such
that w; ¢ {v,v1,v9,v3, w1, we, ws, ws}, i = 5,6. Thus G contains the graph Ha;. O

Lemma 3.2. If G € Fp 13, p = 14 and A(G) = 3 then G contains the graph Hag (Fig.
3.2).

Hsg
Fig. 3.2

Proof. If p—4 < 2(p — 6) i.e. p > 8 then G(U’) has a vertex wy of degree at least 2. Let
we, wsz are the vertices adjacent to wy in G(U’). If p 2 14 then there exists an edge such

that neither of its vertices belongs to {v, vy, vs,v3, w1, ws, w3} i.e. G contains the graph
Hy. O

Lemma 3.3. Let G € F, 13 and A(G) = 3. Then G contains at least one of the graphs
H27, Hgs, H29 and H30 (Flg 33)

o Dl e <

H27 H28 H29 H30

Fig. 3.3

Proof. G has at least 6 vertices of degree 3. We thus get that there are two non-adjacent
vertices of degree 3 in GG. All four possible cases for these two vertices are depicted in the
Fig. 3.3. O

Lemma 3.4. Let G € F,, 13 and A(G) = 3. If G has at least two components with more
edges than vertices then it contains the graphs Hs; (Fig. 3.4) and Hor.
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H3y
Fig. 3.4

Proof. Obviously, each of the considered components of the graph G contains a vertex of
degree 3. Further it is sufficient to realize that such component has more than 3 edges. [

Lemma 3.5. Let G € F}, 13, A(G) =3 and G have only one component H having more
edges than vertices.

(a) If H has the subgraph Ho7 then it contains at least one of the graphs Hso (Fig.
35) and H31.
(b) If H has the subgraph Hsg then it contains at least one of the graphs Hgs, Hg3s

(Fig. 3.5).

Hs, Hss
Fig. 3.5

(c) If H has the subgraph Hag then it contains at least one of the graphs Hss, Hss,

DO D S S

Hsy Hss Hse
Fig. 3.6

Proof. The graph H has at least 3 edges more than vertices.

(a) and (b): It is sufficient to realize that H contains more than 6 edges.

(c): If H has exactly 6 vertices then it contains the graph Hse. If H has at least 7 vertices
then it contains at least one of the graphs Hszy4, Hzs. [
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Lemma 3.6. Let G € Fp, .3, p = 8 and a(G) = 3. If G contains the graph Hso then it
contains the graph Hs; (Fig. 3.7).

Hsy,
Fig. 3.7

Proof. There are another p — 5 vertices in G besides the vertices of Hzg. The subgraph
H of the graph G induced by these p — 5 vertices has at least p — 6 edges. If H does not
contain any vertex of degree 2 then p—5 2 2(p —6), ie. p< 7. O

Lemma 3.7. If G contains at least one of the graphs Hsg, Hsg (Fig. 3.8) then it contains
the graphs H27, HZS; Hgg and H30.

Fig. 3.8

Proof. The statement is obvious. [

Lemma 3.8. If A(G) =4 and q = 21 then G contains the graph Hyo (Fig. 3.9).
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Hyo
Fig. 3.9

Proof. |[E(U’)| 2 5 and hence G(U’) contains two independent edges. [

Lemma 3.9. If G € F, 13, o(G) =4 and p 2 19 then G contains the graph Hy; (Fig.
3.10).

Fig. 3.10

Proof. Obviously, if |[E(U)| + |E(U,U")| £ 10 and G does not contain Hyy then p — 5 =
2(p—11) i.e. p £ 17. We can thus assume that |[E(U)|+ |E(U,U")| 2 11. Since a(G) =4
it holds |E(U)| + |E(U,U")| < 12. We distinguish two cases:

) [EO)|+EU,U)| =12
In this case |[E(U)| = 0 and every vertex from U has degree 3 in G(U,U’). We can
assume that there are at most 2 vertices from U’ of degree 0 in G(U’). In fact, in
the opposite case it holds (if G does not contain Hy;) p—8 = 2(p—13), i.e. p < 18.
If some vertex from U’ has degree 2 or 3 in G(U,U’) then G contains the graph in
Fig. 3.11.
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Fig. 3. 11

It follows that G contains the graph Hy;. So, let no vertex from U’ has degree
2 or 3 in G(U,U’). There are at most 3 vertices from U’ which have degree 4 in
G(U,U’). Let k be the number of them.

a) k=3
Since there are at most 2 vertices of degree 0 in G(U’) this case is
impossible.

b) k=2
In this case there are exactly 4 vertices in U’ of degree 1 in G(U,U’).
At least 2 of these 4 vertices have degree at least 1 in G(U') and it
follows that G contains Hy;.

c) k=1
The statement is obviuos.

(i) |B(U)| + B, U7 = 11
In this case |E(U)| £ 1. If there was an isolated vertex in G(U’) and G did not
contain the graph Hyq then it would hold p — 6 =2 2(p — 12), i.e. p < 18. We can
thus assume that no vertex in G(U) is isolated. It follows that no vertex from U’
has degree 4 in G(U,U’). The statement of the lemma holds if no vertex from U’
has degree 2 or 3 in G(U,U’). If some vertex u € U’ has degree 3 in G(U,U’) then
it is sufficient to realize that the vertex from U not adjacent to the vertex u has
degree at least 2 in G(U,U’). Since the vertex u is not isolated in G(U’) then G
contains the graph Hy;.
If some vertex from U’ has degree 2 in G(U, U") and is adjacent to vertices vy, ve € U
then it is sufficient to take into account that at least one of the vertices vz, vy € U
has degree 4 and is not adjacent to the vertex v; for s =1,2. 0

Lemma 3.10. Let G1,G3 € Fp py3, p 2 14 and a(G1) = a(G2) = 3. Then |E; 2| 2 6.
Proof. The statement is a consequence of Lemma 3.2. [J
Lemma 3.11. Let G1,G3 € Fp, p43, p 2 18 and A(G1) = a(G2) = 4. Then |Eq 2| 2 6.

Proof. The statement is a consequence of Lemma 3.8. [
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Lemma 3.12. Let G1,G3 € Fp py3, p 219 and a(G1) =3, a(G2) = 4. Then |E; 2| 2 6.

Proof. First realize that if we prove that G5 contains at least one of the graphs Hss, Hag
then the statement of the lemma holds by Lemmas 3.1 and 3.2. We distinguish several
cases for Go:

a) There are 2 independent edges in Go(U")
al) A(Gz) z 5

(1) If |[E(U)|#0or |[EU,U")| # 0 then G2 contains at least one of the
graphs H25, H26-

(i) If [E(U)| = 0 and |E(U,U’)| = 0 then |E(U’)| = 8 and hence G2
contains at least one of the graphs Has, Hog.

ag) A(Gg) =4
If |[E(U,U")| # 0 or |[E(U")| 2 7 then G2 contains at least one of the
graphs Hss, Hog; in the opposite case it holds ¢ < 16, a contradiction.
b) |E(U")| 2 2 and any two edges in G(U’) are adjacent edges in U’
In this case Go(U’) contains the graph in Fig. 3.12

Fig. 3.12

by) there is an edge in G2(U,U’) which is not incident with any vertex
from {wy, wa, w}
In this case G5 contains Hoag.

bs) a(G2) 2 5 and by) does not hold
We distinguish 3 subcases:

(i) [EWU)|#0

In this case G5 contains Hag.

(i) |[E(U)| = 0 and the vertex w has degree at least 3 in G2 (U, U’)
The statement holds by Lemmas 3.7 and 3.3.

(iil) |E(U)| = 0 and the vertex w has degree at most 2 in G2(U,U’)
If |[E(U")| = 2 then degree of wy or ws is at least 2 in G2 (U, U’) (since
\E(U,U")| 2 5) and hence G5 contains Hog. If |[E(U’)| = 3 then again
G2 contains Hog (since |E(U,U")| 2 4).

bs) A(G2) =4 and by) does not hold
In this case ¢ < 20, a contradiction.
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c) |[EU) =1
Cl) A(Gg) 2 6

(1) |EU)]z2
If there are two adjacent edges in U then G4 contains Hag. Now let
us consider the opposite case. If A(G3) = 7 then G2 contains Has. If
A(G2) =6 then |[E(U,U’)| 2 2 and hence G contains Has or Hog.

(i) |[EU) =1
In this case |[E(U,U’)| 2 |U'| 4+ 2 and if G5 does not contain Hag then
it contains at least one of the graphs in Fig. 3.13.

Fig. 3.13

If G5 contains the graph « then the lemma holds by Lemmas 3.7 and 3.3. If G5
contains the graph 8 then G5 contains each of the graphs Har, Hog, Hag, H3g and
the statement holds by Lemma 3.3.

62) A(Gg) =5
If there are at least two edges in G2(U,U’) which are not adjacent
to the edge of the graph G3(U’) then G5 contains at least one of the
graphs Hos, Hag. In the opposite case at least 3 edges from G4 (U, U’)
are incident with the same vertex of the edge of Go(U’). Then the
statement of the lemma follows from Lemmas 3.7 and 3.3.

Cg) A(Gg) =4
This case is not possible for ¢ = 18.

e}

d) |BU")| =

SH
—_
—~

A(Gg) z 6

i) there is a vertex in U’ which has degree at least 2 and |E(U,U’)| = 3
Then G5 contains at least one of the graphs in Fig. 3.14. In the case
«) the statement of the lemma follows from Lemmas 3.7 and 3.3. In
the case (3) G2 contains Hag. In case vy it holds |E(U)|+|E(U,U’)| =2 6
and hence G5 again contains Hag.
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VS

Fig. 3.14

(ii) there is a vertex in U’ which has degree at least 2 and |E(U,U’)| = 2
In this case |[E(U)| 2 3 and if A(G2) = 6 then G contains each of
the graphs Haz, Hag, Hag, H3o (since ¢ = 22) and the statement of
the lemma holds by Lemma 3.3. If A(G3) = 7 then G2 contains Hag
or the graph Hys (Fig. 3.15).

Hys
Fig. 3.15

The graph Hyo contains the graphs Hsy, Haog and Hag. If the graph G does not
contain any of the graphs Ho7, Hog and Hsg then it contains Hzg by Lemma 3.3

and Hs7 by Lemma 3.6. The graphs Hys and H37 have a common subgraph which
is depicted in Fig. 3.16.
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Fig. 3.16

(iii) every vertex from U’ has degree at most 1 and there exists a vertex
from U of degree at least 2 in Go(U,U")
In this case |[E(U)| = 4. If G5 does not contain Hag then the statement
of the lemma follows from Lemmas 3.7 and 3.3.

( iv) there are no adjacent edges in Go(U,U’) and |E(U,U")| = 2
In this case |[E(U)| = 4. If |E(U,U’)| 2 3 then G5 contains Has. If
E(U,U'")| =2 and a(G2) 2 7 then obviously a common subgraph is
Hys or Hog. If |[E(U,U’)| = 2 and a(G3) = 6 then G35 contains each
of the graphs Ha7, Hog, Hag and Hjsg (since ¢ = 22). Now use Lemma
3.3.

(V) EQU) =1
In this case we have |E(U)| = 4. We distinguish three subcases:
1) a(G2) 2 9. If there is a vertex of degree at least 3 in G2(U) then
the statement of the lemma holds by Lemmas 3.7 and 3.3. If there is
no vertex of degree at least 3 in G2(U) and G contains neither the
graph Hss nor the graph Hsg then G5 contains the graph in Fig. 3.17.

Fig. 3.17

The statement of the lemma follows from Lemmas 3.3, 3.4 and 3.5 (the
component H from Lemma 3.5 contains at least one of the graphs Haz,
HQS, H29 and H30).

2) a(Go) € {7,8}

If ¢ = 18 then there exists a vertex of degree at least 3 in G2(U) and
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hence G5 contains the graph « in Fig. 3.14 and the statement of the
lemma holds by Lemmas 3.7 and 3.3.

3) a(Gy) =6

This case is not possible for ¢ = 22.

dg) A(Gg) =5
Since |E(U’)| = 0 and ¢ = 22 there is a vertex from U which has
degree at least 3 in G2(U,U’). Now, if we realize that there exists an
edge in Go(U,U’) which is not incident with the considered vertex of

degree at least 3 then we get that G contains Hyg.

d3) A(GQ) =4
This case is not possible for ¢ = 17. [

Lemma 3.13. Let G1,G3 € Fp, pi3, A(G1) =4, a(G2) 25 and p 2 19. Then |E; 5| 2 6.

Proof. In wiew of Lemmas 3.8 and 3.9 it is sufficient to show that G5 contains at least one
of the graphs Hyg, Hy;.

a) E(U")#0
If A(G2) 2 6 then the statement of the lemma is obvious. If A(G3) =5 then it is
sufficient to use the fact that |[E(U,U")| + |E(U")| > 1.

b) |EU")| =0
If A(G2) 2 6 and |E(U,U’)| 2 2 then the statement obviously holds. So, it is
sufficient to consider two cases:

(i) a(Gy) 26 and |[E(U,U")| < 1.
Obviously, the statement holds if A(G3) 2 8. If A(G3) = 7 then there
exists a vertex of degree at least 2 in G2(U) and hence G2 contains
the graph Hyy. The case a(G2) = 6 is impossible since ¢ = 22.

(ii) a(Gy) =5.
There exists a vertex from U of degree at least 2 in Go(U,U’). O

Lemma 3.14. Let G1,G3 € Fp 13, A(G1) 25, a(G2) 25, p 2 19. Then
|E1 2] 2 6.

Proof. Obviously, the statement holds if A(G1) 2 6 and A(G2) = 6. We distinguish two
cases:

a) A(Gl) = A(Gg) =5
It is sufficient to consider the case that none of the graphs Hyg, Hyq (Fig. 3.18) is a

common subgraph of the graphs G and G5. So we can assume that |E(G1(U,U"))| =0
and |E(G2(U"))| = 0.
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H43 H44
Fig. 3.18

We show that a common subgraph is the graph Hyq. If the graph G; did not
contain the graph Hy; then it would hold p—6 = 2(p—12), i.e. p < 18. The graph
G2 contains the graph Hyy since |E(U,U’| 2 14.
b) A(G1) =5 and A(G3) = 6.

If the graph G; does not contain Hy4 then it contains each of the graphs Hys,
Hy;. The graph G contains the graph Hyy (the case A(G2) > 6 is trivial and
if A(G2) = 6 then |E(U,U")|+ |[E(U’)| 2 1). If G2 does not contain Hyz then
|[E(U)| = 0 and |E(U,U’)| = 0. This implies |E(U’)| = |U’| + 4 and hence G2
contains the graph Hy;. 0O

Theorem 3.15. diam F), ,43 =2p — 6 for p 2 19.

Proof. In view of Lemmas 3.10 - 3.14 it suffices to find two graphs G1,Gy € F) 43 with
|E1,2] = 6. Such a graph G is depicted in Fig. 3.19 and G3 is an arbitrary graph for
which A(G) =3. O

Fig. 3.19
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4. Some other results about diam Fj ,

Theorem 4.1.

a) (1) diamF578 =2
(ii) diam Fs 9 = 6
(111) diamFg’ll =12
b) Ifp+3=¢q= 37” and 7 < p £ 18 then diam F), , € {2¢ — 12,2q — 10}.

c) Ifp+3=q= 37” and p 2 19 then diam F), ; = 2¢q — 12.

Proof.

a) (i) According to Theorems 5 and 2 from [3] we get
diamF578 = diam F5’2 = 2.
(ii) According to Theorem 5 from [2] we have c¢g ¢ = 3. Now by using Theorem 5 from
[3] we get
diamFag = diam FG,G =2.6—2.3=60.
(iii) According to Lemma 2.14 we have cg 190 = 5. Since cg 11 = ¢g 10, it is sufficient to
find two graphs G1,G2 € Fg 11 with |E; 2| = 5. Such graphs are depicted in Fig.
4.1.
o

G
1 a,

!
Y

b) According to Lemma 2.14 and Theorem 14 from [1] we have ¢p 10 =5 for 7< p <
18. It implies ¢, 4 = 5 for ¢ =2 p+ 3. To show that ¢, , < 6 it is sufficient to find
two graphs G1,Gy € F, , with |Ey 3] = 6. The graph G, is depicted in Fig. 4.2
and G4 is an arbitrary graph for which A(G) = 3.
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G1

Fig. 4.2

¢) By Theorem 3.15 we get ¢, ; = 6. To show that ¢, , = 6 it is sufficient to find two
graphs G1, Gy € F, , with |E; 5| = 6. The graph G is depicted in Fig. 4.2 and G,
is an arbitrary graph for which A(G) =3. O
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