THE EDGE DISTANCE IN SOME FAMILIES OF GRAPHS II

PAVEL HRNČIAR AND GABRIELA MONOSZOVÁ

ABSTRACT. The edge distance between graphs is defined by the equality $d(G_1,G_2)=|E_1|+|E_2|-2|E_{1,2}|+||V_1|-|V_2||$ where |A| is the cardinality of A and $E_{1,2}$ is the edge set of a maximal common subgraph of G_1 and G_2 . Further, diam $F_{p,q}=max\{d(G_1,G_2);G_1,G_2\in F_{p,q}\}$ where $F_{p,q}$ denotes the set of all graphs with p vertices and q edges. In the paper we prove that for $p \in \{7,8,9\}$ diam $F_{p,p+2}=2p-6$ and for $p \geq 19$ and $p+3 \leq q \leq \frac{3p}{2}$ diam $F_{p,q}=2q-12$.

1. Preliminaries

A graph G = (V, E) consists of a non-empty finite vertex set V and an edge set E. In this paper we consider undirected graphs without loops and multiple edges. A subgraph H of the graph G is a graph obtained from G by deleting some edges and vertices; notation: $H \subseteq G$. By $\Delta(G)$ we denote the maximal degree of vertices of the graph G. A graph G is a common subgraph of graphs G_1 , G_2 if there exist graphs G_1 , G_2 and G_2 and G_3 and G_4 and G_4 and G_5 and G_6 are G_6 and G_6 and G_6 and G_6 and G_6 and G_6 are G_6 and G_6 and G_6 and G_6 are G_6 and G_6 are G_6 and G_6 and G_6 are G_6 and G_6 are G_6 are G_6 and G_6 are G_6 are G_6 and G_6 are G_6 and G_6 are G_6 and G_6 are G_6 are G_6 and G_6 are G_6 are G_6 and G_6 are G_6 and G_6 are G_6 are G_6 and G_6 are G_6 are G_6 are G_6 and G_6 are G_6 are G_6 and G_6 are G_6 are G_6 and G_6 are G_6 are G_6 are G_6 and G_6 are G_6 are G_6 are G_6 are G_6 are G_6 are G_6 and G_6 are G_6 ar

A maximal common subgraph is a common subgraph which contains the maximal number of edges.

The edge distance of the graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is defined (see [3]) by

(1)
$$d(G_1, G_2) = |E_1| + |E_2| - 2|E_{1,2}| + ||V_1| - |V_2||$$

where $|E_1|$, $|E_2|$, $|V_1|$, $|V_2|$ are the cardinalities of the edge sets and the vertex sets, respectively and $|E_{1,2}|$ is the number of edges of a maximal common subgraph $G_{1,2}$ of the graphs G_1 and G_2 .

Throughout this paper, by $F_{p,q}$ we denote the set of all graphs with p vertices and q edges. Further, diam $F_{p,q} := \max\{d(G_1, G_2); G_1, G_2 \in F_{p,q}\}$. If diam $F_{p,q} = d(G, H)$ and $c_{p,q}$ is the number of edges of a maximal common subgraph of the graphs G, H then

$$\dim F_{p,q} = 2q - 2c_{p,q}.$$

1991 Mathematics Subject Classification. 05C12.

Key words and phrases. Subgraph, common subgraph, distance, edge distance.

Denote by v a firmly chosen vertex of a maximal degree in the considered graph G and by v_1, v_2, \ldots, v_k the vertices adjacent to v (here $k = \triangle(G)$). Denote $U := \{v_1, v_2, \ldots, v_k\}$ and $U' := V - \{v, v_1, \ldots, v_k\}$. The subgraph of the graph G induced by the vertex set X ($X \subset V$) we denote by G(X) and the set of its edges by E(G(X)) or briefly by E(X). The subgraph of the graph G which contains all edges with one vertex in the set U and the other in the set U' is denoted by G(U, U') and the set of its edges by E(U, U').

This paper is a continuation of the articles [1] and [2] but it can be read independently on them.

2. Diameter of $F_{p,p+2}$

In [1] diam $F_{p,p+2}$ is determined for all p except of $p \in \{7,8,9\}$. In this section of the paper we will show that diam $F_{p,p+2} = 2p - 6$ for $p \in \{7,8,9\}$.

Lemma 2.1. Let $G_1, G_2 \in F_{p,p+2}, p \in \{7,8\}$. If the graph G_1 without its isolated vertices is a subgraph of the graph K_5 then $|E_{1,2}| \ge 5$.

Proof. It si sufficient to show that G_2 has a subgraph with 5 vertices and with at least 5 edges. It is easy to check this fact by distinguishing the following cases:

- a) $\triangle(G_2) = 3$
 - (i) $|E(U)| \ge 2$
 - (ii) |E(U)| = 1If |E(U, U')| = 0 then $G_2(U')$ is the complete graph K_4 .
 - (iii) |E(U)| = 0If every vertex from U' has degree at most 1 in $G_2(U, U')$ then $G_2(U')$ has at least 3 edges.
- b) $\triangle(G_2) \ge 4$
 - (i) $|E(U)| \ge 1$
 - (ii) There is a vertex in U' whose degree in $G_2(U, U')$ is at least 2
 - (iii) If none of the previous two cases is valid then $G_2(U')$ is the complete graph K_3 and |E(U,U')|=3. \square

Lemma 2.2. Let $G \in F_{p,p+2}$, $p \in \{7,8,9\}$ and $\triangle(G) \ge 4$. Then G contains at least one of the graphs H_1 , H_2 (Fig. 2.1).

Fig. 2.1

Proof. Suppose that |E(U)| = 0 and simultaneously |E(U,U')| = 0. Then |E(U')| = |U'| + 3 which is impossible since $|U'| \le 4$. \square

Lemma 2.3. Let $G \in F_{p,p+2}$, $p \in \{7,8,9\}$, $\triangle(G) = 4$ and |E(U)| = |E(U')| = 0. Then G contains the graphs H_3 and H_4 (Fig. 2.2).

Fig. 2.2

Proof. Since |E(U,U')| = |U'| + 3, at least one of the following holds:

- (i) there are at least 2 vertices of degree at least 2 in U'
- (ii) there is a vertex of degree at least 3 and another vertex of non-zero degree in U'

Lemma 2.4. If $G_1, G_2 \in F_{p,p+2}, p \in \{7, 8, 9\}$ and $\triangle(G_1) = \triangle(G_2) = 4$ then $|E_{1,2}| \ge 5$.

Proof. In view of Lemma 2.2 it is sufficient to consider the case when exactly one of the graphs G_1 , G_2 contains the graph H_1 and exactly one of them contains the graph H_2 . Without loss of generality we can assume that the graph G_1 contains the graph H_1 and the graph G_2 contains the graph H_2 . According to Lemma 2.1 we can also assume that the graph G_1 without its isolated vertices is not a subgraph of the graph K_5 . According to the above facts, we have $|E(G_1(U'))| \ge 1$. If $|E(G_2(U'))| \ge 1$ then a common subgraph is the graph H_5 (Fig. 2.3).

So let $|E(G_2(U'))| = 0$. According to Lemma 2.3 the graph G_2 contains the graphs H_3 and H_4 . If $|E(G_1(U))| \ge 3$ then the graph G_1 contains the graph H_3 . In the opposite case we have $|E(G_1(U'))| \ge |U'| + 1$ whence |U'| = 4. Then the graph G_1 contains the graph H_4 and the proof is finished. \square

Lemma 2.5. Let $G_1, G_2 \in F_{p,p+2}, p \in \{7,8,9\}, \triangle(G_1) \ge 4 \text{ and } \triangle(G_2) \ge 5.$ $|E_{1,2}| \ge 5$.

Proof. The statement of the lemma is trivial if $\triangle(G_1) > 4$. Two cases are possible:

- a) $|E(G_1(U, U'))| \ge 1$, b) $|E(G_1(U, U'))| = 0$.

F:

In the case a) a common subgraph is the graph H_2 . Obviously, if the graph G_2 did not contain the graph H_2 then it would be $|E(G_2(U))| = 0$ and $|E(G_2(U,U'))| = 0$. This yields $|E(G_2(U'))| > |U'|$ and it is impossible.

In the case b) we can assume according to Lemmas 2.1 and 2.2 that G_1 contains the graph H_6 (Fig. 2.4). Clearly, the statement holds if $|E(G_2(U))| \ge 1$ or $|E(G_2(U,U'))| \ge 1$. Now it is sufficient to realize that at least one of these inequalities must be valid for the graph G_2 . \square

Fig. 2.4

Let $F = \{G \in F_{7,9} \cup F_{8,10} \cup F_{9,11}; \Delta(G) = 3\}$. Let us consider the next subsets of

 F_1 contains all graphs which have the subgraph H_7 (Fig. 2.5),

 F_2 contains all graphs from $F - F_1$ which have the subgraph H_8 (Fig. 2.5),

 F_3 contains all graphs from $F - F_1$ which have the subgraph H_9 (Fig. 2.5), F_4 contains all graphs from $F - F_1$ which have the subgraph H_{10} (Fig. 2.5), F_5 contains all graphs from $F - F_1$ which have the subgraph H_{11} (Fig. 2.5).

Fig. 2.5

Lemma 2.6. $F_1 \cup F_2 \cup F_3 \cup F_4 \cup F_5 = F$.

Proof. Obviously, each graph $G \in F$ has at least 4 vertices of degree 3. If there are no two non-adjacent vertices of degree 3 then G contains H_7 . If there are two non-adjacent vertices of degree 3 then G must contain at least one of the graphs H_8 , H_9 , H_{10} and H_{11} . \square

Lemma 2.7. If $G \in F_1$ then G has the subgraph H_{12} in Fig. 2.6.

Proof. We know that the graph G has the subgraph H_7 and apart from the vertices of this subgraph G it has other p-4 vertices. The subgraph of the graph G induced by these p-4 vertices has at least p-5 edges and consequently it has a vertex of degree at least 2. \square

Lemma 2.8. If $G \in F_2$ then it contains the graphs H_3 , H_4 , H_{13} and H_{14} (Figs. 2.2, 2.7). Moreover, if $p \neq 7$ then G contains also the graph H_{15} (Fig. 2.7).

Proof. The component of the graph G which contains the graph H_8 must also contain a vertex which does not belong to H_8 , i.e. G contains the graph H_{16} (Fig. 2.8). Obviously, if $p \neq 7$ then G has an edge which is not incident with any vertex of the subgraph H_8 . \square

Lemma 2.9. If $G \in F_3$ then it contains the graphs H_3 , H_4 , H_{13} and H_{17} (Figs. 2.2, 2.7, 2.9).

Proof. Obviously, G contains the graphs H_3 and H_{17} . Since G contains the graph H_9 and has at least 9 edges, it has an edge which is not incident to any vertex of the circle in the considered subgraph H_9 . Therefore G contains H_4 . Apart from the edges of H_9 there must exist another edge in G which is incident with at least one vertex of H_9 . It follows immediately that G contains H_{13} . \square

Lemma 2.10. If $G \in F_4 \cup F_5$ then G contains the graphs H_{13} , H_{17} , H_{18} and H_{19} . (Figs. 2.7, 2.9, 2.10).

Proof.

a) $G \in F_4$

Obviously, G has the subgraphs H_{17} and H_{18} . Further, the graph G has at least 3 edges except of the edges of the subgraph H_{10} . Each of these edges is incident with at least one vertex of the subgraph H_{10} . It follows that G has the subgraphs H_{13} and H_{19} .

b) $G \in F_5$

Obviously, G has the subgraph H_{18} . Since G can not have two non-trivial components it contains the subgraph H_{17} . If the graph G contains at least one of the subgraphs H_{20} , H_{21} (Fig. 2.11) then it also has the graphs H_{13} and H_{19} .

Fig. 2.11

In the opposite case p=9 and G contains at least one of the subgraph H_{22} , H_{23} (Fig. 2.12). Hence G has the subgraph H_{19} and it is easy to verify that it also has the subgraph H_{13} . \square

Fig. 2.12

Lemma 2.11. If $G_1, G_2 \in F_{p,p+2}, p \in \{7, 8, 9\}$ and $\triangle(G_1) = \triangle(G_2) = 3$ then $|E_{1,2}| \ge 5$.

Proof. The statement follows straightforwardly from Lemmas 2.6 - 2.10. \Box

Lemma 2.12. If $G_1, G_2 \in F_{p,p+2}, p \in \{7, 8, 9\}, \Delta(G_1) = 3, \Delta(G_2) = 4$ then $|E_{1,2}| \ge 5$.

Proof. According to Lemma 2.1 we can assume that G_2 without its isolated vertices is not a subgraph of K_5 . We distinguish several cases:

- a) $G_1 \in F_1$ According to Lemma 2.7 G has the subgraph H_{12} . We distinguish 4 cases for the graph G_2 :
 - (i) $|E(U)| \ge 3$ A common subgraph is the graph H_7 .
 - (ii) |E(U)| = 2If the considered edges are adjacent then a common subgraph is H_7 . If they are not adjacent then a common subgraph is H_{24} (Fig. 2.13).

Fig. 2.13

- (iii) |E(U)| = 1If $|E(U')| \ge 1$ then a common subgraph is H_{24} . If |E(U')| = 0 then there exists a vertex of degree at least 2 in U' and at least one of the graphs H_7 and H_{24} is a common subgraph.
- (iv) |E(U)| = 0A common subgraph is H_{18} .
- b) $G_1 \in F_2$ We show that G_2 contains at least one of the graphs from Lemma 2.8. We can assume that $|E(U)| \leq 2$ and each vertex from U' has degree at most 1 in $G_2(U, U')$

(in opposite case a common subgraph is H_3). From this it follows that $|E(U')| \ge 1$. If p = 7 then a common subgraph is H_{14} . So let $p \ne 7$. If $|E(U)| \ge 1$ then a common subgraph is H_{15} . If |E(U)| = 0 then there exists a vertex of degree at least 2 in $G_2(U')$ and if moreover $|E(U, U')| \ge 2$ then again H_{15} is a common subgraph. In the opposite case p = 9, |E(U')| = 6 and a common subgraph is H_4 .

c) $G_1 \in F_3$

We show that G_2 contains at least one of the graphs from Lemma 2.9. If $|E(U,U') \cup E(U')| > |U'|$ then at least one vertex from U' has degree at least 2 in G_2 . Hence it is easy to verify that at least one of the graphs H_3 , H_4 , H_{17} is a common subgraph. In the opposite case $|E(U)| \ge 3$ and a common subgraph is H_3 .

d) $G_1 \in F_4 \cup F_5$

We show that G_2 contains at least one of the graphs from Lemma 2.10 (i.e. H_{13} , H_{17} , H_{18} , H_{19}).

- (i) $|E(U)| \ge 1$ If $|E(U,U')| \ge 1$ then a common subgraph is H_{13} or H_{17} . If |E(U,U')| = 0 then according to Lemma 2.1 we can assume that $|E(U')| \ge 1$ and a common subgraph is H_{18} or H_{19} .
- (ii) |E(U)| = 0It is easy to check that G_2 contains the graph H_{18} . \square

Lemma 2.13. If $G_1, G_2 \in F_{p,p+2}, p \in \{7, 8, 9\}, \triangle(G_1) = 3 \text{ and } \triangle(G_2) \ge 5 \text{ then } |E_{1,2}| \ge 5.$

Proof. We distinguish several cases:

a) $G_1 \in F_1$

We show that G_2 contains a subgraph of the graph H_{12} having 5 edges.

- (i) $|E(U)| \leq 2$ In this case $|E(U,U') \cup E(U')| \geq |U'| + 1$ and therefore some vertex from U' has degree at least 2 in G_2 . A common subgraph is H_{18} .
- (ii) $|E(U)| \ge 3$ If there exist two adjacent edges in $G_2(U)$ then a common subgraph is H_7 . If there are no such edges then the common subgraph is H_{24} .
- b) $G_1 \in F_2 \cup F_3$

According to Lemmas 2.8 and 2.9 it is sufficient to show that G_2 contains at least one of the graphs H_3 and H_{13} . Obviously, this is true if $|E(U)| \ge 2$ or if some vertex from U' has degree at least 2 in $G_2(U,U')$. In the opposite case we have $|E(U')| \ge 2$ and it follows that p = 9 and $|E(U,U')| \ge 2$. Now it is easy to verify that G_2 contains H_3 or H_{13} .

c) $G_1 \in F_4 \cup F_5$

We show that G_2 contains at least one of the graphs H_{13} , H_{17} and H_{18} (see Lemma 2.10).

(i) $|E(U)| \ge 2$ In this case G_2 contains at least one of the graphs H_{13} , H_{17} . (ii) $|E(U)| \leq 1$ In this case at least one vertex in U' has degree at least 2. Hence G_2 contains the graph H_{18} . \square

Theorem 2.14. diam $F_{p,p+2} = 2p - 6$ for $p \in \{7, 8, 9\}$.

Proof. By Lemmas 2.4, 2.5, 2.11, 2.12 and 2.13 it suffices to find two graphs $G_1, G_2 \in F_{p,p+2}$ with $|E_{1,2}| = 5$. Such graphs are depicted in Fig. 2.14 (one component of G_1 is a circle). \square

Fig. 2.14

3. Diameter of $F_{p,p+3}$

In this section of the paper we will determine diam $F_{p,p+3}$ for $p \ge 19$.

Lemma 3.1. If $G \in F_{p,p+3}$, $p \ge 17$ and $\triangle(G) = 3$ then G contains the graph H_{25} (Fig. 3.1).

Proof. Let v be a vertex of degree 3 in the graph G. If $p \ge 7$ then there exists an edge w_1w_2 such that $w_i \notin \{v, v_1, v_2, v_3\}, i = 1, 2$. If $p \ge 12$ then there exists an edge w_3w_4 such

that $w_i \notin \{v, v_1, v_2, v_3, w_1, w_2\}$, i = 3, 4. If $p \ge 17$ then there exists an edge $w_5 w_6$ such that $w_i \notin \{v, v_1, v_2, v_3, w_1, w_2, w_3, w_4\}$, i = 5, 6. Thus G contains the graph H_{25} . \square

Lemma 3.2. If $G \in F_{p,p+3}$, $p \ge 14$ and $\triangle(G) = 3$ then G contains the graph H_{26} (Fig. 3.2).

Proof. If p-4 < 2(p-6) i.e. p > 8 then G(U') has a vertex w_1 of degree at least 2. Let w_2 , w_3 are the vertices adjacent to w_1 in G(U'). If $p \ge 14$ then there exists an edge such that neither of its vertices belongs to $\{v, v_1, v_2, v_3, w_1, w_2, w_3\}$ i.e. G contains the graph H_{26} . \square

Lemma 3.3. Let $G \in F_{p,p+3}$ and $\triangle(G) = 3$. Then G contains at least one of the graphs H_{27} , H_{28} , H_{29} and H_{30} (Fig. 3.3).

Proof. G has at least 6 vertices of degree 3. We thus get that there are two non-adjacent vertices of degree 3 in G. All four possible cases for these two vertices are depicted in the Fig. 3.3. \square

Lemma 3.4. Let $G \in F_{p,p+3}$ and $\triangle(G) = 3$. If G has at least two components with more edges than vertices then it contains the graphs H_{31} (Fig. 3.4) and H_{27} .

Proof. Obviously, each of the considered components of the graph G contains a vertex of degree 3. Further it is sufficient to realize that such component has more than 3 edges. \Box

Lemma 3.5. Let $G \in F_{p,p+3}$, $\triangle(G) = 3$ and G have only one component H having more edges than vertices.

- (a) If H has the subgraph H_{27} then it contains at least one of the graphs H_{32} (Fig. 3.5) and H_{31} .
- (b) If H has the subgraph H_{28} then it contains at least one of the graphs H_{32} , H_{33} (Fig. 3.5).

Fig. 3.5

(c) If H has the subgraph H_{29} then it contains at least one of the graphs H_{34} , H_{35} , H_{36} (Fig. 3.6).

Proof. The graph H has at least 3 edges more than vertices.

- (a) and (b): It is sufficient to realize that H contains more than 6 edges.
- (c): If H has exactly 6 vertices then it contains the graph H_{36} . If H has at least 7 vertices then it contains at least one of the graphs H_{34} , H_{35} . \square

Lemma 3.6. Let $G \in F_{p,p+3}$, $p \ge 8$ and $\triangle(G) = 3$. If G contains the graph H_{30} then it contains the graph H_{37} (Fig. 3.7).

Proof. There are another p-5 vertices in G besides the vertices of H_{30} . The subgraph H of the graph G induced by these p-5 vertices has at least p-6 edges. If H does not contain any vertex of degree 2 then $p-5 \ge 2(p-6)$, i.e. $p \le 7$. \square

Lemma 3.7. If G contains at least one of the graphs H_{38} , H_{39} (Fig. 3.8) then it contains the graphs H_{27} , H_{28} , H_{29} and H_{30} .

Proof. The statement is obvious. \square

Lemma 3.8. If $\triangle(G) = 4$ and $q \ge 21$ then G contains the graph H_{40} (Fig. 3.9).

Fig. 3.9

Proof. $|E(U')| \ge 5$ and hence G(U') contains two independent edges. \square

Lemma 3.9. If $G \in F_{p,p+3}$, $\triangle(G) = 4$ and $p \ge 19$ then G contains the graph H_{41} (Fig. 3.10).

Fig. 3.10

Proof. Obviously, if $|E(U)| + |E(U,U')| \le 10$ and G does not contain H_{41} then $p-5 \ge 2(p-11)$ i.e. $p \le 17$. We can thus assume that $|E(U)| + |E(U,U')| \ge 11$. Since $\triangle(G) = 4$ it holds $|E(U)| + |E(U,U')| \le 12$. We distinguish two cases:

(i) |E(U)| + |E(U,U')| = 12In this case |E(U)| = 0 and every vertex from U has degree 3 in G(U,U'). We can assume that there are at most 2 vertices from U' of degree 0 in G(U'). In fact, in the opposite case it holds (if G does not contain H_{41}) $p-8 \ge 2(p-13)$, i.e. $p \le 18$. If some vertex from U' has degree 2 or 3 in G(U,U') then G contains the graph in Fig. 3.11.

Fig. 3. 11

It follows that G contains the graph H_{41} . So, let no vertex from U' has degree 2 or 3 in G(U, U'). There are at most 3 vertices from U' which have degree 4 in G(U, U'). Let k be the number of them.

- a) k=3 Since there are at most 2 vertices of degree 0 in G(U') this case is impossible.
- b) k=2In this case there are exactly 4 vertices in U' of degree 1 in G(U,U'). At least 2 of these 4 vertices have degree at least 1 in G(U') and it follows that G contains H_{41} .
- c) $k \leq 1$ The statement is obviuos.
- (ii) |E(U)| + |E(U, U')| = 11

In this case $|E(U)| \leq 1$. If there was an isolated vertex in G(U') and G did not contain the graph H_{41} then it would hold $p-6 \geq 2(p-12)$, i.e. $p \leq 18$. We can thus assume that no vertex in G(U') is isolated. It follows that no vertex from U' has degree 4 in G(U,U'). The statement of the lemma holds if no vertex from U' has degree 2 or 3 in G(U,U'). If some vertex $u \in U'$ has degree 3 in G(U,U') then it is sufficient to realize that the vertex from U not adjacent to the vertex u has degree at least 2 in G(U,U'). Since the vertex u is not isolated in G(U') then G contains the graph H_{41} .

If some vertex from U' has degree 2 in G(U, U') and is adjacent to vertices $v_1, v_2 \in U$ then it is sufficient to take into account that at least one of the vertices $v_3, v_4 \in U$ has degree 4 and is not adjacent to the vertex v_i for i = 1, 2. \square

Lemma 3.10. Let $G_1, G_2 \in F_{p,p+3}, p \ge 14$ and $\triangle(G_1) = \triangle(G_2) = 3$. Then $|E_{1,2}| \ge 6$.

Proof. The statement is a consequence of Lemma 3.2. \square

Lemma 3.11. Let $G_1, G_2 \in F_{p,p+3}, p \ge 18$ and $\triangle(G_1) = \triangle(G_2) = 4$. Then $|E_{1,2}| \ge 6$.

Proof. The statement is a consequence of Lemma 3.8. \square

Lemma 3.12. Let $G_1, G_2 \in F_{p,p+3}, p \ge 19$ and $\triangle(G_1) = 3, \triangle(G_2) \ge 4$. Then $|E_{1,2}| \ge 6$.

Proof. First realize that if we prove that G_2 contains at least one of the graphs H_{25} , H_{26} then the statement of the lemma holds by Lemmas 3.1 and 3.2. We distinguish several cases for G_2 :

- a) There are 2 independent edges in $G_2(U')$
 - a_1) $\triangle(G_2) \ge 5$
 - (i) If $|E(U)| \neq 0$ or $|E(U, U')| \neq 0$ then G_2 contains at least one of the graphs H_{25} , H_{26} .
 - (ii) If |E(U)| = 0 and |E(U,U')| = 0 then $|E(U')| \ge 8$ and hence G_2 contains at least one of the graphs H_{25} , H_{26} .
 - $a_2) \triangle(G_2) = 4$ If $|E(U,U')| \neq 0$ or $|E(U')| \geq 7$ then G_2 contains at least one of the graphs H_{25} , H_{26} ; in the opposite case it holds $q \leq 16$, a contradiction.
- b) $|E(U')| \ge 2$ and any two edges in $G_2(U')$ are adjacent edges in U' In this case $G_2(U')$ contains the graph in Fig. 3.12

Fig. 3.12

- b_1) there is an edge in $G_2(U, U')$ which is not incident with any vertex from $\{w_1, w_2, w\}$ In this case G_2 contains H_{26} .
- b_2) $\triangle(G_2) \ge 5$ and b_1) does not hold We distinguish 3 subcases:
 - (i) $|E(U)| \neq 0$ In this case G_2 contains H_{26} .
 - (ii) |E(U)| = 0 and the vertex w has degree at least 3 in $G_2(U, U')$ The statement holds by Lemmas 3.7 and 3.3.
 - (iii) |E(U)| = 0 and the vertex w has degree at most 2 in $G_2(U, U')$ If |E(U')| = 2 then degree of w_1 or w_2 is at least 2 in $G_2(U, U')$ (since $|E(U, U')| \ge 5$) and hence G_2 contains H_{26} . If $|E(U')| \ge 3$ then again G_2 contains H_{26} (since $|E(U, U')| \ge 4$).
- b_3) $\triangle(G_2) = 4$ and b_1) does not hold In this case $q \le 20$, a contradiction.

- c) |E(U')| = 1
 - c_1) $\triangle(G_2) \ge 6$
 - (i) $|E(U)| \ge 2$

If there are two adjacent edges in U then G_2 contains H_{26} . Now let us consider the opposite case. If $\triangle(G_2) \ge 7$ then G_2 contains H_{25} . If $\triangle(G_2) = 6$ then $|E(U, U')| \ge 2$ and hence G_2 contains H_{25} or H_{26} .

(ii) $|E(U)| \leq 1$

In this case $|E(U,U')| \ge |U'| + 2$ and if G_2 does not contain H_{26} then it contains at least one of the graphs in Fig. 3.13.

Fig. 3.13

If G_2 contains the graph α then the lemma holds by Lemmas 3.7 and 3.3. If G_2 contains the graph β then G_2 contains each of the graphs H_{27} , H_{28} , H_{29} , H_{30} and the statement holds by Lemma 3.3.

 c_2) $\triangle(G_2) = 5$

If there are at least two edges in $G_2(U, U')$ which are not adjacent to the edge of the graph $G_2(U')$ then G_2 contains at least one of the graphs H_{25} , H_{26} . In the opposite case at least 3 edges from $G_2(U, U')$ are incident with the same vertex of the edge of $G_2(U')$. Then the statement of the lemma follows from Lemmas 3.7 and 3.3.

 $c_3) \triangle(G_2) = 4$

This case is not possible for $q \ge 18$.

- d) |E(U')| = 0
 - $d_1) \triangle (G_2) \ge 6$
 - (i) there is a vertex in U' which has degree at least 2 and $|E(U,U')| \ge 3$. Then G_2 contains at least one of the graphs in Fig. 3.14. In the case α) the statement of the lemma follows from Lemmas 3.7 and 3.3. In the case β) G_2 contains H_{26} . In case γ it holds $|E(U)| + |E(U,U')| \ge 6$ and hence G_2 again contains H_{26} .

Fig. 3.14

(ii) there is a vertex in U' which has degree at least 2 and |E(U,U')|=2In this case $|E(U)| \ge 3$ and if $\triangle(G_2) = 6$ then G_2 contains each of the graphs H_{27} , H_{28} , H_{29} , H_{30} (since $q \ge 22$) and the statement of the lemma holds by Lemma 3.3. If $\triangle(G_2) \ge 7$ then G_2 contains H_{26} or the graph H_{42} (Fig. 3.15).

Fig. 3.15

The graph H_{42} contains the graphs H_{27} , H_{28} and H_{29} . If the graph G_1 does not contain any of the graphs H_{27} , H_{28} and H_{29} then it contains H_{30} by Lemma 3.3 and H_{37} by Lemma 3.6. The graphs H_{42} and H_{37} have a common subgraph which is depicted in Fig. 3.16.

Fig. 3.16

- (iii) every vertex from U' has degree at most 1 and there exists a vertex from U of degree at least 2 in $G_2(U, U')$ In this case $|E(U)| \ge 4$. If G_2 does not contain H_{26} then the statement of the lemma follows from Lemmas 3.7 and 3.3.
- (iv) there are no adjacent edges in $G_2(U,U')$ and $|E(U,U')| \ge 2$ In this case $|E(U)| \ge 4$. If $|E(U,U')| \ge 3$ then G_2 contains H_{25} . If |E(U,U')| = 2 and $\triangle(G_2) \ge 7$ then obviously a common subgraph is H_{25} or H_{26} . If |E(U,U')| = 2 and $\triangle(G_2) = 6$ then G_2 contains each of the graphs H_{27} , H_{28} , H_{29} and H_{30} (since $q \ge 22$). Now use Lemma 3.3.
- (v) $|E(U, U')| \le 1$

In this case we have $|E(U)| \ge 4$. We distinguish three subcases:

1) $\triangle(G_2) \ge 9$. If there is a vertex of degree at least 3 in $G_2(U)$ then the statement of the lemma holds by Lemmas 3.7 and 3.3. If there is no vertex of degree at least 3 in $G_2(U)$ and G_2 contains neither the graph H_{25} nor the graph H_{26} then G_2 contains the graph in Fig. 3.17.

Fig. 3.17

The statement of the lemma follows from Lemmas 3.3, 3.4 and 3.5 (the component H from Lemma 3.5 contains at least one of the graphs H_{27} , H_{28} , H_{29} and H_{30}).

2) $\triangle(G_2) \in \{7, 8\}$

If $q \ge 18$ then there exists a vertex of degree at least 3 in $G_2(U)$ and

hence G_2 contains the graph α in Fig. 3.14 and the statement of the lemma holds by Lemmas 3.7 and 3.3.

3) $\triangle(G_2) = 6$

This case is not possible for $q \ge 22$.

- $d_2) \triangle(G_2) = 5$ Since |E(U')| = 0 and $q \ge 22$ there is a vertex from U which has degree at least 3 in $G_2(U, U')$. Now, if we realize that there exists an edge in $G_2(U, U')$ which is not incident with the considered vertex of degree at least 3 then we get that G_2 contains H_{26} .
- $d_3) \triangle (G_2) = 4$ This case is not possible for $q \ge 17$. \square

Lemma 3.13. Let $G_1, G_2 \in F_{p,p+3}, \Delta(G_1) = 4, \Delta(G_2) \ge 5$ and $p \ge 19$. Then $|E_{1,2}| \ge 6$.

Proof. In wiew of Lemmas 3.8 and 3.9 it is sufficient to show that G_2 contains at least one of the graphs H_{40} , H_{41} .

- a) $E(U') \neq 0$ If $\triangle(G_2) \geq 6$ then the statement of the lemma is obvious. If $\triangle(G_2) = 5$ then it is sufficient to use the fact that |E(U,U')| + |E(U')| > 1.
- b) |E(U')| = 0If $\triangle(G_2) \ge 6$ and $|E(U,U')| \ge 2$ then the statement obviously holds. So, it is sufficient to consider two cases:
 - (i) $\triangle(G_2) \ge 6$ and $|E(U,U')| \le 1$. Obviously, the statement holds if $\triangle(G_2) \ge 8$. If $\triangle(G_2) = 7$ then there exists a vertex of degree at least 2 in $G_2(U)$ and hence G_2 contains the graph H_{41} . The case $\triangle(G_2) = 6$ is impossible since $q \ge 22$.
 - (ii) $\triangle(G_2) = 5$. There exists a vertex from U of degree at least 2 in $G_2(U, U')$. \square

Lemma 3.14. Let $G_1, G_2 \in F_{p,p+3}, \Delta(G_1) \geq 5, \Delta(G_2) \geq 5, p \geq 19$. Then $|E_{1,2}| \geq 6$.

Proof. Obviously, the statement holds if $\triangle(G_1) \ge 6$ and $\triangle(G_2) \ge 6$. We distinguish two cases:

a) $\triangle(G_1) = \triangle(G_2) = 5$ It is sufficient to consider the case that none of the graphs H_{43} , H_{44} (Fig. 3.18) is a common subgraph of the graphs G_1 and G_2 . So we can assume that $|E(G_1(U,U'))| = 0$ and $|E(G_2(U'))| = 0$.

Fig. 3.18

We show that a common subgraph is the graph H_{41} . If the graph G_1 did not contain the graph H_{41} then it would hold $p-6 \ge 2(p-12)$, i.e. $p \le 18$. The graph G_2 contains the graph H_{41} since $|E(U,U')| \ge 14$.

b) $\triangle(G_1) = 5$ and $\triangle(G_2) \ge 6$. If the graph G_1 does not contain H_{44} then it contains each of the graphs H_{43} , H_{41} . The graph G_2 contains the graph H_{44} (the case $\triangle(G_2) > 6$ is trivial and if $\triangle(G_2) = 6$ then $|E(U, U')| + |E(U')| \ge 1$). If G_2 does not contain H_{43} then |E(U)| = 0 and |E(U, U')| = 0. This implies |E(U')| = |U'| + 4 and hence G_2 contains the graph H_{41} . \square

Theorem 3.15. diam $F_{p,p+3} = 2p - 6$ for $p \ge 19$.

Proof. In view of Lemmas 3.10 - 3.14 it suffices to find two graphs $G_1, G_2 \in F_{p,p+3}$ with $|E_{1,2}| = 6$. Such a graph G_1 is depicted in Fig. 3.19 and G_2 is an arbitrary graph for which $\Delta(G) = 3$. \square

Fig. 3.19

4. Some other results about diam $F_{p,q}$

Theorem 4.1.

- a) (i) diam $F_{5,8} = 2$ (ii) diam $F_{6,9} = 6$
- (iii) diam $F_{8,11} = 12$ b) If $p + 3 \le q \le \frac{3p}{2}$ and $7 \le p \le 18$ then diam $F_{p,q} \in \{2q 12, 2q 10\}$. c) If $p + 3 \le q \le \frac{3p}{2}$ and $p \ge 19$ then diam $F_{p,q} = 2q 12$.

Proof.

- a) (i) According to Theorems 5 and 2 from [3] we get $\operatorname{diam} F_{5,8} = \operatorname{diam} F_{5,2} = 2.$
 - (ii) According to Theorem 5 from [2] we have $c_{6,6} = 3$. Now by using Theorem 5 from [3] we get

 $\operatorname{diam} F_{6,9} = \operatorname{diam} F_{6,6} = 2.6 - 2.3 = 6.$

(iii) According to Lemma 2.14 we have $c_{8,10} = 5$. Since $c_{8,11} \ge c_{8,10}$, it is sufficient to find two graphs $G_1, G_2 \in F_{8,11}$ with $|E_{1,2}| = 5$. Such graphs are depicted in Fig.

Fig. 4.1

b) According to Lemma 2.14 and Theorem 14 from [1] we have $c_{p,p+2} = 5$ for $7 \leq p \leq$ 18. It implies $c_{p,q} \ge 5$ for $q \ge p+3$. To show that $c_{p,q} \le 6$ it is sufficient to find two graphs $G_1, G_2 \in F_{p,q}$ with $|E_{1,2}| = 6$. The graph G_1 is depicted in Fig. 4.2 and G_2 is an arbitrary graph for which $\triangle(G) = 3$.

Fig. 4.2

c) By Theorem 3.15 we get $c_{p,q} \ge 6$. To show that $c_{p,q} = 6$ it is sufficient to find two graphs $G_1, G_2 \in F_{p,q}$ with $|E_{1,2}| = 6$. The graph G_1 is depicted in Fig. 4.2 and G_2 is an arbitrary graph for which $\triangle(G) = 3$. \square

REFERENCES

- [1] P.Hrnčiar, G.Monoszová, The edge distance in some families of graphs, Acta Univ. M.Belii, Ser. Math. 2 (1994), 29-38.
- [2] P.Hrnčiar, A.Haviar, G.Monoszová, Some characteristics of the edge distance between graphs (to appear in Czech. Math. J.).
- [3] M.Šabo, On a maximal distance between graphs, Czech.Math.Jour. 41, 1991, pp. 265-268.

DEPT. OF MATHEMATICS, FACULTY OF NATURAL SCIENCES, MATEJ BEL UNIVERSITY, TAJOVSKÉHO 40, 974 01 BANSKÁ BYSTRICA, SLOVAKIA

E-mail address: monosz@fhpv.umb.sk

E-mail address: hrnciar@fhpv.umb.sk

(Received November 5, 1995)