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A NOTE ON THE DISTANCE POSET OF POSETS

JubpiTa LiHovA

ABSTRACT. Let FJ be the system of all non-isomorphic finite orders of a countable set P,
ordered in such a way that R < S if f(R) C S for a bijective map f : P — P. There are
investigated some properties of (F, <).

In [3] a metric d on the system F), of isomorphism classes of ordered sets of the same
finite cardinality n has been introduced. In [4] there is shown that this metric coincides
with the distance—metric on the covering graph of Fj,. The system F),, can be partially
ordered. By the help of the above mentioned metric the author proves in [4] that the
ordered system F,, is graded, i.e. all maximal chains with the same endpoints have the
same length. The ordered system F},, as each finite partially ordered set, is a multilattice.
A natural question arises. Is F, a metric multilattice with respect to d, in the sense of [5]7

In this note there is proved that F), is not a metric multilattice with respect to
any metric by showing that F), is not a modular multilattice. In the second part some
properties of the ordered system of all finite orders of the same infinite set P are mentioned.

0. BASIC NOTIONS

A partially ordered set (M, <) is said to be a multilattice if, whenever a,b € M,u €
M,u > a,u > b, there exists a minimal upper bound v’ of {a,b} with ' < w, and dually.
If, moreover, (M, <) is a directed set, then (M, <) is called a directed multilattice.

Let aVb (aAb) denote the set of all minimal upper bounds of {a, b} (maximal lower
bounds of {a,b}). A multilattice (M, <) is distributive if

a,byce M, (aAb)N(anc)#D,(avb)N(aVe)#D=>b=c,
and modular if
a,bce Mb<c,(anb)Nn(anc)#0b,(avb)n(ave)#D=10b=c.
(For the above definitions see [1].)
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By a metric multilattice is meant a multilattice with a metric d fulfilling the following
conditions (cf. [5]):

M1. a < b < ¢ implies d(a, b) + d(b, c) = d(a, c),
M2. ifu € a Ab,v € aV b, then d(a,b) = d(u,v).
In [5] there is proved:

0.1. Theorem. A metric multilattice is modular.

0.2. Theorem. A directed modular multilattice of locally finite length is a metric mul-
tilattice.

1. PROPERTIES OF Fj,

Let F,,(n € N) be the set of all (non—isomorphic) orders of a set P of cardinality
n. Set R < S (R,S € F,) if there exists a permutation f of P satisfying f(R) C S (the
symbol f(R) denotes the set {[f(a), f(b)] : [a,b] € R}). In other words, R < S means
that there exists an isotone bijection of (P, R) onto (P, S). The poset (F,, <) is called the
distance poset (of orders of an n element set) (cf. [4]).

The following theorem is proved in [4].

1.1. Theorem. The distance poset (Fy,,<) is a graded poset with the least element and
the greatest element.

The diagrams of (F3, <) and (Fy, <) are depicted in Fig. 1 and Fig. 2, respectively.
Evidently (Fy, <) is a one element set and (F3, <) is a two element chain. The least element
of (F,, <) is the discrete order, i.e. the order in which only comparable elements are the
couples of equal elements and the greatest element is the linear order. Let us remark that

(Fy, <), as a finite bounded partially ordered set, is a directed multilattice.

Fig. 1 Fig. 2

IfR,S € F,,R<S and S covers R, we will write R < S. The following lemma
proved in [4] will be useful.
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1.2. Lemma. Let R,S € F,,, R < S, f be a permutation of P satisfying f(R) C S. Then
R < S if and only if S — f(R) = {[a, ]}, where a <g b.

It is easy to see that (F}, <), (F», <) and (F3, <) are distributive lattices. In contrast
with this, there holds:

1.3. Lemma. Ifn > 4, then (F,, <) is not a lattice.

Proof. Let R, S € F,, be as in Fig. 3 and Fig. 4, respectively. Using 1.2 it is easy to see
that U shown in Fig. 5 and its dual U° are covered by R, S and V in Fig. 6 and its dual

V? cover both R and S. Hence U and U° are maximal lower bounds of {R, S} and V,V?
are minimal upper bounds of {R, S}.

Fig. 3 Fig. 4 Fig. 5

As we have remarked, (F,, <) is a multilattice, hence for any R, S € F, and any
U,V € F, satisfying U < R, S <V there exists a maximal lower bound U’ of {R, S} and
a minimal upper bound V' of {R, S} with U < U’ and V/ < V. In 1.4 and 1.6 there is
described the set of all maximal lower bounds of {R, S} and the set of all minimal upper
bounds of {R, S}, respectively.

1.4. Lemma. Let R,S,U € F,,,U < R, U < S. Then U € RA S if and only if for each
couple of permutations f, g of P with f(U) C R,g(U) C S there is f~1(R) N g~(S) = U.

Proof. Clearly for any permutation h of P and any order T of P, h~(T) is an order
of P and further the intersection of two orders of P is an order of P less than or equal
to each of them. So if U < R,U < S, then for each couple of permutations f,g of
P with f(U) C R,g(U) C S there is U C f~Y(R) Nng~1(S), f~YR)Ng (9 < R,
FTYR)Ng™!(S) < S. Now if U is a maximal lower bound of {R, S}, then U = f~'(R) N
~1(S). Conversely, if U < U'" < R, S and h, f1,g1 are permutations of P such that
(U) c U, A(U') € R,g1(U') C S, then fi(h(U)) € R,g1(h(U)) € S, (f; H(R)) N
g (8)) = (T (R) N g (8)) 2 hoH(TY) S U

>R

Let us remark that it can happen that f;*(R)Ng7*(S) = U for some permutations
f1,91 of P and at the same time f{l(R) N 92_1(5) D U for some other permutations fa, go
of P, as the following example shows.
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Fig. 6 Fig. 7

1.5. Example. Let U, R, S be as in Fig. 7, Fig. 8 and Fig. 9, respectively. Define ¢ to
be the identity map on P = {xy,...,7,},9 = (w374). Then i~*(R) Ni~1(S) = U while
i"L(R)Ng=(S) > U.

€
T2 T4 3
® --- o To ® - [ )
T Tn T4 Tn
xry T3 T
Fig. 8 Fig. 9

Analogously can be proved:

1.6. Lemma. Let R,S,V € F,,, R<V,S<V. Then V € RV S if and only if for each
couple of permutations f,g of P with f(R) C V,g(S) C V, V is the transitive cover of

f(R)Ug(S).

Considering the same R, S as in 1.5 and V as in Fig. 10, V = i(R) U g1(S), but V
properly contains the transitive cover of i(R) U g3(S) for g1 = (x123%4), g2 = (324).

Now we are going to investigate (F,,, <) for n > 4 from the view of its distributivity
and modularity. Obviously (Fjy, <) it is not distributive and a straightforward testing
yields that (Fy, <) is modular.

T4
w3 o - o o - o
Ts Tn
T €3
Fig. 10 Fig. 11

1.7. Theorem. Ifn > 5, then the multilattice (F,, <) is not modular.

Proof. Let R,S,T,U,V be as in Fig. 11, 12, 13, 14 and 15, respectively. Then U < S <
V,U<R=<T <V,by 12 and V € SV R, because S # R. Let us suppose that there
exists U’ € F,, satisfying U’ > U, U’ < S,T. Since S,T are incomparable orders, using 1.1
we obtain that U’ must be covered by S and T. If we find all orders covered by S, using
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1.2, we see that the order in Fig. 16 is the only one covered also by T', but it is not greater
than U. We have a contradiction.

® Y [ [
Fig. 12 Fig. 13
. . e .
Fig. 14 Fig. 15

Using 0.1 and 0.2 we obtain:

1.8. Corollary. If n > 5, then the multilattice (F,,<) is not a metric multilattice.
(Fy, <) is a metric multilattice, (Fy, <), (Fa, <) and (F3, <) are metric lattices.

Note that if n < 4, the metric d introduced in [3] (for the definition see below) fulfils
the conditions M1 and M2.

2. DISTANCE POSET F;

In this section P will be any countable set (in fact, it could be of any infinite
cardinality). An order R of P will be said to be finite if R contains only finitely many
couples of distinct elements. Let F* denote the system of all (non—isomorphic) finite orders
of P. It can be partially ordered by

R < S if there exists a bijective map f : P — P with f(R) C S.

Evidently (F, <) has the least element (the discrete order of P), but it contains no
maximal elements, so it is of infinite length.

Denote by F] the set of all orders R € F with the property that there exists an
n—element subset P’ of P satisfying

[a,b] € R,a # b= {a,b} C P'.
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E* with the discrete order of P as the least element. Further F| C Fj C Fi C ... and
F* = UpenF..

w

2.1. Theorem. For each n € N(F,,<) is isomorphic to (F},<). F) is an interval of

This statement is evident.

The preceding theorem yields immediately that (£, <) is of locally finite length and
graded. So (F}, <) is a directed multilattice. If R, S € F}, let us denote by RV, S(RA,S),
RV,, S(R A, S) the set of all minimal upper bounds (maximal lower bounds) of {R, S} in
(F},<) and (F), <), respectively. It is easy to verify:

2.2. Theorem. Let R.S € F}, and let ng be the least positive integer such that both R
and S belong to F/lo. Then RN, S = RApy S; RV S = Up>pa RV, S.

One can see that for any R, S € F; the set R A, S is finite. Since some R, S € F*
can have minimal upper bounds in various F}, (cf. the following example), it is not quite
evident that the same holds for the set R Vv, S.

o o 11

Fig. 16 Fig. 17
/I\. * )

Fig. 18 Fig. 19

Fig. 20 Fig. 21

2.3. Example. Let R, S be as in Fig. 17 and Fig. 18, respectively. Then each of Figures
19, 20, 21 represents a minimal upper bound of {R, S}.

2.4. Theorem. For any R,S € F the set RV, S is finite.

Proof. Let R,S € F;, V € RV, S. We are going to show that V' contains at most card
R+ card S couples of elements a,b with a <y b. Suppose that this is not the case. Let
f, g be bijective maps P — P satisfying f(R) C V,g(S) C V. Then there exist a,b with
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a <y b such that [a,b] ¢ f(R)Ug(S). Then in view of 1.2 V' — {[a, b]} is an order covered
by V. Evidently f(R) CV —{[a,b]}, g(S) C V —{[a,b]}, so V —{[a, b]} is an upper bound
of {R, S} less than V, a contradiction.

Using 1.7 and 2.2 we obtain:
2.5. Theorem. The multilattice (F, <) is not modular.
In view of 0.1 we have:
2.6. Corollary. The multilattice (F}, <) is not a metric multilattice.

Nevertheless, there can be introduced a metric into F, but not satisfying both
M1 and M2. Namely, the metric d on the system F), of all non—-isomorphic orders of an
n—element set P,,, defined in [3] by

d(R,S) = min {d¢(R,S): f is a permutation of P,},

where d¢(R,S) = card (f(R) —S) + card (S — f(R)), evidently yields a metric on F,
too.

In [4] there is proved that if R, S € F,, d(R,S) = d(R,S), where 6(R,S) is the
distance of vertices R, S of the covering graph of F, (Th. 2.2). Further by 2.1 of [2]
d(R,S) = h(R)—h(S) (h denotes the height) provided that S < R, thanks to the fact that
(Fy, <) is a graded poset.

So we have:

2.7. Theorem. An order R € F} has the height k in the partially ordered set (F, <) if
and only if card {[a,b] € R:a # b} = k.

Proof. Evidently the height of R in (F, <) is the same as in F},, if R € F). Therefore
h(R) = k if and only if d(R,D) = k with D being the discrete order. But obviously
d(R,D) = card {[a,b] € R: a # b}.
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