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CONSISTENT ORTHOGONAL ATOMIC PARTITIONS

PETER MALICKY

ABsTRACT. The present paper defines consistent orthogonal atomic partitions of two elements
of an orthollatice. Then this notion is studied in the realm of ortholattices associated with a
vector space with a scalar product over an ordered field.

This paper deals with ortholattices in which every element is a union of finitely
many pairwise orthogonal atoms. Let us recall the notion of an ortholattice - [1], p. 75.

Definition 1. Let L be a lattice with element 0 and 1 and a mapping |: L — L,a —
+ a® such that

0<a<l1 for any a € L
att=a for any a € L
(aAb)F =at Vbt (aVvDh)t =at AT for any a,b€ L
ahNat =0, aVat =1 for any a € L .

Then L is said to be an ortholattice. We define a L b if and only if @ < b, we say that a
and b are orthogonal in this case.

Definition 2. Let L be an ortholattice. A sequence aq,...,a; of pairwise orthogonal
atoms of L is said to be an orthogonal atomic partition of an element uw € L, if u =
aiV---Vag.

If v is another element of L with an orthogonal atomic partition by,...,b,,, then these
two orthogonal atomic partitions are said to be consistent if a; L b; for 1 < i < &,
1 <j<mandi#j. (Relation a; L b; is not required.)

The definition of consistent orthogonal atomic partitions is motivated by
Theorem 1.
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Example 1. Let I be an ordered field and X be a finite dimensional vector space over F
with a scalar product - , i.e. symmetric bilinear positively defined form with values in F.
The case F' = R is well known, see [2], pp. 432 — 465. Many results and basic notions may
be easily extended to the general case. We need mainly Gram-Schmidt ortogonalization,

i.e. the following procedure. Let us,...,u,, be linearly independent vectors of X. Define
vectors ai, ..., a,, by induction
k—1 (ug - i)
a1 =u; and ap = ug — Ya; for 1<k<m.

=1

Then we obtain an orthogonal system of vectors which generate the same subspace as
U1, - .., Unp. S0, any subspace of X has an orthogonal basis. When any nonnegative element
of the field F' has a square root, then any orthogonal system may be orthonormalized.

Let L(X) be the lattice of all subspaces of X and put U+ ={v € X : u-v =0 for
all w € U} for a subspace U of X.
Then we obtain an ortholattice in which any element has an orthogonal atomic partition,
because any subspace of X has an orthogonal basis. Example 2 shows that consistent
orthogonal atomic partitions of two subspaces need not exist. On the other hand Theorem
2 gives a sufficient condition under which consistent orthogonal partitions exist.

Definition 3. Let F' be an ordered field and X be a finite dimensional vector space over
F with a scalar product - . A linear operator A : X — X is said to be selfadjoint if
(Az)-y =z - Ay for all z,y € X.

Let U be a subspace and P : X — X be a selfadjoint linear operator such that P? = P
and P(X) = U, then P is said to be the orthogonal projection onto U.

Proposition 1. Let F' be an ordered field, X be a finite dimensional vector space over F

with a scalar product and a1, ...,a; be an orthogonal basis of a subspace U of X. Then
k1 . (L
the formula Px = ) Mai defines uniquely the orthogonal projection onto U.

i=1 (ai : ai)

Theorem 1. Let X be a finite dimensional real vector space with a scalar product and
U and V be subspaces of X with dim(U) = k1 and dim(V') = ky. Then there are bases
ai,...,ak, and by, ... by, of U and V respectively such that

(1) l|lai|| = 1 = ||bj]| for 1 <i<kyandj<ks
(2) a;-a; =0 for 1 <i<j<k
(3) bi-bj =0 for 1<i<j<ks
(4) a;-b; =0 for i#7, 1<i<kyand1l<j<ky
(5) a; ~b; >0 for 1 <i < min(kq, k2)
The following Lemma shows the properties which the bases a1, ...,ar, and by, ...,
br, must have.
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Lemma 1. Let F be an ordered field, X be a finite dimensional vector space over F' with
a scalar product, U and V' be subspaces of X with bases ai,...,ar, and by, ...bg,, which
satisfy relations (2) - (4). Then all a; are eigenvectors for PQ) and all b; are eigenvectors
for QP, where P and @) denote orthogonal projections onto U and V respectively.

Proof. Since ay,...,ar, and by,..., by, form orthogonal bases of U and V then Pxr =
kl (.’L‘ . ai) k2 (fE . bZ)

= a; and Qx =
= (ag-ag) " z; (bi - bi)

We may assume ki < ky. For 1 <i < k; relation (4) implies

(bi : ai) (ai : bi)

a; and Qa; = b .
(i - ai)

(bi - bi)

b; for all x € X by Proposition 1.

Pb; =

Therefore
(a; - bi)? (a; - b;)?

(a; - a;)(b; - b;) (a; - a;)(b; - b;)
which means that a; and b; are eigenvectors for PQ and QP. If k; <4 < ky then Pb; =0
and QPb; = 0 and b; is an eigenvector for QP.

PQai = a; and QPb,L = bz ,

Proof of Theorem 1. Let P and () be the orthogonal projections onto U and V respec-
tively. Let uy € U and uy € U. Then (PQuy) - us = (Quy) - (Pu2) = Quq - uy =
= uy - Qua = Puy - Qua = uy - (PQus2), which means that the restriction of PQ onto U
is a selfadjoint linear operator. There is an orthonormal basis a1, ..., a; of U such that
PQa; = M;a; for some \; € R, see [2], p. 461. Now, consider the elements Qa;. Let
i # jand i,j € {1,...,ki}. Then a; - Qa; = Pa; - Qa; = a; - PQa; = a; - (N\ja;) =
= Aj(a; - aj) =0 and

(Qa; - Qaj) = (a; - Q%ay) = (a; - Qaz) = 0.

Put k3 = dim(Q(U)). Obviously k3 < min(kq,k2). We may assume that Qa; # 0 for

1 S 1 S k'3 and Qai = 0 for kg <1 S kl. Put bj = ||gaj|| for 1 S] S k3. If k‘3 = kQ, the
a;

proof is complete. If k3 < kg, take an orthonormal basis c1,...,cp,—r, of V N Q(U)* and

put by, +; = ¢;j for 1 < j < kg — ko. It is sufficient to verify a; -¢; = 0 for 1 <14 < k; and

1 <j <ky—ks. Wehave a;-c; =a;- (Qcj) = (Qa;)-c; =0.

Example 2. Let X be Q! with the standard scalar product, u; = (1,0,0,0), uy =
=(0,1,0,0), v; = (1,1,1,1), va = (1,—2,-2,3), U and V be linear spans of uy,uy and
v1, Vg respectively. Note that u; | us and v; L us. Using Proposition 1, it is easy to see
that PQu; = %(Hul + 5usz) and PQus = %(5111 + 17us3). It means that the restriction
of P@Q onto U has the matrix 31—6 (él 1?) with respect to the basis {u1,us}. The eigenvalues
of this matrix are 5=(14 & v/34), which are irrational and PQ has no eigenvectors in U.

By Lemma 1. consistent orthogonal atomic partitions of U and V' do not exist.

Example 2 and Lemma, 1 indicate that the existence of consistent atomic partitions
for subspaces U and V is connected with the solvability of algebraic equations over the
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field F'. In fact, in Theorem 1 is essential only the fact, that the field or real numbers
is a maximal ordered field ([3], pp. 276 — 282), which means that every polynomial is a
product of linear polynomials and quadratic polynomials with the negative discriminant.
The following theorems shows that the condition of maximality of the ordered field F' may
be weakened according to dim(X).

Theorem 2. Let X be a n-dimensional vector space with a scalar product over an or-
dered field F' with the property, that any polynomial of the degree < [%] is a product of
linear polynomials and quadratic polynomials with the negative discriminant. Then for
any vector subspaces U and V' of X there are bases ay,...,a, and by,..., by, satisfying
relations (2) - (5). Relation (1) may be satisfied whenever every nonnegative element of F'
has a square root, which is automatically satisfied for n > 4.

Proof. The case n < 3 may be easily studied. So, assume n > 4. In this case any
nonnegative @ € F' must have a square root, because g(A) = A2 — a is a polynomial of
degree < [5] with the nonnegative discriminant and it must be reducible. We may assume
dim(U) < dim(V'). We have

n>dimU + V) = dim(U) + dim(V) — dim(U N V) > [dim(U) — dim(U N V)]+
+ [dim(V) — dim(U N V)] > 2[dim(U) — dim(U N V)],

which implies [dim(U) — dim(U N V)] < [5].

Analogically to Theorem 1. the restriction of PQ onto U is a selfadjoint linear
operator. Denote this restriction by A. Let f(\) be the characteristic polynomial of A.
For x € UNV we have Az = PQxz = x. It means that f(\) is divisible by (A — 1)™,
where m = dim(U N V). Therefore f(A) = (A —1)"g(A), where deg(g) = deg(f) —m =
= dim(U) — dim(UNV) < [§]. Since deg(g) < [5], the polynomial g is a product of linear
and quadratic polynomials with the negative discriminant. Let K be the complexification

deg g
of F. Then g(A) = [ (A—A\;), where A\; € K. Every J; is an eigenvalue of the selfadjoint

i=
operator A and in fact \; € F. (The proof of this fact is fully analogical to the case
F = R. For this case see [2], p. 460.) Now, analogically to the real case ([2], p. 461)
using induction it may be constructed an orthonormal basis ay,...,ar, of U consisting of
eigenvectors of A. The proof may be finished in the same way as the proof of Theorem 1.

Let K be either the complexification of an ordered field F' or the quaternion algebra
over F'. All results of this paper may be reformulated for the case, when F' is replaced by
K. The axioms for the scalar product are the following

r-ye Kforall z,ye X
yrz=(z-y)

(ax) -y =alz-y)
(x1+m2) - y=a1-y+a2-Y
x-x>0forz#0.
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(If z-y = a+0i, then (z-y)* = a—pi. lf z-y = a+pPi+yj+dk, then (z-y)* = a—Li—yj—0ik.)

In the reformulation of Theorem 2 F' has the same property and X is a vector space
over K.

It would be interesting to characterize the class of ortholattices in which any two
elements have consistent orthogonal atomic partitions. By the results of the present paper
this problem is connected with eigenvalues when it is considered in the realm of ortholat-
tices associated with a vector space with a scalar product over an ordered field. So, in a
general case this problem may be difficult. Therefore any partial result will be interesting.
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