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SPECIAL ALMOST R-PARACONTACT CONNECTIONS

ANDREW BUCKI

ABsTRACT. For an almost r-paracontact manifold M, with a structure ¥ and any linear
connection T' on My, all almost r-paracontact connections (making all structure tensors
parallel) have been found. Also, D-connections for which some distributions on M, are
parallel have been considered. Finally, pairs of connections compatible with a structure X
have been discussed.

1. Almost r-paracontact manifolds. An almost r-paracontact structure is the
generalization of an almost product structure on a differentiable manifold. The study of
almost r-paracontact structures (utilizing, in part, certain distributions of tangent bundles
of manifolds generated by these structures) and almost r-paracontact connections on man-
ifolds provides a foundation for the investigation of geometric and topological properties
of these manifolds.

In this section we recall the definition of an almost r-paracontact manifold [1] and present
some of their properties.

Definition 1.1. Let M,, be an n-dimensional differentiable manifold. If on M,, there ex-
ist: a tensor field ¢ of type (1,1), r vector fields &1, &5, ..., &, (r < n), r I-forms ', n%, ..., 9"
such that

(1.1) n*(&p) = 05, a,B€(r)=1,2,...,r
(1.2) ¢* =Id—n* @&, where a®b, def Zaaba
(1.3) n“o¢ =0, a € (r)

then ¥ = (¢, &, %) ac(r) is said to be an almost r-paracontact structure on My, and M,
is an almost r-paracontact manifold.

From (1.1), (1.2), and (1.3) we also have

(1'4) ¢(§a) =0, o€ (T)
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There exists a positive Riemannian metric g on M, [1] such that

(1'5) Ua(X) = g(Xv fa)v o€ (T)
(1.6) 9(X,9Y) = g(X,Y) = > n*(X)n*(Y).

Then, X = (¢, &a, n%, g)ae(r) is called a metric almost r-paracontact structure on M,,, and
g is said to be compatible Riemannian metric.
From (1.1) through (1.6) we get

(1.7) 9(X,Y) = g(X, 9Y).

Remark 1.1. On an almost r-paracontact manifold M,, with the structure ¥ = (¢, {0, 1%)ae(r)
the tensor ¢ has constant eigenvalues 1, —1, and 0. Let p,q, and r be their multiplicities,
respectively, with p 4+ ¢ +r =n = dim M,,. M, is said to be of type (p, q).

Proposition 1.1 [1]. An almost r-paracontact manifold M, admits the following com-
plementary distributions

(1.8) Dt ={X; ¢X =X}
(1.9) D™ ={X; ¢X =-X}
(1.8) D’ ={X; ¢X =0}

with dim Dt =p, dimD~ =¢q, dimD° =7, and p+q+r = n.

Theorem 1.1. A necessary and sufficient condition for M, to admit an almost r-pa-
racontact structure is that there exist three complementary distributions Dy, Dy, and D3
of dimensions p, q, and r, respectively, with p+q+1r =n.

Proof. The necessary condition follows immediately from Proposition 1.1. Now, let
D¢, D5, and D3 be three complementary distributions of dimensions p, ¢, and r, re-
spectively, with p +q +r = n. For any p € M, we have T,M, = Dy, ® Dq, ® Ds3,.
Let {e1,...,€p€pi1s-ee)CpiqsEprqr1 = &1,...,6n = &} be a basis for T,M,, and let
{el,...,eP ePTL | ePTq eptatl — pl = e® = p"} be the dual basis for the cotangent
space Ty M,,, i.e., el(e;) = 5;-, i,j € (n). Hence, we get e*®@e, +ePTA ®@epir +1° @&, =
Id, a € (p),A € (¢),a € (r). Let ¢ = e* ®e, +cePT™ ®e,1n, € = 1. Then, the
structure (¢, £y, n%) is an almost r-paracontact structure on M,,. O

Definition 1.2. If M, is an almost r-paracontact manifold with the structure ¥ =
(&, €ay ™) ae(r), then X is said to be normal if an almost product structure F' defined on
M, x R" by F(X, f*2L) = (X + [“6a,n*(X) %) is integrable, i.e., its Nijenhuis tensor
field N vanishes.

Theorem 1.2 [1]. An almost r-paracontact structure ¥ on My, is normal if and only if
N(X,Y) = Ny(X,Y) —2dn*(X,Y )&, = 0, where Ny is the Nijenhuis tensor for ¢.
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2. Projection operators on almost r-paracontact manifolds. In this section
various projection operators on an almost r-paracontact manifold are defined.

Definition 2.1. A multilinear operator ® on an appropriate space is said to be a
projection operator if ®2 = ®.

Definition 2.2. A set of operators {®;} is said to be the set of complementary projec-
tion operatorsif Y. ®; =Id, ®?=®;, &;; =0, i#j.

Proposition 2.1 [3]. If ® is a projection operator and ¥ = Id— ®, then ® and ¥ are
complementary projection operators and all solutions of the equation ®x = y are of the
form x =y + Yw, where w is an arbitrary element.

Remark 2.1. If operators ® and W are tensor fields of type (2,2) and S, ¢, X are tensor
fields of type (1,2), (1,1), and (0,1) respectively, then the operations W, S, d¢p, PX are
expressed locally as follows: ®/Uml &St . &gl &7 Xk,

in ? me’

Let ¥ = (¢,£a;N")ac(r) be an almost r-paracontact structure on M,,. We define the
following operators on M,,.

(2.1) $1=3(Id+¢d—1"®&) = 5(4>+ ¢)
(2.2) p2 =35(Id—dp—1"®&) = 5(¢° — §)
(2.3) $3 =1" @ &a = Id — ¢

(2-4) ¢s = ¢° = Id— 3

with the properties

=1 = g2, PP1 = P19 =1, Qb2 = P2b = — ¢,

(2:5) by = $sd = 0, dbs = badp =

Proposition 2.2. The operators ¢1, ¢2, ¢z are complementary projection operators
on an almost r-paracontact manifold M,.

Proposition 2.3. The operators ¢3 and ¢4 are complementary projection operators
on an almost r-paracontact manifold M,.

The distributions (1.8), (1.9), and (1.10) can be expressed as follows

(2.6) DY ={X; 6 X=X}
(2.7) D™ ={X; ¢X =X}
D’ ={X; ¢3X = X}.

Proposition 2.4. The distributions D1, D™, and D° are generated by the projection
operators ¢, ¢2, and ¢z, respectively.



Let A, B, and C be tensor fields of type (2,2) defined as

(2.9) A=1(Id®Id— R p)
(2.10) B=1Id®Id+¢® ¢)
(2.11) C=2%¢sId+1d® ¢3 — 3 @ P3).

The operators A, B, and C possess the following properties

A+B=IdoId, AA=A—~C, BB=B- 1,

2 2
(2.12) S
AB=BA=AC=CA=BC=CB=CC=C

Define two operators

(2.13) F=A+C
(2.14) H=B-C.

Proposition 2.5. The operators F' and H are complementary projection operators on
an almost r-paracontact manifold M,.

Remark 2.2. The operators F' and H can be expressed in the following form

(2.15) F=1d®Id— ¢1 ® ¢1 — ¢2 @ o
(2.16) H=¢1Q¢1+ 2 ® 2.

Define two more operators

(217) P=F s s
(2.18) Q=H+ p3® ¢3

or

(2.19) P=Id®Id— ¢1 @ ¢1 — p2 @ P2 — $3 ® @3
(2.20) Q=01 ®¢1+ P2 ® P2 + P3 @ ¢3.

Proposition 2.6. The operators P and Q) are complementary projection operators on
an almost r-paracontact manifold M,.

3. Almost r-paracontact connections. In this section the definition of an almost
r-paracontact connection on an almost r-paracontact manifold has been given and all such
connections are found.



Definition 3.1 [2]. For an almost r-paracontact manifold M,, with a structure ¥ =
(#,€arN™)ac(r) a linear connection I', given by its covariant derivative V, is said to be an
almost r-paracontact if

Vxdp=0
Vxn® =0, a € (r)

for any vector field X.
From (3.1) and (3.2) it follows

(3.3) Vxba=0, ac(r),

If M, is a metric almost r-paracontact manifold and an almost r-paracontact connection
I' satisfies

(3.4) VXg: 0

then it is called a metric almost r-paracontact on M,,.

Now, assume that I', given by its covariant derivative V, is a linear connection on an
almost r-paracontact manifold M, with a structure ¥ = (¢, &4, 7%)ac(r). We are going to

find an almost r-paracontact connection I' given by V in the form
(3.5) Vx =Vx+Sx

where S is a tensor field of type (1.2) with Sx(Y) = S(X,Y).
For tensors fields f, Y, and w of type (1,1), (0,1), and (1,0) respectively, we have

(3.6) Vxf=Vxf+Sxof—foSx
(3.7) VxY =VxY + Sx(Y)
(3.8) Vxw=Vxw—woSx.

For the structure tensors ¢, &,, and n%, we have

(3.9) Vx¢=Vxdp+Sxop—poSx
(3.10) Vxéa =Vxta+Sx(a), ac(r)
(3.11) Vxn®=Vxn®—n*oSx, a € (r).

Since I' is an almost r-paracontact connection, so Sx satisfies

(3.12) Vxdp=¢oSx —Sxo¢
(313) Vxéa = _SX(§Q)7 a € (7")
(3.14) Vxn® =n%o Sk, a € (r).
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Applying ¢ on the right to (3.12) and making use of (3.13) and (1.2) we obtain

(3.15) Sx —¢Sx9=¢Vx9+ Vxn* @&

or using the projection operator A from (2.9)

(3.16) ASx = 3(dVx ¢+ Vxn® @ &)

or making use of (2.5), (2.1)—(2.4), and Proposition 2.2

(3.17)  ASx = ¢1Vxd1 + ¢2Vxds + 383Vxds + 30 ® Vxéa — n*(Vxée)n’ ® &o.

Acting with the operator C' from (2.11) on (3.16) and using (2.12) we get

CSx = L(¢Vxdds + Vxn® 0o 3 ® & + ¢39Vxd + Vxn® ® ¢3(Ea)
— 39V xpp3 — Vxn® o ¢p3 ® ¢p3(£a))-

Making use of (2.5), (2.1)—(2.4), and Proposition 2.2 we get

(3.18) CSx = 3(#3Vxds — 1% @ Vx&a)

Adding (3.17) and (3.18) up, and using (2.13) we get

(3.19) FSx = $1Vx¢1 + p2Vxa + d3Vxds — n*(Vxép)n’ @ Ea.

Making use of Propositions 2.5 and 2.1 we obtain from (3.19)

(3.20) Sx = ¢1Vxd1 + p2Vxda + ¢p3Vxds — n*(Vx&s)n® @ &a + HWx
where W is an arbitrary tensor field of type (1,2) with Wx(Y) = W(X,Y), or

(321)  Sx =2¢Vxop+Vxn* @& — in* @ Vxéa + 2n*(Vxép)n® @ &, + HW.

Theorem 3.1 [2]. The general family of the almost r-paracontact connections T' on an
almost r-paracontact manifold M, with a structure ¥ = (¢, €, %) ae(r) 18 given by

(3.22) Vx =Vx+d:1Vxdr + ¢paVxda + ¢3Vxds — 1% (Vxés)n® @ €o + HWx

where H is defined by (2.16), W is an arbitrary tensor field of type (1,2) with Wx(Y') =
W(X,Y), and V is the covariant derivative of an arbitrary linear connection I' on M,,.

Corollary 3.1. If the initial connection I' is an a.r-p.-connection on My, then the
general family of a.r-p.-connections I' on M,, is given by

(3.23) VX =Vx+HWx

where W is an arbitrary tensor field.



Now, suppose that M, is an almost r-paracontact Riemannian manifold with a structure
¥ = (6,€a,n™ 9)ac(r). Let I', given by its covariant derivative V, be the Riemannian
connection generated by the Riemannian metric ¢ on M,,. Of all almost r-paracontact
connections T given by (3.22) we will find metric connections, i.e., those satisfying Vg = 0.
For the Riemannian metric g and T given by (3.5) we have (Vzg)(X,Y) = —g(SzX,Y) —
g(X,SzY). T is a metric almost r-paracontact connection if and only if

(3.24) g(SzX, Y) + g(X, SzY) =0.
From (1.5) and (1.1) we have

(3.25) N*(Vzép) +1° (Vz€a) = 0

(3.26) (Vzn*)(X) = g(X,Vz&a).

From (1.6), using (1.5) and (1.2), we get
9(Vz(¢X), ¢Y)+9(¢X Vz(¢Y)) - (¢2(VZX) Y)

B2 (X, $(VaY)) + >V )+ 2TV (X) =

From (3.24), using (3.21), (1.7), (3.26), and then (3.27) and (3.25), we get

39(8V29X,Y) = 517 (X)9(Vzéa, V) + V20 (X)g(éa, Y) + 39(X, ¢V 29Y)
50" (V)g(X, Vzéa) + V20 (Y)g(X, &a) + 1 (V2Es)0" (X)g(£as V)
+0*(Vz&a)n’ (Y)g(X, o) + g(HxWz,Y) + g(X, HyWz) =
= 39(V2(6X),9Y) = 39(6°(V2X),Y) + 39(¢X,Vz(¢Y)) = 39(X,¢*(VzY))
%Z Vzn®)(X)n*(Y) + 3 ) _(Van®)(V)n™(X)

+3 Zn (V)[n*(V2&) + 17 (Vz€a)] + g(Hx Wz, Y) + g(X, HyWz) =

=g(HxWz,Y) +g(X,HyWz) = 0.

Hence,

Theorem 3.2. Let M, be an almost r-paracontact Riemannian manifold with a struc-
ture X = (¢,€as1, 9)ac(r)- An almost r-paracontact connection I' given by (3.22) on M,
is metric if and only if there exists a tensor field W of type (1,2) with W(X,Y) = Wx(Y)
satisfying
(3.28) g(Hsz,Y) —|—g(X, HyWZ) = 0.

From Theorem 3.1 we get

Theorem 3.3. The linear connection T given by

(3.29) Vx =Vx +¢1Vxor + 62Vxds + ¢3Vxds — n*(Vxép)n’ @ &

1s a metric almost r-paracontact connection on an almost r-paracontact Riemannian man-
ifold M,, with a structure ¥ = (¢, &, na,g)ae(r), where V is the Riemannian connection,
e., V=0, Vn®=0, V&, =0, Vg = 0.



4. D-connections. In this section the definition of a D-connection on an almost
r-paracontact manifold is given and all such connections are determined.

Definition 4.1. Let D be a distribution on a manifold M,,. A linear connection I'
given by its covariant derivative V on M, is said to be a D-connection, or D is said to be
parallel with respect to I', if for any vector field Y and a vector field X from D the vector
field Vy X belongs to D.

Theorem 4.1. The distribution D given by (1.8) or (2.6) is parallel with respect

to a linear connection I' given by its covariant derivative V on an almost r-paracontact
manifold M,,, or T is a DT -connection, if and only if

(4.1) Voiopr =0.
Proof. For a vector field X from DT one obtains
(4.2) Vy X = Vy(¢1X) = (Vy¢1)X + ¢1(VyX).

If D7 is parallel, then from (4.2) and (2.6) (Vy¢$1)X = 0 for any vector field X in D%, or
(Vyo1)(p1Z) = 0 for any vector field Z. Hence, (4.1) is obtained. Conversely, if (4.1) is
satisfied, then for any X € DT, 0 = (V¢10¢1)X = (V1) X, s0 by (4.2) Vy X = ¢1(Vy X),
and Vy X isin DT. O

In similar way we obtain

Theorem 4.2. The distribution D~ given by (1.9) or (2.7) is parallel with respect
to a linear connection I' given by its covariant derivative V on an almost r-paracontact
manifold M,,, or I' is a D™ -connection, if and only if

(4.3) Vs 0 ¢y = 0.

Theorem 4.3. The distribution D° given by (1.10) or (2.8) is parallel with respect
to a linear connection I' given by its covariant derivative V on an almost r-paracontact
manifold M,,, or T' is a D°-connection, if and only if

(4.4) Vs 0 bz = 0.

If T is an almost r-paracontact connection, then from (2.1), (2.2), and (2.3) we get
Vo1 = Voo = Vs = 0, and on account of Theorems 4.1, 4.2, and 4.3 we obtain

Theorem 4.4. If a linear connection I' on an almost r-paracontact manifold M,, is an
almost r-paracontact connection, then the distributions DY, D=, and D° given by (1.8),
(1.9) and (1.10) are parallel with respect to this connection, or T is a Dt -connection, and
a D™ -connection, and a D°-connection.

Definition 4.2. A linear connection I' on an almost r-paracontact manifold M,, with a
structure 3 = (¢, {a, 1) ac(r) is said to be a Dx-connection if it is a DT -connection, and
a D~ -connection, and a D°-connection.
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Theorem 4.5. FEvery almost r-paracontact connection I' on an almost r-paracontact
manifold M, with a structure ¥ is a Dx-connection.

If a linear connection I' is a Dx-connection, then from Proposition 2.2 and Theorems
4.1, 4.2, and 4.3 we have

(4.5) Vo, = iV, 1=1,2,3
and since ¢1 + ¢o + ¢p3 = Id, we get
(4.6) > ¢V =0.

Acting with ¢; on the left to (4.6) we obtain
(4.7) $;Vep; =0, Jj=1,2,3

then, from (4.5) we get

Theorem 4.6. A linear connection I' on an almost r-paracontact manifold M, with
a structure ¥ = (¢, €a,N%)ac(r) 15 a Dx-connection if and only if

(4.8) Vo, =0, =123

Now, we shall find all Dy-connections on an almost r-paracontact manifold M,, which
are of the form

(4.9) Vx =Vx + Jx

where V is the covariant differentiation operator of arbitrary linear connection I' on M,,,
and J is a tensor field of type (1,2) with Jx(Y) = J(X,Y). From (3.6) we have for ¢;,
1=1,2,3

(4.10) Vxoi=Vxdi+JIxop —piodx i=123.

Since I is a Ds-connection, then from (4.10) and Theorem 4.6 we have

(4.11) Vxdi+Jxodi—diodx =0 i=1,2,3.

Applying ¢; on the left to (4.11) and using Proposition 2.2 we get

(4.12) $iVxdi + ¢pixdi — pidx =0,  i=1,2,3.

Using Proposition 2.2 we get from (4.12)

(4.13) N1V xod1 + $2Vxda + 93Vxds + Pp1Jxd1 + p2Jxd2 + d3JxPp3 — Jx = 0.
Using (2.19) we obtain

(4.14) PJx = 51V xd1 + ¢2Vxga + ¢3Vxos.
Hence, in virtue of Propositions 2.6 and 2.1 we obtain
(4.15) Jx = 1Vxd1 + $2Vxda + d3Vx s + QVx

where V is an arbitrary tensor field of type (1,2) with Vx(Y) =V(X,Y).
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Hence,

Theorem 4.7. The general family of the Dy -connections ' on an almost r-paracontact
manifold My, with a structure ¥ = (¢,&a,1%)ac(r) is given by

(4.16) Vx = Vx + $1Vxdr + ¢poVxda + d3Vxds + QVy

where @ is defined by (2.20), V is an arbitrary tensor field of type (1,2) with Vx(Y) =
V(X,Y), and V is the covariant derivative of an arbitrary linear connection T' on M,,.

Corollary 4.1. If the initial connection 1" is a Dx-connection on M,,, then the general
family of Dx:-connections T' on M, is given by

(4.17) @X =Vx +QVx

where V is an arbitrary tensor field.

5. Pairs of connections compatible with a structure. In this section a definition
of a pair of connections compatible with an almost r-paracontact structure on an almost
r-paracontact manifold is given and all such pairs are found.

1 2 1 2
Let I' and I'" be two linear connections, given by their covariant derivatives V and V,

on an almost r-paracontact manifold M,,.

For a function f, a vector field Y, a 1-form w, and a tensor field v of type (1,1), (0,2),
or (2,0), we define the following mized covariant derivatives

(5.1) %zf = ng =Zf
(5.2) C,Y = VY
(5.3) Vo = Vyw
(5.4 (V20)(A, B) = Z9(A, B) ~ 6(VA, B) ~ (4,9 1)
where 4,7 =1,2; 1 # j.

Proposition 5.1. %Z = %(%Z + %Z) is a covariant differentiation operator of a
certain connection ?‘L on M,,.

m 1 2

Definition 5.1. The connection I' on M, is called a mean connection of I' and I' if
its mean covariant derivative is

m 1 2
(5.5) Vg = %(Vz—l—vz).

2 1
Proposition 5.2. dy = Vz — V7 is a tensor field of type (1,1) on M, for any vector
field Z.
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Definition 5.2. The tensor field d of type (1,2) defined by
2 1
(5.6) dz =Vz—-Vgz

1
with dz(X) = d(Z,X) on M, is called a deformation tensor field of connections I' and
2
I

For the structure tensors ¢ and n® we obtain

(5.7) dz(n®) = —n"ody
(5.8 dz(¢):d20¢—¢0dz
(5.9) $Z¢ = %Zﬁb +pody
(5.10) gz(ﬁ:%zqﬁ—(ﬁodz.

Making use of these formulas we get for the structure tensors ¢, n%, and &,

L 12 21 m
(5.11) E(VZna + Vzna) = Vzn*
12 21
(512) vZna — Vz’I]a = ’I]a O dZ
L 12 21 m
(5.13) 5(Vzd+Vzd) =Vzo
12 21
(5.14) Vzp—Vgp=dzodp+ pody
12 21 m
(5'15) %(sza + sza) = Vzéa
12 21
(516) Vz8a — Vz&a = —dzéa.
For (1,1) tensor fields ¢ and x, using (5.8), (5.14) and (5.9), (5.10) we get
1 21 12
(5.17) Vz(x) = (Vz¢)x + ¢ Vzx
2 12 21
(5.18) Vz(x) = (Vz¢)x + 4V zx.

12
Definition 5.3. A pair of linear connections (I',T") on an almost r-paracontact manifold
M, with a structure ¥ = (¢,&€q,n")ac(r) is said to be compatible with X if

12 1 2
(5.19) V=0, Vn*=0, Vi=0 ac(r).

12
Theorem 5.1. A pair of linear connections (I',T") on an almost r-paracontact manifold

M, with a structure ¥ = (¢, €, %) ac(r) 15 compatible with ¥ if and only if all structure
12 21
tensor fields are parallel with respect to both mixed covariant derivatives V and V.
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Proof. We have to show that the following conditions are satisfied

21 2 1
(5.20) V¢ =0, Vn® =0, Vé, =0, a € (r).
From (1.1) we get
(5.21) (Vn*)(Ep) +n*(VEp) =0,  i=1,2

2 2 2
From (1.3), using (5.9) and (5.19)1, we get Vn®o¢ = 0. Hence Vn® — (Vn®)(é5)nf =0,
1

and using (5.21) we obtain (5.20)2. From (1.4), using (5.19); and (5.9), we get ¢V, = 0.

1 1
Hence V&, —nP(VEa)€és = 0. Again, using (5.21) we obtain (5.20)3. Now, making use of
(5.17) and (5.18) with 1) = x = ¢ we obtain from (1.2), after using (5.19)3, (5.19)3, (5.20)2,

21 21 21 21 21 21 21
(5.20)3, and (5.19)1, (Vg)p =0, ¢Vp = 0. Hence Vo = V¢ = ¢Vpp+Vhpp? + 2V =
0. O

Remark 5.1. From Theorem 5.1 we obtain the symmetry of compatibility, i.e., a pair
12 2 1
(T',T) is compatible with X if and only if (I',T") is compatible with X.
Now, we obtain the following

12
Theorem 5.2. A pair of linear connections (I',T") on an almost r-paracontact manifold
M, with a structure ¥ = (¢,8a,1")ae(r) is compatible with X if and only if

(i) the mean connection T' given by (5.5) is an almost r-paracontact connection on
M,
(i) Bdz =0, where B is given by (2.10)
Proof. Using (5.11) through (5.16) the conditions (5.19) and (5.20) are equivalent to

(5.22) Vé=0, Vi*=0, Vé,=0, ac(r
(5.23) dz¢ + ¢pdz =0, n*dz =0, dz(€a) =0, a € (r).
The conditions (5.22) are equivalent to (i) and (5.23) to (ii). O

Remark 5.2. The condition (ii) of Theorem 5.2 implies

(5.24) Hdz =0
where H is given by (2.14).
Hence we get

12
Theorem 5.3. If a pair of linear connections (I',T") is compatible with an almost
r-paracontact structure ¥ = (¢, 0, N%)ac(r) on a manifold My, then

1
(5.25) VZ:VZ—F»Sz—%FVZ

2
(5.26) Vz=Vz+Sz+3FVy

where V is an arbitrary linear connection on M,,, Sz is given by (3.21), F is defined by
(2.15), and V is an arbitrary tensor field of type (1,2) with Vz(X) =V (Z, X).

14



Proof. From (5.24), using Proposition 2.1, we obtain
(5.27) dy = FVy.

From Theorem 5.2(i), using Theorem 3.1, we get

(5.28) %Z:VZ—FSZ.

From (5.27), (5.28), (5.5), and (5.6) we obtain (5.25) and (5.26). O
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ON NON-VERTICAL LINEAR (1,1)-TENSOR FIELDS
AND CONNECTIONS ON TANGENT BUNDLES

ANTON DEKRET

ABSTRACT. Special (1,1)-tensor fields & on tangent bundles TM which do not preserve the
vertical subbundles VT M and satisfy some linearity conditions determine linear connections
T'q on TM. The relationships between « and ', are studied in this paper.

INTRODUCTION

In the papers [1], [2] we have dealt with connections on T'M which are canonicaly
determined by (1,1)-tensor fields on tangent bundles TM, especially by almost complex
structures on TM. This contribution completes our previous considerations by some (1,1)-
tensor fields which do not preserve the subbundle VT'M of all vertical tangent vectors on
TM and satisfy some linearity conditions. We suppose that all manifolds and maps are
infinitely differentiable.

Let (2°,2%) be the local chart on the tangent bundle 7 : TM — M induced by a local
chart (z*) on a manifold M. Then the coordinate form of an arbitrary (1,1)-tensor « is as
follows

o= (aéda:j + b;d:yjl) ® 0/0x" + (c?da:j + h;darjl) ® 0/0x} |
where a?, b;, c;-, h; are functions of the variables =%, z%.

A connection T' on TM can be considered as a special (1,1)-tensor field hp = dz* ®
0/0z" + F}(m,xl)dxj ® 0/0x% such that hp(VTM) = 0 and T7 - hr = Tw where Tf
denotes the tangent prolongation of a map f. Then vpr = Idryr — hr is the vertical form
of I'. Denote by HT' := hp(TM) C TM the vector subbundle of the I'-horizontal vectors
on TM, i.e. such vectors (z%, x%, dx?, dx}) on T M which satisfy the equation dz} = Fj-dxj.
The functions F;- (x,21) will be called local functions of I'. Recall that a connection I is
linear iff [‘;- = F;k(x)xlf

Let us introduce a short survey of the main results published in [1] we will need.

Let Y = 7'0/0x% be an arbitrary vertical vector field on TM and X = £0/0x" +
I7¢70 /024 be a horizontal vector field of a given connection I' on TM. Then a(Y) =

1991 Mathematics Subject Classification. 53C05, 58 A20. Suported by the VEGA SR No. 1/1466/94.
Key words and phrases. (1,1)-tensor fields, connections, covariant and Lie derivatives, natural
operators .
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it 0/0x" + Wi 0/ or al( X) = (ab+0iT%)E70/0a" + (c§ +hiT% )€/ 0 /Dt is T-horizontal
for any vertical vector field Y or vertical for any I'-horizontal vector field X iff

(1) Lpbs = hs or af+bil% =0,

respectively.

Let J = da' ® 0/0x! be the canonical morphism (almost tangent structure) determined
by Idyps and the canonical identification VI'M = TM xp TM. Then the (1, 1)-tensor
field B := JaJ = b;-dxj ® 0/0x% can be interpreted as the vector bundle morphism
Tr - alyrm = b;dx{ ® 0/0x* : VIM — TM over = : TM — M or as a vector bundle
morphism VI'M — VT M, B = bidz] ® 0/0i.

If B=0or B #0ie. if(VIM)C VTM or o(VIM) ¢ VITM we say that « is
vertical or non vertical, respectively.

It is evident from (1) that in the case when « is non vertical and B is an isomor-
phism then there is a unique connection I'y and a unique connection I'2 on T'M such that
a(HT)) = VTM and (VI M) = HT?%. Then I = —bja¥ or T = hjbk, bidh = 6%, are
local functions of T}, or T'2, respectively.

The following coordinate conditions

(2) aia? + bicj = —5;-, aibj + bih; =0, cia; + hicj =0, Cib; — hih; = —5;-

under which a (1,1)-tensor field « is an almost complex structure on 7'M and the equalities
(1) immediately give

Lemma 1. Let I' be a connection on TM. Let B = b;da:{ ® 0/0z' : VTM — TM be a
vector bundle isomorphism over w : TM — M. Then there exists a unique almost complex
structure o(T', B) on TM such that T - a|yry = B and TL, =T2 =T.

Remark 1. Tt is easy to see that in the case when B is regular then the third and fourth
equations of (2) are the consequence of the first and the second ones. The second equality
of (2) is the coordinate condition for a2 to be vertical and for the equality I'}, = I'2.

NON VERTICAL LINEAR (1,1)-TENSOR FIELD ON TM

Definition 1. A non vertical (1,1)-tensor field v on T'M is said to be v-projectable if the
(1,1)-tensor field B = Ja.J is the v-lift of a (1,1)-tensor field B = b}(z)dz? ® 3/9z* on M.

Definition 2. A v-projectable (1,1)-tensor field « is called [-linear if Tn - aX : TM —
TM is a vector bundle morphism over Id;; for any projectable and linear vector field
X : TM — TTM. Analogously a v-projectable (1,1)-tensor field « is called r-linear if
a(Y") is a projectable and linear vector field on TM for any vertical lift YV of any vector
field Y on M.

In coordinates, let X = &'(x)d/dx" + n} (2)x10/82% be a projectable and linear vector
field on TM and « be v-projectable. Then the map Tw - X is given by the equations
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. J
iff af(z,z1) = a;k(x)x’f | | . .

Analogously for a field Y = &' (z)0/0z" on M its v-lift is YV = £*(x)0/0z} and so
a(Y") = b(2)& (2)0/ 02" + hii(x,21)&7 ()0 /02 is projectable and linear, i.e. « is r-linear
iff 2t (2, 1) = h;k(a:):vlf

Definition 3. A non vertical (1,1)-tensor field « is called linear if it is 7- and [-linear.

T =2t T = al(z, 1) + b (x)nfx]l So it is a vector bundle morphism, i.e. « is [-linear

The following lemma is evident from the equalities (1) and (2).

Lemma 2. Let « be such a (1,1)-tensor field on TM that B is regular. Then the connec-
tion T'L or I'? is linear if « is I-linear or r-linear, respectively. Both connections I'} and
I'2 are linear if « is linear. If moreover o is vertical then if « is [-linear or r-linear then
« is linear. If connection I is linear and B is v-lift of a regular (1,1)-tensor field B on M
then the almost complex structure «(T', B) is linear.

Recall that a semispray S on T'M is such a vector field on TM that J(S) = V where
V = x10/0z" is the canonical (Liouville) vector field the flows of which are the homotheties
on individual fibres T, M. S is a spray if [S, V] = S. In local coordinates S = z%0/dx" +
n'(x,21)0/0x} and it is a spray if n = ni (v)z¥.

Every connection I' on TM with local functions F; determines a unique semispray
Sr = 240/0x" + T%a70/0x} (called T-horizontal).

Lemma 3. Let « be such a (1,1)-tensor field on TM that B is regular. Then «(V) is
I'2 -horizontal and o(B~1(V)) is the I'2-horizontal semispray.

Proof in coordinates. a(V) = bém{3/3$i+h§:ﬂ{8/3x’i and considering B as a morphism on
VTM we have B~1(V) = E;-x{a/@xi, a(B~YV)) = zi0/0x" + h}cgfx]lﬁ/ale The proof
is finished.

In concordance with many authors (for example Modugno [4], Yano [5]) using the
Nijenhuis-Frolicher bracket [a, 3] of two vector valued tensor fields we introduced the
following notions

Definition 4. We will say that a (1,1)-tensor field « is quasi-symmetric or semi-symmetric
or symmetric if [, J] is a vertical valued or a semi-basic vertical valued (1,2)-form on T'M
or vanishes, respectively. We will say that a connection I' is symmetric, (equivalently
without torsion), when its torsion Tt = [hr, J] vanishes.

Throughout this paper we will use the denotations f; := % , fi, = gmfi .
1

By direct computations we get in the case of a v-projectable (1,1)-tensor field:
[, J] = aijlda:j Adz® ® 0/0x" + [(cijl + a;-s)da:j A dz® + (b;s - h;sl - aijl)da:{ A dz®|®
® 0/0x"
(3) [hr, J] =T%; da? Ada® ® 9/,
where F;- are the local functions of a connection I'. So

i i i i pi i
(4) Ugjy = Ajg, O ag; =are, bio—hj —ag; =0

are the coordinate conditions of o to be quasi- or semi-symmetric.
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Proposition 1. Let a be a v-projectable (1,1)-tensor field on T M such that B is regular.
Then the connection I} is symmetric if and only if « is quasi-symmetric.

Proof follows from the relationships (3), (4) and from the local functions —b¢, (x)a? of

the connection T'.,.

Remark 2. If « is I-linear and B is regular then af = azk(a:)ﬂf and so « is quasi-symmetric

iff a;-k = a};j.

Let ip : TTM — TTM, (2*, 21, dz", do}) — (2*,dz*, z7, dz) be the canonical involution
on TTM. Let TB : (%, xf, da*, dx}) — (a*, b5z, da*, by ;o da? +bida]) denote the tangent
prolongation of the map B : TM — TM, (', z}) — («*,b%x]) given by a (1,1)-tensor field
B on M. Consider the following maps:

iy - TB -ig :(2", 2%, do®, dal) — (2, 2%, b;dxj, bijd:vkzvjl. + b;dle)
Jo:(xt, 2t dat, dot) — (2, 2%, 0, a;-dxj + b;dx]l)
o (2t 2, dot, dot) — (ZUi,.Til,b;dl'j,h;d:Ej) :
Then the map
in - TB iy — Ja — o (2, 2%, da?, dal) — (2, 2%,0, b};jda:ka:{ - (a? + h;-)d;cj) =
= (z*, by;da"z] — (a} + hl)da?)

i .k

i ik i
;= anar, hy = hjkﬂh), a

determines in the case of a linear (1,1)-tensor field «, (i.e. a}

(1,2)-tensor ap on M,
(5) ap = (b;k — a;-k — ;-k)dfvj ® dz* ® 0/0x" .

Proposition 2. Let o be a quasi-symmetric and linear (1,1)-tensor field on TM. Then
a is semi-symmetric if and only if ap = 0.

Proof. Using aj.k = a};j and comparing (4) with (5) we complete our proof.

By the map TB we can construct another connection T’ on TM as follows: We have
in-TB iy — aJ = [(b;kx’f - h;-)dxj + b;dle] ® 0/0x% .

Considering B as a vector bundle isomorphism VI'M — VT M over Idyp; we see that the
following (1,1)-tensor field

B iy -TB iy — aJ] = [Bi(bzkx’f — h;)dzvj + da| ® /0!
is the vertical form of the connection T' the local functions of which are F;- = —B@(b;kx’f—hﬁ)
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Proposition 3. Let a be a linear quasi-symmetric (1,1)-tensor field on TM the morphism
B of which is regular. Then « is semi-symmetric if and only if the equality T = T} is
satisfied.

Proof. Under our suppositions the equality T’ = 'L has the following coordinate form
—bi(bhy — hip)ah = —bialah, e — bty = aly, .
Comparing it with (4) we finish our proof.

Recall that if I' is a linear connection on T'M with local functions F’ = F’kfcl, B =
bide? © 9/0x" is a (1,1)-tensor field on M and X = £'0/9z" is a vector ﬁeld on M then
the covariant derivative VY B is the (1,1)-tensor field on M the coordinate form of which
is as follows

VB = (by; + biT5, — Th.b7)¢ da” ® 9/0x .
Then VI'B = (bf; + DiT8, — T b7 )da? @ dz* ® 0/0x" is a (1,2)-tensor field on M and the
equality

is the coordinate condition for B to be constant under the covariant derivative with respect
to the connection I'.

Remark 3. The covariant derivative VI' B can be interpreted as follows. If B = bi del @
3/3:6 and if hp = dz* ® 0/02" + ij;cldarj ® 0/0x% then the map TB - hp — hr - TB hr :
T =1t T = b’a:l, dz' =0, dz} = (b}w + bgF;’k — %05 ) ¥dxJ determines the tensor field
VI'B on M.

Lemma 4. Let B = bids’ ® 0/0x" be a (1,1)-tensor field on M and B = bida? ® 0/0x}
be its vertical lift on TM. Let I' be a symmetric linear connection on T'M. Then the

Nijenhuis-Froélicher bracket [hr, B] is the skew-symmetrization of the v-lift of the tensor
field VI'B.

b )dx? A da®

Proof follows immediately from the coordinate form [hr, B] = (b}w + T, b

0/0x%.
Let S = x40/0z" + n(x,x1)0/0x} be a semi-spray on TM and B = b’(x)dz? ® 9/dx}
be the v-lift of a regular (1,1)-tensor field B on M. Then the Lie derivative

LsB = —bida! ® 0/0z" + (bl 2% — i, b¥)da + bidal] @ 9/07)

is the so-called skew 2-projectable (1,1)-tensor field on T'M, see [2]. Such a (1,1)-tensor field
( determines a unique connection I'gg the horizontal subbundle HI'gg of which spannes
the vectors Y on TM for which LsLsB(Y) € VT'M, where S is an arbitrary semi-spray
on T'M on which the connection I'gg is independent. It is easy to calculate that

(7) I = ——b’(%skxl — i, b)
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are its local functions.

Denote by A : o — 'L and by H : @ — I'2 the operators from the space «, of all
v-projectable (1,1)-tensor fields & on TM with regular B = J«.J into the space Conn T'M
of all connections on T'M. Evidently A, H are zero- order natural operators in the category
M, of all smooth manifolds and smooth local diffeomorphisms.

Let DB :V(1,1) x S — Conn TM denote the operator from the product space of all
v-lifts of all regular (1,1)-tensor fields on M and of all semisprays on TM into the space
Conn T'M given by the above described rule DB : (S, B) — I'pg. It is easy to see that
DB is a natural operator of first order in the category M,,. Reader is kindly refered to [3]
for the theory of natural operators.

Proposition 4. Let B be the v-lift of a regular (1,1)-tensor field B on M. Let ' be a
linear symmetric connection on T M. Then the following conditions are equivalent

a) VEB=0

b) DB(Sp,B) =T
where St is the I'-horizontal spray on T M.
Proof. Let Sp = 2t0/0x" + n'0/0x%, nt =T% kxlxl, be I'-horizontal spray. Then by (7)
Fj = —b’s(bjk —I'% b%)z% are the local functions of the connection DB(St, B). So locally

su’j

B(Sr, B) =T if and only if
kj F;sbi; + b;FZ] =0

which coincides with (6), i.e. with the condition VI'B = 0. Proof is finished.
It is evident from the definitions of operators A and DB that
Proposition 5. A(LsLsB)= DB(S, B).
Remember that if o2 is vertical then T'L, = T2, i.e., H(a) = A(«).

Proposition 6. Let « be a [-linear and quasi-symmetric (1,1)-tensor field on TM such
that o? is vertical and B is regular. Then the following conditions are equivalent

i) vA@pB =0,

ii) « is semi-symmetric.

Proof. The equality (6) for the connection ', = A(a) yields b};j - bégfaﬁk + biat ss0f, = 0.
Then using the second relationship of (2) we have b} i aj.k — ht ; = 0. So the equahtles
(4) are satisfied, i.e. « is semi-symmetric iff VA B = 0.

Corollary. Under the conditions of Proposition 6 « is semi-symmetric if and only if
DB(Sri, B) = rL.

Let T' be a given connection on T'M. Recall that the I'-lift of a vector X € T, M at
u € TM is the I-horizontal vector I'(X) € T,TM such that Tn(I'(X)) = X. Let B be a
(1,1)-tensor field on M. Then B acts on the [-horizontal vectors on TM by the rule: If
Y € T,TM then BY = I'(B(TnY)) € T,TM, i.e. BY is I'-lift of the vector B(T7Y) at
u. In coordinates, B(£'0/0z' 4+ T5¢70/0xt) = b5¢10 /02" + Tibie79 /0.
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Let o be a r-linear (1,1)-tensor field on TM. Recall that B is a (1,1)-tensor on M
determined by B = JaJ. Let ' be a linear connection on 7'M then the map Bhr —
af @ (a*, 2l dot, doy) — (af, 25,0, (Tb8 — h;k)x’fdﬂ) determines the (1,2)-tensor field
Bhr —aJ = (T4 b5 — ;k)dxj ® dz* ® 0/0x on M.

Proposition 7. Let « be a quasi-symmetric and [-linear (1,1)-tensor field on TM such
that B is regular, o is vertical and ap is symmetric (1,2)-tensor. Then just the connection
2 =Tl =T, is such a linear symmetric connection on TM that the tensor V' B is
symmetric and the tensor Bhr, — a.J is skew-symmetric.

Proof. By our assumptions « is linear and (see (2), (5)),

i i i 1S qips i i i i
(8) ik = Oj» askbj = =05, O — hjk = bkj - Ny -
Then the tensor V' B is symmetric and Bhr, — aJ is skew-symmetric iff
7 7 3 u T LU : 7 3 3 u T LU
(9) ik — by — Dby £ 15,0 =0 Le, hip —hp; — 107 + T bp =0,

(10) Dokl = B, + bk — iy =0
where I' is a linear symmetric connection. If the relationships (9), (10) are satisfied then
i by = hi, ie. D= hgkg;, ie. T=T2=T,.

Conversely, it easy to show that under the conditions (8) the connection ', is symmetric
and satisfies the equalities (9) and (10). The proof is finished.
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VALUATIONS AND METRICS ON A POSET

ALFONZ HAVIAR AND GABRIELA MONOSZOVA

ABSTRACT. The aim of the paper is to characterize metrics (pseudometrics) induced on con-
nected posets by positive (isotone) valuations. Further, as an application it is shown that
there exists a positive valuation on some posets of locally finite length.

Introduction

Several authors investigated valuations and metrics on posets (see, e.g. [1] - [3]). M.
Kolibiar and J. Lihovéa [5] and J. Lihova [6] gave characterizations of metrics induced by
positive (isotone) valuations on directed multilattices. In this paper we will present similar
results for richier families of posets.

Recall some basic definitions. Let F,, = ({a1,...,a,}, <) be a poset. Let n be an odd
integer, n > 3. The poset F,, is called a fence if

ar < ag >az < - < ap_1 > 0y

or
aL > a2 <Az > - > ap_1 < Gy,

are the only comparability relations of the poset F,, (see Figures 1a, 1b). Let n be an even
integer, n > 4. The poset F,, is called a fence if

ar < a2 >az3<--->ap-1 < Gp

are the only comparability relations of the poset F,, (see Fig. 1c).

g Q4 Ap—1 ay as Ap—2 Qn az G4 Qn
ai as Up—2 ap as a4 (p—1 ai a3z Aan-1
Fig. 1a Fig. 1b Fig. 1c

1991 Mathematics Subject Classification. Primary 06A99, 06B99.
Key words and phrases. Metric on a poset, valuation on a poset.
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A poset (P, <) is called a connected poset if for every elements a,b € P there is a fence
F = ({a1,a9,...,a,},<) such that a =ay, b= a,. In this case we say that F is a fence
from a to b.

Let C = ({ag,a1,...,a,}, <) be a chain. The number n is called the length of the chain
C.

A poset (P, <) is called a poset of finite length if all chains of the poset (P, <) are finite
and if there exists the maximum of their lengths. We write [(P) = [y if the maximum of
all chains of the poset (P, <) is [y and the number [ is called the length of the poset (P, <)
. A poset (P,<) is called a poset of locally finite lenght if all bounded chains in (P, <)
are finite. Note, it is possible that a poset of locally finite length has neither maximal nor
minimal elements.

Let (P, <) be a poset. A real valued function v defined on P is called
a) a positive valuation on a poset (P, <) if

a<b = w(a)<uv(d),
b) an isotone valuation on a poset (P, <) if
a<b = w(a)<uv(d).

Throughout the paper we will denote by Z and R the set of all integers and the set of
all reals, respectively. We will denote by |z| the absolute value of z.

1. Valuations and metrics on posets

The aim of this part is to characterize metrics induced by isotone (positive) valuations
on posets. First we will give some definitions needed for our purposes.

Definition 1.1. Let (P, <) be a poset. A finite sequence (z;)F_, is said to be a way from
a to b if

(a) o =a,x, =Db,
(b) z; < xjyq1 or x; > x4q for each i =0,1,...,n— 1.

Definition 1.2. Let (P, <) be a poset and C,, = (a1,b1,...,an,b,) be a 2n-element
subposet of (P, <) . The subposet C,, is said to be a cycle-fence of (P, <) if

(10) a1 <by>ay <by>--->a, <b, > aj.

b3 by by bs by by

ai az as

ai a2 as

Fig. 2a Fig. 2b Fig. 2¢
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Note that the mentioned poset C, is a crown if n > 1 and (1.0) are the only com-
parability relations on {ay,by,...,a,,b,} (see Fig. 2a). The cycle-fences (by the above
definition) are also the posets in Figures 2b and 2c.

Definition 1.3. Let (P, <) be a poset, v an isotone valuation on (P, <) and (x;)I, a
way from a to b, a,b € P. We define the length [(xo,x1,...,2,) of the way (z;), by

(1.1) Wz, Z1,...,Ty) =: i:|v(xl) —v(xi41)|

A way (zg,z1,...,%,) from a to b is said to be minimal if

l(x07x17 s 7'Tn) S l(y07y17 .. 7ym)

for every way (yo,¥1,---,Ym) from a to b.

Evidently, it is possible that there is no way from a to b or there exists a way from a to
b but there is no minimal way from a to b.

Definition 1.4. An isotone valuation v on a connected poset (P, <) is said to be a
distance-valuation if there exists a minimal way from a to b for all a,b € P.

Definition 1.5. Let v be a distance-valuation on a connected poset (P, <) . We define a
non-negative real function d,: P x P — R by

(1.2) dy(a,b) =: l(zg,z1,...,%n)

where (z;)P_, is a minimal way from a to b. The function d, will be called the distance
function induced by the distance-valuation v on the poset (P, <) .

Lemma 1.6. Let d, be a distance function induced by a distance-valuation v on a con-
nected poset (P,<) . Then for all a,b € P

(1.3) a<b = dy(a,b)=uv(b)—v(a).

Proof. 1t is sufficient to prove that (zg,z1) = (a,b) is a minimal way from a to b. Let
(x;)1~, be an arbitrary way from a to b. Then

la,z1,...,2n_1,0) = |v(a) — v(x1)| + |v(z1) — v(z2)| + -+ + [v(Tr_1
> [o(a) = v(w1) +v(z1) —v(z2) + -+ v(En_1) —v(b)] = [v(a) — v(b)
is a minimal way from a to b. [

) —v(b)| >
| =1(a,b), ie. (a,b)

Corollary 1.7. Let d, : P x P — R be a distance function induced by a distance-
valuation v on a connected poset (P, <) . Let (mg,my,...,mg_1,my) be a minimal way
from a to b. Then

(1.4) dy(a,b) = dy(mo,m1) + dy(my,mz2) + - - - + dyy(Mp—1, mg,).
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Lemma 1.8. Let d, be a distance function induced by a distance-valuation v on a con-
nected poset (P,<) . Then

(1.5) Va,bce P a<b<c = dy(a,c)=dy(a,b)+ dy(b,c)
and

dv(ah bl) + dv(a27 bZ) +---+ dv(arw bn) —

1.6
( ) :dv(bl,a2)+dv(b2,a3)+---+dv(bn,a1)

holds for every cycle-fence (a1,bq, ..., an,by,) of the poset (P, <) .
Proof. 1t is easy to verify that (1.5) and (1.6) follow from (1.3). O

Theorem 1.9. Let d, be a distance function induced by a distance-valuation v on a
connected poset (P,<) . Then

d, is a metric on the poset (P, <) if v is a positive valuation,

d, is a pseudometric on the poset (P, <) if v is a isotone valuation.

Proof. Let a,b,c € P. Obviously, d,(a,a) = l(a,a) = 0. If a # b and v is a

positive valuation then d,(a,b) > 0. If (zg,2z1,...,2,) is a way from a to b then
(Yo,Y1,s -y Yn) = (Tp,Tp—1,...,29) is the way from b to a, hence d,(a,b) = d,(b,a).
Let (xo,Z1,---5%n), (Y0,Y1,---,Ym) be minimal ways from a to b and from b to ¢, re-
spectively. Then (xg,%1,...,Zn,Y1,...,Ym) 18 the way from a to ¢ and consequently,

dy(a,c) < dy(a,b) 4+ dy(b,c). O

Theorem 1.10. Let d be a metric (pseudometric) on a poset (P, <) satisfying the follow-
ing three conditions

(i) for all a,b € P there exists a (minimal) way (mg, my,...,mg)
from a to b for which
d(a,b) = d(mo, m1) + d(m1,ma) + -+ + d(mg—1, my),

(ii) a<b<c = d(a,c)=d(a,b)+d(b,c) foralla,b,ce P,

d(al, bl) -+ d(az, bg) + -4 d(an, bn) ==
(lll) — d(b17 a?) + d(b27 CL3) + 4+ d(bn7 al)
for every cycle-fence (a1,bq,...,an,by,) of the poset (P, <) .

Then there exists a positive (isotone) distance-valuation vq on (P, <) and d,, = d.

Proof. By (ii) we can consider for noncomparable elements a, b only such ways (zg, z1,...,2,)
from a to b for which

(1.7) Ty < Tijp1 > Tipo OF X > Tip1 < Tito
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for each 7 =0,1,...,n — 2, i.e. so-called fence ways.
Fix an element ¢ € P. Let a € P. We define the valuation vy on P by

( va(c) +d(c, 1) — d(z1,m2) + -+ (—1)" T d(zp—1,0a),

if e < xy
(1.8) va(a) =:
va(c) —d(e,z1) + d(z1,22) — -+ + (=1)"d(xp—1, a),
L ife> a2
where v4(c) is any but fixed value from R and (xo,x1,...,Zn—1,%y) is any fence way from

c to a.

Now we will show that the function vy is well-defined, i.e. v4(a) does not depend on a
choice of the way from ¢ to a and that vy is the positive (isotone) valuation.

Let (zo,Z1,---,Tn-1,%n), (Y0s¥Y1,--->Ym—1,Ym) be two arbitrary fence ways from c to
a (i.e. c=1mz9=1yo, a =T, =Ynm) Then one of the following subposet is a cycle-fence
) (C 'Tla"'vmn—laa'aym—la'"7y1)7
2) (C 'Tla'"7$n—1aym—17"'7y1)7
3) ( 7xn—17a7ym—17-"7y1)7

4) (.Tl, s Tn—1sYm—1y---» yl)
In the first case we distinguish
la) c< zy and ¢ < y; and a < x,_1 and a < Y, 1 (see Fig 3),
b) c<zy and ¢ < y; and a > x,_1 and a > Y1,
lc)e>xzyand ¢ > yp and a < 2,1 and a < Y, _1,
1d) ¢ >z and ¢ > yy and a > z,_1 and a > yp,_1.
I Tp—1

X2

Y1 T Yma
Fig. 3

(We illustrate in Fig. 3 only comparable relations among the elements of the fence ways
(2o, T1, ..., xy) and (Yo, Y1,-- -, Ym), respectively.)
Let 1a) hold. By (ii ) we get
d(c,r1) + d(w2,3) + -+ + d(Tp—2, Tn1) + d(Ym—1, @) + A(Ym—2, Ym—3)+
ety ) =
=d(x1,m2) +d(x3,24) + -+ d(Tn_1,0) + dYm—1,Ym—2) + - - - + d(y1, ).
It implies
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vg(a) =vg(c) + d(c,z1) — d(z1,x2) + d(x2,23) — - + d(Tp_2,Tpn_1) — d(Tp_1,a) =
=vq(c) +d(c,y1) — d(y1,y2) +d(y2,y3) — - + d(Ym—2, Ym-1) — d(Ym—1, @),

~~

i.e. vg(a) does not depend on the choice of a way from c to a.
The other cases 1b), 1c), 1d) can be handled in the same way. Analogously to the case 1),
we can distinguish four subcases for each of the cases 2), 3) and 4).
For example, let (z1,%2,...,Zn—1,Ym—1,---,y1) be a cycle-fence (the case 4)) and let
x1>c>y; and Yp,—1 >a>x,—1 (see Fig. 4). By (iii) we obtain

d(x1,x2) +d(zs,z4) + -+ d(Tn—2,Tn-1) + A(Ym—-1,Ym—2) + - - - + d(y2,y1) =
=d(y1,z1) + d(z2,23) + - + d(Tp—1,Ym-1) + A(Ym—2, Ym—3) + -+ + d(y3, y2),

where d(y1,z1) = d(y1,¢) +d(c,z1) and d(zp_1,Ym—1) =
=d(zn_1,a) + d(ym—_1,a) by (ii).

I Y2 Tn—2 Ym-—1
c a
Y1 T2 Ym—2 Tn-1
Fig. 4
Therefore,
va(a) =va(c) + d(c, z1) — d(z1, T2) + d(z2,23) — - + d(zp-1,0) =

=vg(c) — d(c,y1) + d(y1,y2) — d(y2,y3) + -+ — d(Ym—1, a).

Now we are going to prove that vg is a positive (isotone) valuation.
Let b < a and let (zo,z1...,%n), (Yo, ¥1,---,Ym) be fence ways from ¢ to a and from ¢ to
b, respectively. Similarly as above we can distinguish some cases.

1) (¢,z1,- s @n-1,0,Ym—1,---,¥y1) is a cycle-fence and ¢ < z1, ¢ < y1,
Tp—1 < @y, Ym—1 < b (Fig. 5).
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T xs3 Tn—2 a

Y1 T2 Tq Tn—-1
Ym—-2
Ys
b
c
Y2 Y4 Ym—1
Fig. 5

Then we get by (iii)
d(e,z1) +d(z2,23) + -+ d(xp-1,0) + d(Ym—1,Ym—2) + - + d(y3,y4) + d(y1, y2)—

—d(r1,72) —d(x3,4) — - - = d(Tp—2, Tn—1) —d(a, Ym—1) — d(Ym—3, Ym—2) — - - - — d(y2, y3) —
d(ylv C) =0
and
d(Ym—1,a) = d(Ym—1,b) +d(a,b) by (ii).
It implies
va(a) —va(b) = va(c) +d(c, z1) — d(z1,22) + d(z2,73) — - - — d(Tp—2,Tn—1) + d(Tpn-1,0) —

va(c) — d(c,y1) + d(y1,y2) — d(y2,y3) + -+ + d(Ym—2,Ym-1) — d(ym—-1,b) = d(a,b) and
d(a,b) > 0 if d is a metric and d(a,b) > 0 if d is a pseudometric. Thus  wvg4(a) > v4(b),
vg(a) > vg(b), respectively.

The other subcases of the case 1) can be handled in the same way.

2) Let (z1,-. ., Tpn—1,Ym—1,Ym—2,---, Y1) be a cycle-fence and y; < ¢ < 1, ym-1 <b <
a < z,—1 (Fig. 6).
Z1 3 Tn—3 Tn—1
a
To T4 Tp—2
c
Y2 Ya b
Ym—2
Y1 Ys Ys Ym—3 Yrm—1
Fig. 6

By (iii) holds
d(y1,x1) + d(x2,23) + -+ d(Tp_2,Tn-1) + A(Ym—1,Ym—2) + A(Ym—3, Ym—a) + - -+
+d(?/27 ys) - d($17 372) - d(xs, 354) - d(ﬂﬁn—s, iUn—z) - d(xn—l, ym—l) - d(ym—27 ym—s) -
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- —d(y3, ya) — d(y1,y2) =0
and by (ii)
d(yh CE’1) = d(yh C) + d(C, '7;1) and d(l'n—l? ym—l) = d(l'n—la (1,) + d((l, b) + d(b7 ym—l)-
Hence

vq(a)—vq(b) = va(c)+d(c,z1) —d(z1, x2)+d(22, 23) — - —d(Tp—3, Tn_2) +d(Tn_2, Tn_1) —
(CUn 1, )_Ud( )—|—d(C, yl)_d(ylay2)+d(y2ay3)_"'_d(ym—37ym—2)+d(ym—27ym—1)_
d(Ym—1,b) = d(a,b),

ie. wvg(a) > vg(b) if d is a metric and wvg(a) > vg(b) if d is a pseudometric.

The proofs in all other cases can be done analogously.

We are going to show that d,, = d.
Let a,b € P and let (mg,mq,...,mg) be a way from a to b for which (i) holds. Let, for
example, a < m; and mp_1 < b. Then

dyy(a,b) =(v4(m1) = va(a)) + (va(ma) — va(mz)) + - - + (va(b) — va(mi—1)) =
=(va(a) + d(a,m1) — va(a)) + (va(a) + d(a,m1) — v4(a) — d(a,m1)+
d(my,ma)) + -+ (va(a) + d(a,my) — d(my,ma) + -+ - —
—d(mg—2, mg—1) + d(mg_1,b) —va(a) — d(a, m1)+
d(my,ma) — -+ +d(mg_z,mp_1)) =
(

1,
=d(a,my) + d(my,ma) + -+ -+ d(mg_1,b) = d(a,b)

_I_

_|_

The proof is complete. [

Theorem 1.11. Let d, be a metric (pseudometric) induced by a positive (isotone) distance-
valuation v on a poset (P, <) and ¢ € P be an arbitrary but fixed element. Let a € P. We
define (in the same way as in (1.8)) the valuation vy, on P by

va, (¢) =: v(c)

( v(e) +dy(c,z1) — dy(z1,22) + dy(T2,23) — - + (=1)" 1 dy (2p_1, a),
ifc <z
va, (@) =: S
v(c) —dy(c,z1) + dy(x1,22) — dy (22, 23) + -+ + (=1)"dy(2p_1, a),
\ ife >
where (xg,x1,...,Tn_1,%y) IS any fence way from c to a.

Then vgq, is the positive (isotone) valuation on the poset (P, <) and vq, = v.

Proof. We can show that vg, is correctly defined and vy, is a positive (isotone) valuation
by the same way as in the proof of Theorem 1.10. It is immediate that vg, =v. O
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2. Positive valuations on connected posets of locally finite length

In this section we apply the above results in order to show that there exist positive
valuations on some connected graded posets of locally finite length. Particularly, we will
deal with modular posets (multilattices).

Let (P, <) be a poset. A graph C(P) = (P, E) is called the covering graph associated
with the poset (P, <) , if the edge set E consists of the pairs ab for which a covers b in
(P,<).

Let a, b be vertices of a covering graph C(P) of a poset (P, <) . Let W = (ag, a1, ...,ay)
be a finite sequence mutually different vertices of the graph C(P). We call that W is the
way from a to b (in C(P)) if

(j) a=ap, b=ay, and
(ji) @, aj+1 are adjacent vertices of the graph C(P), for each i =0,1,...,n—1
(i.e. a; covers a;y1 or a;y1 covers a; in the poset (P, <) ).
The number n is called the length of the way W. The distance of vertices a and b in a
covering graph C'(P) we mean the length of the shortes way from a to b (if it exists). We
write d(a,b) = dy if the distance of the vertices a, b is dy.

Let (P,<) be a poset. In this section we will denote by d the distance function d :
P x P — Z defined above (i.e. d(a,b) is the distance of the vertices a, b in the covering
graph C(P) of the poset (P, <) ).

Let (P, <) be a connected poset of locally finite length. Since the set of all non-negative
integers is well ordered, for every a,b € P there exists a fence way from a to b of shortest
length. Thus, the function d is the metric on P and moreover the metric d satisfies the
condition (i) (Theorem 1.10). On the other hand the metric d do not need satisfy the
conditions (ii) and (iii) (see Fig. 7).

a

Fig. 7

Lemma 2.1. Let (P, <) be a connected poset of locally finite length. If the metric d
satisfies the condition (ii) (Theorem 1.10) then the poset (P, <) is graded.

Proof. Let a,b € P, a < b. The interval [a,b] is the subposet of (P, <) with the least
element a. If z,y € [a,b] and y covers z we have

d(a,y) = d(a,z) + d(z,y) = d(a,z) + 1
by (ii). It implies that all maximal chains of the interval [a, b] are of the same length. [

Remark. The poset depicted in Fig. 7 is graded but this poset does not satisfy the condition

(ii).
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Theorem 2.2. Let (P, <) be a connected poset of locally finite length. If the metric d
the conditions (ii) and (iii) satisfies then there exists a positive distance-valuation v on the
poset (P, <) .

Proof. We can define the positive distance-valuation v on the poset (P, <) by Theorem
1.10. O

Let (P, <) be a graded poset of locally finite length and a < b, a,b € P. In this section
we will denote by I(a, b) the length of a maximal chain (i.e. of all maximal chains) of the
interval [a, b] of the graded poset (P, <) . Note it is possible that (a,b) # d(a,b) (for a, b
in Fig. 7 we have l(a,b) =4 > d(a,b) = 3).

Theorem 2.3. Let (P, <) be a directed graded poset of locally finite length. There exits
a positive distance-valuation v on the poset (P, <) for which

(2.1) a<b = ) =v(a)+I(a,b)="v(a)+d(a,b).

Proof. Let (a1,by,...,a,,by,) be a cycle-fence of the poset (P, <) . Let w and u be a lower
bound and an upper bound of the poset {a1,b1,...,a,,b,}, respectively. Since the poset
(P, <) is graded we have

l(a1,b1) + -+ (an, by) =
=l(w,u) —l(w,a1) —l(by,u) + -+ (w,u) — l(w,ap) — (b, u) =
:l(az, bl) -+ l(a:_),, bz) + -4 l(al, bn)

Let a < b, a,b € P. Let (a,21,...,2,-1,b) be a minimal fence way from a to b for

which
d(a,b) = l(a,z1) + l(z1,72) + - + 1(zy-1,D).
The result of the first part of the proof implies (e.g. 21 < a)
l(a,b) = —l(a,z1) + l(z1,22) — l(x2,23) + - -+ (—=1)"I (2,1, b)

(see Fig. 8).
Thus, I(a,b) < d(a,b), i.e. [(a,b) = d(a,b). Now it is immediate that (ii) and (iii) hold for
the metric d.

We may now define the distance-valuation v by (1.8). Obviously, the valuation v is
positive and (2.1) holds. O

T, =Db

T2 T4

T3
Z1

Fig. 8
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Let (M, <) be a poset and a,b € M. Let a Vb be the set of all minimal elements of the
set of all upper bounds of the set {a,b} and a A b be the set of all maximal elements of the
set of all lower bounds of the set {a,b}. We call a poset (M, <) a multilattice if for every
upper bound h the set {t;t € a Vb & t < h} is non-empty and for every lower bound &
the set {t;t € aAb & t > k} is also non-empty for all a,b € M. It is easy to verify that
every poset of locally finite length is a multilattice.

A multilattice (M, <) is said to be modular if whenever a,b,c € M

(avb)n(avVe)#D & (aAb)N(ane)#D & b<c = b=c.
Every modular multilattice of locally finite length is a graded poset.

Lemma 2.4. Let M be a modular directed multilattice of locally finite length. If a,b €
M, ueaVvb, weaAb then (a,u,b) and (a,w,b) are minimal ways from a to b (i.e.

d(a,b) = l(a,u) +1(b,u) = l(w,a) + l(w,b)).
Proof. By Theorem 2.3 d(a,b) = l(a,b) for any comparable elmements a,b € M. Let a, b

be two noncomparable elements and let (a,z1,...,%,_1,b) be a way from a to b. Let, for
instance, a > zy < z2 and let =1 ¢ a Azy (Fig. 9).
a T2
v
Z1
Fig. 9
Then there exists an element v € a A 23, v > x1 and the way (a,v,z2,...,2,_1,b) is
shorter than the way (a,z1,...,2,_1,b). In the next part of the proof we will consider
only fence ways (a, z1,...,%,_1,b) from a to b for which
(2.2) Ty €EXTi—1 NTijqp1  OF T € Xy—1 V Tiq1

holds for each 2 =1,...,n — 1. We will do the proof by induction.

Let n = 2. We distinguish two cases. Let a > zy < b. Then z; € a Ab and
l(a,z1) = l(u,b) and [(z1,b) = l(a,u), because the multilattice is modular (see [5]).
It implies that d(a,u,b) = d(a,x1,b). Let a < z; > b. Then z; € aVb and
u € a Vb, too. The multilattice is modular, therefore [(a,z1) = [(w,b) = l(a,u) and
[(b,z1) = l(w,a) =1(b,u), hence I(a,x1)+1(b,z1) =1(a,u)+1(b,u), again.

Assume that for the lengths of all n-element fence ways from a to b the statement holds.
We prove it for n+1-element fence ways.

Let (a,z1,...,25—1,b) be an (n+1)-element fence way. For instance, let a > 1 < x5 >
oo < xp—1>b (Fig. 10). If y € aVx2 then by induction hypothesis I(a,y) +(y,z3) +
w4 l(xp_1,b) > d(a,u) +d(b,u). Because l(a,z1) =1(z2,y) and (z1,22) =Il(a,y), we
have

l(a,z1) + l(x1,22) + (20, 23) + -+ - + (2 _1,b) =
:l(av y) + l(yv .’172) + l($27$3) +oe l(xn—h b) =
:l(av y) + l(.’l?g, y) +Ae A+ l(-Tn—h b) > d(av U’) + d(b7 U)
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T €3

Fig. 10

Analogously, we can show the inequality in the other cases. The statement holds for a
lower bound w by duality. O

Corollary 2.5. Let M be a modular directed multilattice of locally finite length. There
exists a positive valuation v on the multilattice M for which

(2.3) v(a) +v(b) = v(u) + v(w)
for all a,be M,ucaVb weaAb.

Proof. We can define a positive distance-valuation v on the poset M by Theorem 2.3. The
valuation v satifies (2.1). So, for every a,b € M, u € aV b, w € a Ab we have

v(a) +v(b) = v(w) + l(w,a) + v(w) + l(w,b) =
=v(w) +v(w) + l(w,a) + l(a,u) =
= v(w) + v(u).
U

In [2], by a valuation on a lattice L is meant a function v : L — R for which (2.3)
holds. This definition was accepted by authors of [5] and [6], too. If L is a modular
multilattice of locally finite length, we have for the induced metric d,

dy(a,b) =1l(a,u) +1(b,u) =l(a,u) + l(w,a) =
=v(u) —v(a) +v(a) — v(w) =v(u) —v(w) =
= dy(w, u)
whenever u € aVb, weaAb.

Definition 2.6. Let (P, <) be a poset. A positive valuation v on the poset (P, <) is said
to be a modular valuation if for every a,b € P

aVb#£D & aNb#0D & ucaVb & wealb

2.4
(24) = v(a)+v(b) = v(u) +v(w).

Two intervals [a,b], [c,d] (of a poset (P, <) ) are said to be transposed if either a € bAc,
debVe or cecaANd, beaVd Theintervals I, J are projective if there exists a finite
sequence of intervals I = Iy, I1,...,I, = J such that all adjoining intervals I;, I;41 are
transposed.
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Definition 2.7. Let (P, <) be a connected poset of locally finite length. The poset (P, <)
is said to be a modular poset if the next two conditions are satisfied

(k)  the lengths of every two projective intervals are equal
(kk)  the metric d satisfies (ii) and (iii).

Theorem 2.8. A connected graded poset (P, <) of locally finite length is modular if and
only if there exists a modular valuation v on (P, <) satisfying (2.1).

Proof. a) Let P be a modular connected poset of locally finite length. The metric d satisfies
(i), (ii) and (iii), hence we can define a positive distance-valuation v on the poset (P, <)
by (1.8). If u € aV b, w € a A b then according to (1.8) we get

v(w) +v(u) =v(w) +v(w) + d(w,u) = 2v(w) + d(w, a) + d(a, u).
The intervals [a, u], [w, b] are projective, for this reason d(a,u) = d(w,b) and we get
v(w) + v(u) = 2v(w) + d(w,a) + d(w, b) = v(a) + v(b)

Obviously, the valuation v satisfies (2.1).
b) Let there exist a modular valuation v satistying (2.1) on a poset P. Let [a, b], [c, d]
be two transposed intervals and let a € bA ¢, d € bV c. From v(b) + v(c) = v(a) + v(d)
we get v(b) —v(a) = v(d) — v(c), i.e. d(a,b) = d(c,d) by (2.1). The transitivity of equality
implies (k).
Let a < b < c. Using (2.1) we get

d(a,c) =v(c) —v(a) =v(c) —v(b) +v(b) —v(a) =
d(a,b) 4 d(b,c).

Let (a1,b1,...,an,b,) be cycle fence of the poset (P, <) . By (2.1)

d(ay,b1) + -+ d(an,by) =v(b1) —v(ar) + -+ v(by) — v(ay) =
=d(bi,a2) + -+ d(bn,a1).

O

The authors thank the referee for several valuable remarks according to which the second
section was rewritten.
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AFFINE COMPLETE ALGEBRAS ABSTRACTING
DOUBLE STONE AND KLEENE ALGEBRAS

MirosLAv HAVIAR

ABSTRACT. In this paper we generalize R. Beazer’s characterization of affine complete double
Stone algebras with a non-empty bounded core [1] to the class of double K2-algebras with
a non-empty bounded core. These algebras have appeared in the literature as a common
generalization of double Stone and Kleene algebras. We show that Post algebras of order
3 are the only locally affine complete (in a stronger sense of [12]) double K3z-algebras with
a non-empty bounded core and the only finite affine complete double Ks-algebras. Then
introducing some extension properties for congruence-preserving functions we characterize
(infinite) affine complete double K»>-algebras with a non-empty bounded core. We finally
derive the Beazer result for double Stone algebras.

1. Introduction. The problem of characterizing affine complete algebras was posed
by G. Gréitzer in [6] (Problem 6). Recall that an n-ary function f on an algebra A is
compatible if for any congruence 6 on A, a; = b; (0) (a;,b; € A), i = 1,...,n yields
flay,...,an) = f(b1,...,bs) (0). A polynomial function of A is a function that can be
obtained by composition of the basic operations of A, the projections and the constant
functions. Clearly, all polynomial functions of A are compatible. An algebra A is called
affine complete if the polynomial functions of A are the only compatible functions. Hence
in general, affine complete algebras have ‘many’ congruences.

In [4] G. Grétzer proved that every Boolean algebra is affine complete. In [5] he showed
that affine complete bounded distributive lattices are those which do not have proper
Boolean subintervals. A list of particular varieties in which all affine complete members
were characterized can be found in [3] and its up-to-date version in [10].

Two ‘local’ versions of affine completeness have been studied in the literature. A weaker
notion of local affine completeness can be found e.g. in [16]. According to the stronger
meaning of this concept, which we adopt here, an algebra A is locally affine complete if
any finite partial function in A™ — A (i.e. function whose domain is a finite subset of A™)
which is compatible (where defined) can be interpolated by a polynomial of A (see e.g.
12]).

In [1] R. Beazer characterized affine complete algebras in the class of double Stone
algebras with a non-empty bounded core. A generalization of this result, to the class of

1991 Mathematics Subject Classification. Primary 06D15, 06D30.

Key words and phrases. compatible function, (locally) affine complete algebra, double Ks-algebra,
double Stone algebra, Kleene algebra, Post algebra of order 3.
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so-called quasi-modular double p-algebras, was presented in [9] where also locally affine
complete Stone algebras (in the stronger sense of [12]) were characterized. Recently, affine
complete Kleene algebras were successfully described in [11]. This allows us to investigate
affine completeness in the class of double Kj-algebras which are known as a common
generalization of double Stone and Kleene algebras [2]. This investigation, which uses
techniques similar to those in [8] and [9], is the object of this paper.

First we show that for any double Ks-algebra L with a non-empty bounded core K (L),
(locally) affine completeness of L yields (locally) affine completeness of K (L) as a bounded
distributive lattice (Theorem 3.3). Consequently, we get that Post algebras of order 3 are
the only locally affine complete double Ks-algebras with a non-empty bounded core and
the only affine complete algebras among the double Ks-algebras with a finite skeleton and
a finite non-empty core (Corollaries 3.6 and 3.9). Then we introduce some extension prop-
erties for compatible functions and with their use we reduce the question of characterizing
(infinite) affine complete double Ks-algebras with non-empty bounded core to those ques-
tions for Kleene algebras and distributive lattices (Theorem 3.17) where the answers are
already known. We finally derive from our characterization the Beazer result for double
Stone algebras.

2. Preliminaries.

MS-algebras were introduced by T.S. Blyth and J.C. Varlet in the beginning of eigh-
tees as a nice generalization of de Morgan and Stone algebras and have shown a fruitful
development during the previous decade (cf. [2]).

Let us recall that an MS-algebra is an algebra (L;V,A,°,0,1) of type (2,2,1,0,0) where
(L;V,A,0,1) is a bounded distributive lattice and ° is a unary operation such that for all
r,y €L

(1) x < z°°,
(2) (xAy)® =2V y°
(3) 1° = 0.

One can show that the following rules of computation hold further in L:
(xVy)®=a°Ay°,
000 — l,o’
0° =1.
The class of all MS-algebras is equational. The subvariety Ko of MS-algebras is defined
by two additional identities
(4) rAx®=z°°Az° and
(5)  (wAz°)VyVvy® =yVy°,
The subvariety M of de Morgan algebras is defined by the identity (6) x = z°°. Another
important subvarieties of MS-algebras are the subvarieties B, S, K of Boolean, Stone and
Kleene algebras, respectively which are characterized by the identities B: xVz®° =1, S:
xAz® =0 and K : (5),(6), respectively.
Let L be an MS-algebra from the subvariety K5. Then
(i) L°° ={z € L; x =x°°} is a Kleene subalgebra of L ;
(ii) L™ ={x Az°; z € L} is an ideal of L;
(ii) LY = {z v a°; x € L} is a filter of L.
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Now we recall basic facts about double MS-algebras. A double MS-algebra is an al-
gebra (L;V,A,°,%,0,1) of type (2,2,1,1,0,0) such that (L;V,A,°,0,1) is an MS-algebra,
(L; V,A,T,0,1) is a dual MS-algebra, and the unary operations are linked by the identities

r°T =2°° and zt° =gz7T .

Obviously, every de Morgan algebra (L;V,A,”,0,1) can be made into a double MS-
algebra if one defines z° = x™ = 7. Conditions under which an MS-algebra can be
made into a double MS-algebra are known (cf. [2]). It is proved that the subvarieties B,
K, M of MS-algebras are dense, i.e. all algebras in these subvarieties can be made into
double MS-algebras. Further, bistable subvarieties of MS-algebras are defined as those V
that for every double MS-algebra (L;V,A,°,%,0,1), whenever (L;V,A,°,0,1) € V, then
(L;V,A,T,0,1) € V too. It is known which subvarieties of MS-algebras are bistable and
which fail (cf. [2]). Among first, the subvarieties B, S, K, SVK and M are included, among
non-bistable one can find the subvariety K,. It is true that the identity (5) implies the
dual one, (5¢) (zVazt)AyAyT =y AyT, however for the identity (4), which defines
the subvariety Ko V M, this is not the case. Therefore the variety of double Ky-algebras
is defined by the identities (4), (5) and (4¢) xVat =zTt vzt

It is known that there are precisely 22 non-isomorphic subdirectly irreducible double
MS-algebras. The lattice of subvarieties of double MS-algebras has cardinality 381 (cf.
[2]).

Some subsets of double MS-algebras play a significant role in investigations. By the
skeleton S(L) of a double MS-algebra L is meant a de Morgan algebra L°° = {z € L; z°° =
z}=Lt" ={x € L; xt1T =x}. If L is a double Ky-algebra then S(L) is a Kleene algebra.
Further, in a double MS-algebra L, z° < 2™ and consequently 2+ < z < 2°° hold for any
element x. Therefore, the notion of the core K (L), known for double Stone algebras, can
be generalized for double Ks-algebras as follows:

K(L)y={xzVvz°; zeL}n{zAzt; z €L}

Double Stone algebras L which have a one-element core, |K(L)| = 1, are named Post
algebras of order 3. They form a subclass (not a subvariety) of the variety of so-called
three-valued Lukasiewicz algebras which are double Stone algebras defined by the identity
(xAzt)V (yVy°) =y Vy° (cf. [1]). The variety of three-valued Lukasiewicz algebras is
known to be arithmetical (i.e. congruence-distributive and congruence-permutable).

An important role is played by so-called determination congruence which is defined as
follows:

r=y (®3) iff 2°=y° and 2T =y™.
For other properties of MS-algebras and double MS-algebras we refer the reader to [2].

We finally mention few facts concerning the affine completeness. We start with basic
Gratzer’s results.

2.1 Theorem ([4]). Any Boolean algebra is affine complete.
Let us recall that a function f : L™ — L on a lattice L is order-preserving if x; < y;

(xi,y; € Ly i=1,...,n) implies f(z1,...,2,) < f(y1,-..,yn) where < is the lattice order.
It is well-known that every polynomial function on a lattice is order-preserving.
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2.2 Theorem ([5; Corollaries 1,3]). Let L be a bounded distributive lattice. The following
conditions are equivalent.

(1) L is affine complete;

(2) every compatible function on L is order-preserving;

(3) L contains no proper Boolean interval.

Now we present the Beazer result for double Stone algebras and its immediate conse-
quences.

2.3 Proposition ([1; Theorem 5]). Let L be a double Stone algebra with a non-empty
bounded core K (L). The following conditions are equivalent.

(1) L is affine complete;

(2) K(L) is an affine complete distributive lattice;

(3) No proper interval of K (L) is Boolean.

2.4 Corollary ([1; Corollary 6]). Any Post algebra of order 3 is an affine complete double
Stone algebra.

2.5 Corollary ([1; Corollary 7]). A finite double Stone algebra having a non-empty core
is affine complete if and only if it is a Post algebra of order 3.

In [8] it was shown that if a Ky-algebra L is affine complete then the filter LY is (as a
lattice) affine complete, too. Since by 2.2 a finite distributive lattice LV is affine complete
if and only if |LY| =1, we immediately get

2.6 Proposition ([8; Corollary 4]). Let L be a Ks-algebra such that LV is finite. Then
L is affine complete if and only if L is a Boolean algebra.

In a Kleene algebra L, the filter LV is isomorphic to the ideal L". Hence we have

2.7 Corollary. Let L be a Kleene algebra such that L" is finite. Then L is affine complete
if and only if L is a Boolean algebra.

The following few facts are considered to be a part of ‘folklore’:

2.8 Proposition. If a lattice L contains a Boolean interval [a,b] (a < b), then L is not
affine complete.

Proof. Define a function f : L — [a,b] by f(z) = ((z Va) Ab)’ , where ' denotes the
complement in the Boolean interval [a,b]. For any non-trivial congruence 6 € Con(L) and
z=y (0) (r, y € L) we have ((z Va)Ab) = ((yVa)Ab) (0),ie fisa compatible
function of L. But f is not order-preserving because f(a) = b, f(b) = a, therefore f
cannot be represented by a lattice polynomial. Hence L is not affine complete. [

2.2 implies that a finite distributive lattice L is affine complete if and only if |L| = 1.
Now 2.8 yields that the assumption about distributivity of L can even be dropped.

2.9 Corollary. A finite lattice L is affine complete if and only if |L|=1. O
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2.10 Proposition. For any lattice L the following are equivalent:

(1) L is locally affine complete;
(2) every finite partial compatible function of L is order-preserving;
3) |L|=1.

Proof. (1) = (3): Let L be locally affine complete and let a,b € L, a < b. The function
f ={(a,b),(b,a)} is a finite partial compatible function on L, thus by hypothesis it can
be interpolated on {a, b} by a polynomial of L, which is an order-preserving function. But
we have f(a) =0, f(b) = a, a contradiction.

(2) = (3): If |[L]| # 1 then we can define the same partial function f as above which
contradicts (2).

The rest of the proof is trivial. [

The following result (see [13] or [14]) characterizes those varieties of which all members
are locally affine complete as arithmetical.

2.11 Theorem. A variety V is arithmetical if and only if for each algebra A € V, a finite
partial function f on A can be interpolated by a polynomial function of A just in the case
f is Con(A)-compatible.

Since the class of the Post algebras of order 3 is contained in the arithmetical variety
of the three-valued Lukasiewicz algebras, we immediately get

2.12 Corollary. Every Post algebra of order 3 is locally affine complete.

We conclude with a technical lemma which will be applied in Section 3 (for D being a
Boolean algebra and a bounded distributive lattice, respectively; its proof, which can be
found in [7] or [9], will be repeated here as it is not long and we want this paper to be
self-contained.)

2.13 Lemma. Let D be any algebra such that its reduct is a bounded distributive lat-
tice (D,V,A,0,1) and the algebra D is a subdirect product of 2-element algebras. Let
f',g' : D™ — D be (partial) compatible functions with domains F and G (F,G C D"),
respectively, let S := F NG and let SN {0,1}" # @. For any (0,1)-homomorphism
h: D — {0,1} between the algebra D and a 2-element algebra {0,1}, denote h(S) :=
{(h(z1),...,h(xy)) € {0,1}™; (21,...,2,) € S} and let h(S) = h(S N {0,1}") hold for
every such h. Then f" = ¢’ identically on S if and only if f' = ¢’ identically on SN {0,1}".

Proof. Let f' = ¢’ identically on S N {0,1}". Suppose on the contrary that there exists
an n-tuple (dy,...,d,) € S such that f'(dy,...,d,) =a#b=g'(d1,...,d,). Since a #b
in D which is a subdirect product of 2-element algebras, there exists a ‘projection map’
h: D — {0,1}, which is a (0, 1)-homomorphism between the algebra D and some algebra
{0,1}, such that h(a) # h(b). Define functions f3, g5 : h(S) — {0,1} by the following
rules:

f5(h(xy), ... h(zn) = h(f (21, ..., z0)),

dh(hz2).. o h(en)) = hg (rr. ) where (z1,....2,) € S.
Obviously, f5, g4 are well-defined, since f’, g’ preserve the kernel congruence of the ho-
momorphism h. Obviously, fi = ¢} identically on h(S), because h(S) = h(S N {0,1}"),
h(0) =0, h(1) =1 and f" = ¢’ identically on S N {0,1}™. Therefore
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h(a) = h(f'(dy; ..., dn)) = f5(h(d1), .., h(dn)) = g5(R(d1), . - ., h(dn)) =
h(g'(d1,...,d,)) = h(b), a contradiction. Hence f’ = ¢’ identically on S. The proof is
complete. [

We finally mention that in order to abbreviate some expressions, we shall often use
the notation x for an n-tuple (z1,...,x,), and f(X) for f(z1,...,x,) in the next section.
Further, X° and %+ will denote (x$,...,2%) and (z],...,z}), respectively, (XVk)Al will
abbreviate ((z1 VE)AL ..., (x, VE)AI), etc.

3. Affine completeness.
We start with a canonical form of any polynomial function on a double MS-algebra.

3.1 Lemma. Any polynomial function f(xi,...,2,) on a double MS-algebra L can be
represented in the form _
flz1,...,2n) = V (@(i1y J1s vy liny Jn) AT AT Ao Axle A xin)
I ,:]:E{—2,—1,0,1,2,3}n, I <j
and dually, in the form

f(@1, ... an) = A (B(i1s 415 - - -y iy jn) V&2V 2IW VooV gin v gdn)

:{ 7]6{_27_170717273}n7 I <:i
where \/ and J\ are taken over all vectors i = (i1,...,in), j = (J1,---,Jn) €
{_27_170717273}717 the coefficients a(ilvjlv"'77;n7jn)76(i17j17"'77;n7jn) € L and

72,271 20 2!, 22 and 23 denote £°°,2°, z, T, x T, and 1, respectively.
Proof. Tt follows from the following facts:

(i) for every x € L x°7 = x°°, z7° = g+t z°°° = z° T+t = g+t and 2° <
T, T <z < z°°;

(i) for every z,y € L (zVy)° = 2°Ay° (xAy)° =2°Vy® and (zAy)" =
VYT, (V)T =at Ayt

(iii) the lattice L is distributive. O

3.2 Lemma. Let L be a double Ks-algebra with a non-empty core K(L). Then for any
z,ye K(L) z°<y and zt >y.

Proof. Tt follows from the facts that any element of K (L) can be represented in the form
aVa® as well as bAbT for some a, b € L, and that the identities (4),(5), (5¢) hold in L. [

3.3 Theorem. Let L be a double Kj-algebra with a non-empty bounded core K(L). If
L is (locally) affine complete then K (L) is a (locally) affine complete distributive lattice.

Proof. Let L be (locally) affine complete . Let f’ be an n-ary (finite partial) compatible

function of the lattice K (L) = [k,[]. Define a (finite partial) function f: L™ — L by
f@e,...;zn) = (k1 VE)ANL ..., (xn V E)N).

Obviously, f' = f | K(L)™ and f is a (finite partial) compatible function of the algebra L

(in local version we can always take f = f’ to assure a finite domain of f). Indeed, if 6 is a

congruence of L and x; = y; (0), i = 1,...,n, then (z; VK)Al = (y; VE)AL (0), thus we have

(where f’is defined) f'((x1VE)AL ..., (x,VE)AL) = f'((y1 VE)AL, ..., (yn VE)AL) (0 | K (L))
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as f' is compatible on K (L) (where defined), whence f(z1,...,z,) = f(y1,---,yn) (6).
Therefore by 3.1 we can write for z1,...,z, € K(L) (where f’ is defined)
(a) f'(x)=fx)= V ~ ~(a(i1,j1,...,in,jn)/\m§1/\$311/\~-~/\;Uf1"/\$%").
ije{-2,-1,0,1,2,3}", 1 <j

By 3.2 and the fact that f/(%) € K(L), the terms x;" can be omitted in (a). Further, the
polynomial obtained can be, with use of the distributive laws and the relations z° < x™
and £ <z < 2°°, rewritten in the form
(b) A (B(i1, J1s- - s iny ) V& V@IV Ve Vi),

i je{-2,-1,0,2,3}", 1 <j
Now again from 3.2 and f'(x) € K(L) it follows that the terms z{ can be omitted in (b).
So we get
() f'(%) = A (B(i1, J1s- - s iny jn) VLV @IV e Voaln Vo).
i.je{-2,0,2,3}", 1 <]

Now we see that f’ is order-preserving (where defined). The assertion follows from 2.2 (in
local version from 2.10). O

3.4 Proposition. If a double Ky-algebra L is (locally) affine complete then the Kleene
algebra S(L) = L°° is (locally) affine complete, too.

Proof. Let L be a (locally) affine complete double Ks-algebra. Let f’ be an n-ary (finite
partial) compatible function on S(L). Define an n-ary (finite partial) function f on L
by f(z1,...,2n) = f'(29°,...,22°). Obviously, f is compatible since f’ is compatible
(where defined), so by hypothesis f can be represented (where defined) by a polynomial
p(x1,...,2zy,) of L. Hence for all x = (z1,...,x,) € (L°°)" (where f’ is defined) we have
(%) = f(x) = p(X) = p(x)°° as f'(x) € L°°. Clearly, in p(z1,...,z,)°° all constants are
elements of L°°, thus f’ can be represented (where defined) by a polynomial of S(L). O

3.5 Lemma. Local affine completeness of the Kleene algebra S(L) yields local affine
completeness of the lattices S(L)" and S(L)V.

Proof. We know that in a Kleene algebra S(L), the ideal S(L)" and the filter S(L)V are
isomorphic. Let f : F C (S(L)M)™ — S(L)" be a finite partial compatible function of
the lattice S(L)". We claim that f also preserves the congruences of the Kleene algebra
S(L) where defined. Indeed, if 6 is a congruence of S(L) and (z1,...,zy), (Y1,.--,Yn) €
F, z;=vy; (0), i=1,...,n, then f(z1,...,2,) = f(y1,...,9yn) (0 | S(L)") as f preserves
the lattice congruence 6 [ S(L). Now local affine completeness of S(L) yields that for all
X = (z1,...,2n) € F, f(X) can be written as in (a) of the proof of 3.3. However, now in (a)
we have only terms x; and x; because z°° = 27+ = 2 and 2° = 2 hold in S(L). Since
z; € S(L)" are of the form x; = a* Aat™, we have 27 = atVva™t =avat > aTAatT =2
by (4%),(5%), consequently the terms z; can be omitted. Hence f is order-preserving

(where defined). By 2.10, S(L)" is locally affine complete. [J

3.6 Corollary. A double Ks-algebra with a non-empty bounded core K (L) is locally
affine complete if and only if it is a Post algebra of order 3.

Proof. If K(L) is locally affine complete then by 3.3 and 2.10, |K(L)| = 1. Further, by 3.4,
3.5 and 2.10 again, |S(L)"| = |S(L)Y| = 1. Hence for any x € L, 0 = 2° Az°° = x Az° and
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1=z"Vatt =z Vat. Hence L is a double Stone algebra (S(L) is a Boolean algebra)
and consequently L is a Post algebra of order 3. The converse follows from 2.12. [

From now we shall deal with the affine completeness only.

3.7 Corollary. Let L be a double Ks-algebra such that the ideal L = {xAx°; © € L} C
S(L) is finite. Then L is affine complete if and only if L is an affine complete double Stone
algebra.

Proof. If L is an affine complete double Ks-algebra then by 3.4 the Kleene algebra S(L)
is affine complete, too. Since S(L)" C L” and L" is finite, S(L) is a Boolean algebra
by 2.7. Therefore for any z € L, z° V 2°° = 1 and 27 A ztT = 0, hence (as in 3.6)
zAz° =2°ANz°°=0and x VT =xTT vt =1, ie. L isa double Stone algebra. [

3.8 Corollary. A double Ky-algebra with a finite skeleton is affine complete if and only
if it is an affine complete double Stone algebra .

3.9 Corollary. A double Ks-algebra L with a finite skeleton and a finite non-empty core
(in particular, a finite double Ky-algebra) is affine complete if and only if L is a (finite)
Post algebra of order 3.

Proof. Let L be affine complete . By 3.8, L is affine complete double Stone algebra and
by 3.3 and 2.9, |K(L)| = 1. Hence, L is a Post algebra of order 3. O

Next, by L we always mean an (infinite) double Ks-algebra with a non-empty bounded
core K(L) = [k,l]. Obviously, a mapping ¢ : L — K(L), ¢(x) = (xV k) Al is a lattice
homomorphism. We abbreviate by ¢(X) the n-tuple (XVE)Al = ((x1VE)AL ..., (x,VE)AL).

3.10 Lemma. Every element of L. can be decomposed in the form
(d) z=zTTV(x°A(xVE)AL).

Proof. We shall show that for any a € L, a = a®® A (a V k). By the distributivity of L,
a®® A (aVk)=aV(a®® Ak). It suffices to show that a®® Ak = a A k. Suppose on the
contrary that a A k < a®® A k. Then for x =a®°° ANk, y=a° ANk, z=a Nk we have
rAy=a’°ANa° Nk=aNa° Nk=aANa°=zAy
as k= cV ¢® for some ¢ € L and (4), (5) hold,
zVy=(a°Va’)ANk=k=(aVa®)Nk=2zVy.
Hence, {aAa®, z, y, z, k} is a five-element non-modular sublattice of L (pentagon), which
contradicts to the distributivity of L.
Hence in L we have
r=x°A(xVEk)
and dually,
r=zttV(zAl).
These two equations imply (d). O

We recall that (p(X), p(X°), 9(X°°), o(xT), p(XTF) (z € L™) in the next definition is an
abbreviation for the 5n-tuple ((x1 VE)AL, ..., (x, VE)AL (2SVE)AL ... (x5 VE)AL (25°V
EYANL ..., (@2 VEYAL (s VEYAL ..., (zE VE)AL (2T VE)YAL ..., (zF VE)AL.
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3.11 Definition. We shall say that L satisfies an ‘extension property’

(EC) if for any compatible function [ : L™ — L, the partial function fj, : K(L)>™ —
K (L) defined on the core such that for all x € L™
Fic (%), p(°), p(X7°), p(XF), p(X)) = o(f (%))
and f}, is undefined elsewhere can be extended to a total compatible function of
the lattice K(L).

3.12 Lemma. The partial function fj in the preceding definition is a (well-defined)
partial compatible function of the lattice K(L).

Proof. We associate to any congruence fx of the lattice K (L) an equivalence relation 6y,
on L defined by the rule
(e) z=y (0r) iff o(z*) = o(y*) (Ok) for alli € {-2,-1,0,1,2},

where 2° =z, o' = 2T, 2% = 2%, 71 = 2°, 272 = 2°°. One can easily verify that 0, is
a congruence on L. Let  ¢(z7) = ¢(y!) (0K ) for some elements z;,y; € K(L), i =1,...,n
and all j € {—2,—-1,0,1,2}. Then x; =y; (A1), thus f(X) = f(¥) (f) as f is compatible
on L. Now by (e) again ¢(f(X)) = ¢ (f(¥)) (fk), i.e. ff preserves the congruences of
K (L) where defined. To show that fz is well-defined, it suffices to use 0 = Ag(r), the

smallest congruence of K(L). O

3.13 Proposition. Let one of the following conditions hold in L:
(i) L is affine complete;
(ii) K (L) is simple (i.e. has only trivial congruences).

Then (EC) is fulfilled in L.

Proof. (i) For the function fj associated to a compatible function f : L™ — L we define
a function f; : L™ — L by f1(X) = ¢(f(X)) . This is compatible on L, hence it can be
represented by a polynomial p(z1,...,x,) of L. Using the rules of computation for ° and
T, p(x) can be rewritten as [(x,x°,%°°, xT,xTT) for some lattice polynomial [(z1, ..., T5y,),
i.e. as a lattice polynomial in which terms z;, z7, 27°, x?, ac:r+ stand for variables. Further,
using the homomorphism ¢, one can show that for all x € L"

Fe(@(®), . (&) = 1(8) = p(X) = p(p(E) = I'(p(R), ... p(E+)),
where all constants in I’ are of the form (aV k)Al, i.e. I'(x1,...,Z5,) is a polynomial of the
lattice K(L). Now, of course, I’ can be chosen as the required total compatible extension
of the partial function ff.

(ii) The statement is obvious as any total extension of fj- is compatible. [

3.14 Lemma. Let f : L™ — L be a compatible function on L. Let f2, ft :S(L)* —
S(L) be partial functions such that for all (xy,...,z,) € L™

fo(xs, .. a8, ot at) = fo, ..., 20)°0,

fH@S, .. 28, xfh, o at) = floy,. ., 2n) T
and f2, fi are undefined elsewhere. Then f2, fiI are well-defined and preserve the
congruences of S(L) where defined.

+ .t

Proof. Obviously, f¢, [+ are well-defined since z? =y, 7 =y, i =1,...,nyleld z; =

yi(®%) (the determination congruence), which follows f(x) = f(y)(®3), thus f(x)°° =

47



f(@)°°, fX)TT = f(y)T. Further, for any congruence 81 of S(L) we define an equiv-
alence relation f on L by = =y (1) iff 2° =y° (fs(r)) and 2+ = yT (f5()). Since
S(L) is a subalgebra of L, 01, is obviously a congruence of L containing fg(z). Similarly
as in Lemma 3.12 one can now easily show that f¢, fi© preserve the congruences of S(L)
where defined. [

3.15 Definition. We shall say that L satisfies an ‘extension property’

(ES) if for any compatible function f : L™ — L, the partial functions f2, ff : S(L)*" —
S(L) defined as in 3.14 can be extended to total compatible functions of the Kleene
algebra S(L).

3.16 Proposition. The extension property (ES) concerning the skeleton is fulfilled in L
whenever one of the following conditions holds:

(i) L is affine complete ;

(ii) S(L) is a Boolean algebra;

(iii) S(L) is simple.

Proof. (i) Let L be affine complete and f : L™ — L be a compatible function on L. We

proceed similarly as in 3.13. Concerning the function f2 associated to f, we define a

function f1 : L™ — S(L) by f1(Xx) = f(x)°°. Clearly, f1 is compatible on L, thus it can be

represented by a polynomial p(x1,...,z,) of the algebra L. Since for any x € L™, f1(X) €

L°°, we have p(x) = p(x)°° = p(x )+Jr and using the laws for ° and T, p(x )°° can be
_l’_

rewritten as k(x9,...,25,27,..., ;) for some polynomial k(xy,...,x2,) of the Kleene

algebra S(L). Hence for all x € L™

foF°,XT) = f(%)°° = p(R)*° = k(x°,X7)
showing that k(zq,...,72,) can serve as the required total compatible extension of the
partial function f2. The case of f; is analogical.

(ii) If S(L) = L°° = L™ is a Boolean algebra, then for any z € L, 0 = 2°°Az° = zAz°
by (4), and dually, 1 = 27T Va2t =z Vvat by (4¢). Thus L is a double Stone algebra.
Let S be the domain of f2, i.e.

S ={(x°,x"); x€ L"} C S(L)*
One can easily verify that the function f¢ can be interpolated on the set S N {0,1}2" by
a Boolean polynomial function b : S(L)?>" — S(L) defined as follows:
b(zi,...,To) = V (F(a,B) AZ§E A - AT AP A A ah)
(a,b)esn{o,1}2»
where 2 = z;, ;) —£U+:£U =

We shall ver1fy that the assumpuons of Lemma 2.13 are satisfied for the Boolean algebra
S(L) = (S(L),V,A,,0,1) and the functions f? and b. It is easy to see that for z; =
0, (z¢,2;) = (1,1) and for z; = 1, (2%, ;") = (0,0). Hence SN{0,1}*" # & and we claim
that for any Boolean homomorph1sm h:S(L) — {0,1}, h(S) = h(S N {0, 1}%").

If for (x°,%%) € S we have h(z$) = 1, then also h(z]") = h(acz z) = h(z$)V h(z]) =
1. In this case (h(x?),h(z])) = (1, 1) (h(1), h(1)). ( (x ) h(z;)) = (0,0) then
trivially (h(1°),h(17)) = (h(0),h(0)) = (0,0) = (h(z),h(z])). The remaining case is
(h(22),h(x])) = (0,1). Since we assume that L has a non-empty core K(L) = [k,I],

(3
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we have (h(k°),h(kT)) = (h(0),h(1)) = (0,1) = (h(x?),h(z])). We have showed that
h(S) = h(S N {0,1}").

Applying Lemma 2.13 we get that fS = b identically on the whole set S, hence the
polynomial function b is the required compatible extension of f2 on the skeleton S(L). For
f one can proceed in the same way.

(iii) If S(L) is simple, then both total extensions of f2, fi are compatible. [

3.17 Theorem. Let L be an (infinite) double Ky-algebra with a non-empty bounded core
K(L). The following conditions are equivalent.
(1) L is affine complete ;
(2) (i) K(L) is an affine complete distributive lattice and

(ii) S(L) is an affine complete Kleene algebra (cf. [11]) and

(iii) (EC) and

(iv) (ES).
Proof. The necessity follows from Theorem 3.3 and Propositions 3.4, 3.13 and 3.16. To
prove the converse, let f : L™ — L be a compatible function on L. By Lemma 3.10 we can
write

) f(X)=FfE)TTV(fE)°AfE) VE)AL forallxe L™
To replace (f(X)Vk)AL, f(x)°° and f(X)*T in (f) by polynomials of L, we take the partial
functions [} and f2, fi associated to f as in 3.11 and 3.14. By (EC) and (ES), these

partial compatible functions can be extended to total compatible functions fi(z1,...,Zs5,)
and fo(zy1,...,22,), f3(x1,...,29,) of K(L) and S(L), respectively, which by hypothesis
can be represented by polynomials py(x1,...,zs,) and pa(z1,...,%2,), p3(T1,...,T2,) of

K(L) and S(L), respectively. Therefore in (f),

J(®) = ps(X°,%7) V [p2(X°, XF) Ap1(p(%), 9(X°), ..., p(X7F)]
for all x € L™, thus f can be represented by a polynomial of the algebra L. [

Now we derive the Beazer characterization of affine complete double Stone algebras
with a non-empty bounded core (Proposition 2.3). The equivalence of (2) and (3) in 2.3
is known from 2.2, thus we show the equivalence of (1) and (2).

(1) = (2) of 2.3 is immediate from 3.3. Now let in a double Stone algebra L the core
K(L) = [k,l] is affine complete, i.e. K (L) does not contain a proper Boolean interval.
Since the skeleton S(L) is a Boolean algebra, by 3.16 and 3.17 it only remains to show
(EC). We first prove the following two lemmas.

3.18 Lemma. Let L be a double Stone algebra with a non-empty bounded core K (L) =
[k,l] and x,y € L. Then

p(x°) = o(y°) iff w(w °) = #(y*°) and

p(et) = @(y™) i p(a™F) =p(y™).
Proof. Let o(zt) = go(y+) The identities z+ A 2Tt = 0 and 2t vV Tt = 1 imply
pt)ANp(xtt) =k, p(xT)V p(xTT) =1 for any x € L. Hence

P(a ) = (p(yH) Aoy ™) V p(a+) = (plah) V o)) A (py*) V plat)) =

p(y*T) vV o(a™).
In the same way one can show ¢(yT+) = p(y™) V o(z*T). The converse statement as
well as the proof of the first one are analogical. [
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3.19 Lemma. Let L be a double Stone algebra with a non-empty bounded core K (L)
[k,1], k <l and let z € L such that o(x°), o(2°°), p(xT), (x*t+) € {k,1}. Then ¢(z°) =
implies ¢(z°°) = k and analogously, p(z) = | implies p(z++) = k.

Proof. Let ¢(x°) = 1. It is obvious that ¢(2°°) = [ would yield [ = p(z°) A ¢(
©(0) = k, a contradiction. Analogously, if p(z%) =1 = @(z*T), then | = ¢
o(z*1) = p(0) = k, a contradiction, using the identity z+ Azttt =0. O

OO)

(z7)

> |

Now we are ready to prove the final result.

3.20 Proposition. Let L be a double Stone algebra with a non-empty bounded core
K(L) = [k,l] such that K(L) contains no proper Boolean interval. Then (EC) is fulfilled
in L.

Proof. If k =1, then L is a Post algebra of order 3 and trivially, (EC) is fulfilled in L. So
we can further assume that k < [.

Let f' = [§ : K(L)’™ — K(L) be the partial compatible function associated to a com-
patible function f : L™ — L as in 3.11. Let S = {(¢(%), 9(X°), p(x°°), o(XT), p(x*1)); x €
L™} be the domain of f', S C K(L)°". We shall show that f’ can be interpolated on the
set SN {k,1}°" by the following polynomial of the lattice K (L):

(9) a(z1,...,750) = V (f' (b1, bsn) AYyL A== ANysn),
beSN{k,l}5n
Zi, if bl =1
where y; = .
[, if b; = k.

Let % be any (fixed) vector from SN{k,(}°". If a # x and b; # z; for some j, n < j < 5n,
then either b; =1, z; = k and then F YAy A Aysn =k or bj =k, z; =1 and then
by Lemmas 3.18, 3.19 there exists s € {j —n,j + n} such that z; = k,bs = [, thus again
F'OYAyL A--- Aysp = k. Hence it suffices to take into account in (g) only conjunctions
f’(f)) Ayi A -+ Aysy, such that b; = x; for all 7, n < i < 5n and moreover, b; < z; for all
1, 1<12<mn. So

q(l’l,...,l'5n) = . v . (f/(bl,...,bn,.’lfn+1,...,.’175n).
beSN{k,1}5n, b<x
Next, we show that f/(b) < f/(X) for any b € S N {k,1}°" such that b; = =x; for
t=n+1,...,5n and b; < x; for ¢« = 1,...,n. Denote us = b if by = x5, otherwise
us = u, 1 < s < n. We get a unary compatible function g : K(L) — K(L), g(u) =
f(uy. .., Up, Tpt1,...,T5,) and we have to show that g¢(k) < g(I). Since g(k) =
g(u) (Bras(k,u)) and g(u) = g(1) (brat(u,l)) for any u € K(L) (Olas(k,u) and Opat(u,l)
denote the principal lattice congruences generated by the pairs (k,u) and (u,l), respec-
tively), we get
g(u) Vu=g(k)Vuand
g(u) ANu=g(l) A\ u.
This means that for any w € [g(1), g(k)V g(1)], g(u) is the relative complement of w in this
interval, which is therefore Boolean. By the assumption of Proposition 3.20 this implies
g(k) < g(l), what was to be proved. Hence
q(z1,. .., 250) = f'(x1,...,25,) for any x € SN {k,1}°".

We shall show that the assumptions of Lemma 2.13 are satisfied for the lattice K (L)

and the functions f" and ¢. If in the 5n-tuple (¢(X), p(x°), p(X°°), (xT), p(XTT)) € S we
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take z; = 0 then (p(z;), p(z7), ( °), p(xf), p(xF1)) = (k,1,k,1,k) and if 2; = 1 then
(o). 0(a2). 0(a5°), (), (7)) = (I b L, k). Honce § 1 {k, [} # @ amd we claim
that h(S) = h(S N {k,1}5") for any (0, 1)-lattice homomorphism h : K (L) — {k,1}°".

a 1)-
Let (p(X), 9(X°), 9(X°°), p(xT), (X++)) € S and ¢ € {1,...,n}. Since h and ¢ are
lattice homomorphisms and L is a double Stone algebra, we have
h(p(7)) V h(p(x3°)) = hp(x7 V 23°)) = h(p(1)) = h(l) =1,
W(a2)) A h((2°)) = hlp(a? A 5°)) = h((0)) = h(k) = k
and analogously,
W (a)) V hlp(ai ) = hlp(ai v ai ™) = h(p(1) = (D) = I,
hp(a)) A b)) = h h (k) =
Hence
h(p(x )) =k if and only if h(p(x$°)) =1 and
h(p(z])) =k if and only if h(p(z; ™)) =1.
This yields that each 5-tuple (h(p(z:)), h(o(x2)), h(p(25°)), h(p(x)), h(p(zFT))) can only
be one of the 5-tuples (k,[, k1, k), (k, kI [ [ ). Since moreover,
h(p(xi)) A h(p(e?)) = h(e(zi A z7)) = h(p(0)) = h(k) = k,
the last 5-tuple (I,1,k,1, k) is imposmble Hence we get
{(h(e(@), h(p(2)), h(p(x5°)), h(p(z)), h(p(aT))); zi€ L} =
{(k, 1k, 1 k), (K, k KD, (l k.l k1)} =
{(h(e(@)), h(p(2?)), h(p(5°)), M(p(z)), h(p(zT))); sz{O k,1} }.
Note that for z; € {O,k,l} we have (¢(x;), p(z39), (29°), p(x]), p(zf 1)) € {k,1}5. Con-
sequently, h(S) = h(S N {k,1}°").
By Lemma 2.13, f' = q on S, thus ¢(z1,...,z5,) is the required total compatible
extension of the partial function f’. O

~—
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DEFINABILITY OF PASCAL’S TRIANGLES MODULO 4 AND 6
AND SOME OTHER BINARY OPERATIONS
FROM THEIR ASSOCIATED EQUIVALENCE RELATIONS

IVAN KOREC

ABSTRACT. Pascal’s triangles modulo n can be considered as binary operations on the set N
of nonnegative integers. To every binary operation f on a set M an equivalence relation R on
M? can be associated in which (z,y) is equivalent with (u,v) if and only if f(z,y) = f(u,v).
The equivalence R can be considered as a 4-ary relation on M, and we can try to reconstruct
f from R, more precisely, to define elementarily f in <M;R>. (Some abstract information
about f is used by this.) This problem will be solved for Pascal’s triangles modulo n for
1 < n < 6. The answer is positive for n = 4 and n = 6, negative for n = 1 and n prime
(even greater than 6). As a corollary we obtain that the operations 4, x are definable in the
structure (N; EqBg ), where EqBg = {(z,y,u,v) € N* | (ﬁiy) = (uzv) (mod 6)}; the integer
6 cannot be replaced by any smaller positive integer. The above mentioned problem will be
solved (positively, resp. negatively) also for addition and multiplication on the set N, resp.
Z, and for some other operations.

1. INTRODUCTION

To every mapping f : X — Y an equivalence relation R on X can be associated by the
formula R(z,y) <= f(z) = f(y). In particular, to every binary operation % on a set M
an equivalence relation R on M? can be associated. We can consider R as a 4-ary relation
on the set M in the obvious way.

Definition. Let * be a binary operation on a set M. We shall say that R is the associated
equivalence relation of the operation * if

R:{(a:,y,u,v)EM4|$*y:u*v}.

Notice once more that the associate equivalence relation is not an equivalence relation
on M but may be considered as an equivalence relation on M2. (Analogously we could
associate a 2n-ary relation to an n-ary operation also for n # 2.) We can also define R in
the groupoid <M ; >x<> by the first order formula

R(z,y,u,v) <= z*xy=ux*v.
1991 Mathematics Subject Classification. Primary 03B10, 11B65 Secondary 08A99.

Key words and phrases. Elementary definability, Binomial coefficients, Equivalence relations.
This work was supported by Grant 224 of Slovak Academy of Sciences.
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The relation R was constructed from x. We can ask whether, conversely, * can be
reconstructed from R. Generally speaking, it is impossible because distinct operations
can have equal associated equivalence relations. However, sometimes it can be done if
additional information about the structure <M ; *> is available. In what follows usually the
structure <M ; *> will be given up to isomorphism; this is the strongest possible abstract
information about <M : >x<>, but it also need not suffice. Further, the answer can depend
on the chosen type of reconstructability. We shall deal with first order definability, and
so our goal is to define (elementarily, i.e., by a first order formula) the operation * in the
structure <M; R>.

We shall investigate Pascal’s triangles modulo n from this point of view. Pascal’s triangle
modulo n will be denoted by B,,, and it is defined by the formula

Bo(z,y) = <“7 ;F y) MOD 7;

the symbol MOD denotes the rest by integer division. In the present paper moduli n < 6
will be considered; the greater moduli will be considered later. However, the answer to our
problem seems to depend on the factorization of n. So examples for all three typical cases
are presented here: n prime, n prime power (with the exponent e > 1) and n divisible by
at least two distinct primes. Besides Pascal’s triangles modulo n also several more classical
examples of binary operations will be considered.

We shall use the classical first order predicate calculus with equality. We shall use five
usual logical connectives with usual priority rules and other method to simplify or shorter
the formulas. Classical mathematical symbols (like 4+, x etc.) will be used in their usual
sense; it may depend on the considered base set. Predicate and functional symbols are
formed rather freely (groups of several letters, subscripts, superscripts, ... ) but, of course,
from the formal point of view every such symbol is considered as indecomposable.

2. ILLUSTRATING EXAMPLES

Let us describe the problem from previous section informally for the case M finite. Let
in the Cayley table of <M ; *> the inside elements are replaced by colours (distinct elements
by distinct colours). We obtain the coloured table (without information about the used
association of colours to the elements of M). Then coloured table shows us the equivalence
relation associated to * (and nothing more: the coloured table can be constructed, up to
the choice of colours, from this relation). Moreover, we obtain some additional information
about <M : >x<> For example, we can obtain the Cayley table of an isomorphic copy of the
structure; this is the strongest possible abstract information about <M : >x<> Of course, the
order of the elements in its headings need not correspond to that in the coloured table. Our
goal is to reconstruct the coloured table, i.e. to replace the colours by the elements of M in
the original way. In principle, we could simply check all binary operations on M. However,
we shall use the considerations which will be useful also for the infinite cases considered
later; for example, we shall look for “invariants” expressible by first order formulas.

Ezxample 2.1. Let <M; *> be a groupoid , where M = {0, 1,2,3} and * is the operation
which must be reconstructed. We are given the Cayley table of an isomorphic copy A
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of <M ; *> and the coloured table constructed as described above. They are given in the
left-hand and the central part of Figure 1; let the capitals correspond to colours: Red,
Green, Blue, Yellow.

abcd 01 2 3 0123
ala dbec 0|R GBY 011230
blc dc b 1B RYG 1(3 10 2
cla a a d 2|G B Y B 212 30 3
d|bc da 3l1Y R RR 310111

Figure 1.

We have to associate elements to colours and (as a by-product) find an isomorphism
between <M ; *> and the structure A (with Cayley’s table) displayed on the left. Since
A has no nontrivial automorphism the isomorphism will be determined uniquely. The
Red colour occurs in the table 5 times, and the only element which occurs 5 times in the
left table (except headings) is a; therefore Red must be associated to a. Similarly Green
must be associated to b. The Yellow occurs once at the main diagonal, hence it must be
associated to d. It remains to associate Blue to ¢. There are only two distinct colours in
the row of 3, therefore 3 must be associated to ¢, and hence to Blue. The only pair of
commuting elements of <M ; *> is {0, 3} and the only such pair in A is {c, d}. Therefore 0
must be associated to d, and hence to Yellow. There remain the colours Red, Green and
the elements 1, 2. We cannot associate Red to 2 because the obtained algebra would have
no idempotent, and A has one. Therefore we have to associate Red to 1, and finally Green
to 2. The completed Cayley table is on the right-hand side of Figure 1.

Remark. A faster (but less illustrative) method in this case would be to consider the
invariants “number of distinct symbols in the row and in the column” for the elements of
A and the elements of M. So we obtain immediately the isomorphism mentioned above.
Then we can “forget” colours, and fill in the table of (M;x).

Ezample 2.2. Let us consider the tables on the left-hand part of Figure 2; their roles are
similar to those in Figure 1. Now we cannot reconstruct the operation x uniquely (and we
cannot, define it from its associated equivalence relations) because there are two distinct
(although isomorphic) algebras which fulfil the given conditions.

a b 01 01 01
ala b 0lR G 00 1 010
b|b a 111G R 1110 1(0 1

Figure 2.
More formally, let <{0, 1}, 69> be the additive group modulo 2. Then the operation &
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is not definable in the structure <{0, 1}; R>, where

R={(z,y,u,0) € {0,1}" |zy=udv}

is the the associated equivalence relation of .

Ezample 2.3. Let us consider the left-hand and the central table of Figure 3; their role is
similar to those in Example 2.1.

a b c 01 2 012
alac ¢ 0/R G G 0/0 2 2
blc b ¢ 1/G B G 1121 2
clc c c G G G 212 2 2

Figure 3.

The algebra on the left is idempotent, hence the reconstructed algebra is also idem-
potent. Hence the elements 0, 1, 2 must be associated to the colours Red, Blue, Green,
respectively; we can see it immediately from the diagonal of the central table. However,
the element and the colour associated to a are not uniquely determined. It can be either
0 and Red or 1 and Blue; both choices are possible, and determine the two isomorphisms
between the left-hand and the right-hand table.

Ezample 2.4. Let us consider the left-hand and the central table of Figure 3, and let us
replace any non-diagonal G in the central table by R. The only possible solution of our
problem can be the operation on the right. However, it is not a solution indeed. So we
can see that the table of an isomorphic image and the coloured table cannot be combined
arbitrarily. They really must correspond to the same algebra.

Ezample 2.5. Let us consider two operations on the set {0,1}: logical conjuction (now
denoted by e) and Sheffer’s function denoted by x*; the tables are given in Figure 4.

|0 1 * (0 1
000 0111
101 1110

Figure 4.

The corresponding algebras are not isomorphic; the first one is idempotent while the
other is not. Nevertheless, we can see that Eq, = Eq,. Both elements 0, 1 are definable
(as constants) from the relation Eq,, and hence the operations e and * (as well as all other
binary operations on {0, 1}) are definable, too. (Of course, the defining formulas must be
distinct.)
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Ezample 2.6. Let us consider a set M of cardinality greater than 1 and the operation x
on M be defined by = xy = x for all z,y € M. Then Eq,(z,y,z,w) < = =z We
cannot, define the elements of M (as constants) in the structure <M ; Eq, > Nevertheless,
the operation * is definable in this structure. (Of course, we need not use Eq, at all.)

3. SOME RESULTS FOR MORE CLASSICAL STRUCTURES

Theorem 3.1. Let x be an idempotent operation on a nonempty set M and let Eq, be
its associated equivalence relation. Then the operation x is first order definable in the
structure <M; Eq, >

Proof. The operation * can be defined by the formula
z=xxy < Eq,(z, 2,,9).
Indeed, since always z * z = z the equations z = z *y and z * z = x x y are equivalent. [

Remark. Theorem 3.1 is formulated for a single algebra. We can reformulate it for the
class of all (nonempty) idempotent groupoids without any difficulties. However, it cannot
be extended to the class of all groupoids, as Example 2.5 shows.

For the next theorem remember that the center of a group is its subset consisting of all
elements which commute with every element. The center of a group is always nonempty
because it contains its neutral element.

Theorem 3.2. Let <M; *> be a group and let Eq, be the associated equivalence relation
of the operation x. Then * is definable in the structure <M; Eq, > if and only if the center
of the group <M; >x<> consists of unique element.

Proof. If the center of <M ; *> contains only the neutral element of G then we can define
this element and then the operation * in <M : >x<> as follows:

r=1 < Vy,u,v(Eq*(:U,y,u,v) = Eq*(y,.T,U,U)),
z=xxy < Eq,(z,1,z,y).
If the center contains an element a # 1 then we shall consider the operation ® defined
by t®y = a*x *xy. The structure <M; ®> is a group isomorphic with <M; *> (and distinct

from it). However, both operations have the same associated equivalence relations Eq,,
and hence none of them can be definable in <M ; Eq, > O

Theorem 3.3. (i) The operation + (on the set N) is definable in the structure <N; EqPlus >,
where EqPlus = {(x,y,u,v) eEN|z+y=u+ v}.

(ii) The operation x (on the set N) is definable in the structure (N; EqTimes ), where
EqTimes = {(z,y,u,v) € N* | zy = wv}.

Proof. In <N; Equus> we can define
r=0 << Vy,z(Equus(x,x,y, 2) = z=yAx= z).

Then we have z = x+y <= EqPlus(z,0,z,y). The proof of (ii) is similar; we shall define
1 at first. O
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Theorem 3.4. (i) The operation + (on the set Z) is not definable in the structure
<Z,EqP1us>, where EqPlus = {(a:,y,u,v) €z |z +y=u+ ’U}.

(ii) The operation x (on the set Z) is not definable in the structure (Z;EqTimes),
where EqTimes = {(x,y,u,v) €7 | xy = uv}.

Proof. For (i) we can apply Theorem 3.2 because the center of the commutative group
<Z; +> is Z.

For (ii) let us consider the mapping f : z — —z. We can see that f is an automorphism
of <Z; EqTimes >, and f is not an automorphism of <Z, X > Therefore x cannot be definable
in <N; EqTimes > (Remarks: 1. f is the only nontrivial automorphism of the considered
structure. 2. We can define the set {—1, 1} (as a unary relation), but we cannot distinguish
the element 1.) O

4. AUXILIARY RESULTS ABOUT PASCAL’S TRIANGLES MODULO n

Here we shall present some notions and results useful for the next section. The results
will be given without proofs; they are either classical or easy or contained in [Bo90] or
[Ko93]. We shall start with n-adic masking relation for arbitrary n > 1, although it
is closely related to Pascal’s triangle modulo n only for n prime. If a number z € N
is given by its n-adic digits a,.,a,_1,...,a9 we shall write © = [a,a,_;...a¢],. Leading
zeros are allowed if necessary (e. g., to obtain equal numbers of digits in two integers).
For x = [a,...a1a0]n, ¥y = [by...b1bo]n we shall write z C,, y if it holds a; < b; for all
1 =20,1,...,r. The relation C,, will be called n-adic masking relation.

Claim 4.1. For every integer n > 1 the relation C,, is a partial order on the set N. In the
structure L = <N; Cn > we can define:

TCny proper masking relation;

M,y meet operation in L;

T,y join operation in L;

0 the constant 0 (zero) as the smallest element of L;
Pow,(z) x 1S a power of p;

CFAdd,(z,y,z)  carry-free addition: x +y = z, and no carry occurs
when x + y is computed.
The structure <N; Uy, |_|n> is a distributive lattice with the smallest element 0.

Figure 4 contains Pascal’s triangles modulo 2 and modulo 3. The coordinate system
with the axes oriented right downward and left downward is used, and the elements 0 are
replaced by dots. (The same system is used in further figures, too.) We can see their
rather simple “fractal” structure, which is common for all Pascal’s triangles modulo prime
numbers. A very useful tool in investigating them is Lucas’ theorem, see e. g. [Bo90]. We
shall give it in a slightly modified form, with (w:y) instead of (Z)
Theorem 4.2. If n is a prime and

(4.2.1) T =l[ay...a100)n, Yy = [br...b1boln

then

(4.2.2) <”C + y) - (“0 * bo) . <‘“ + bl) (“’“ + b’“) (mod 7).
T ao a1 (079
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Pascal’s triangle modulo 2
(with dots instead of zeros).
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(with dots instead of zeros).

Figure 4.
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Corollary 4.3. For n,z,y as in Theorem 4.2 we have
B, (z,y) =0 if and only if a; + b; > n for some i € {0,1,...,r}.

Theorem 4.4. For every prime n the relation C,, is first order definable in the structure
<N; Bn>.

Proof. The defining formula can be
(4.4.1) v C,y < Vz(By(z,2) =0 = By(y,2) =0).
To prove that, some considerations about n-adic digits must be done and Corollary 4.3

applied. [

Claim 4.5. For every prime n and x,y,e € N, the integer (m;ry) is divisible by n® if and
only if at least e carries occur in the addition of x, y in n-adic number system.

For the proof binomial coefficients must be expressed by factorials, and the exponents
of n in factorizations of the factorials ought to be computed.

5. DEFINABILITY OF PASCAL’S TRIANGLES MODULO n

Now we shall investigate definability of the operations B, (i.e., Pascal’s triangles modulo
n) from their associated equivalence relations EqB,, defined by

EgB, = {(z,y,u,v) € N* | B,(2,y) = Bu(u,v)}.

In the present paper we shall consider only few small values of n.

Let us define VB, (z) = {B,(z,y) | y € N} and let CVB}, () mean that card(VB,,(z)) =
k. The functions VB, cannot be (first order) defined in (N; By, ) simply because their values
are subsets of N, and not elements of N. However, the predicates CVB¥ (for 1 < k < n)
can be defined:

k i—1
CVBTI;;('T) <~ 3?/17 < Yk /\ /\ _'Ean(xvylvxvyj)/\
i=2j=1
k+1:—1
A vyh - Ykl \/ \/ Ean(.T, Yi, T, y])7
i=2 j=1

for k = 1 the first member no the right can be deleted. Further, let EB! % (z,y) mean
B, (z,y) € {i1,...,ix}. In particular, let EBY, (z,y) mean B, (z,y) = i.
Now we shall investigate Pascal’s triangle modulo 4; its structure is more complicated

than that of By but there is an obvious relationship between them; it is expressed by the
formula Ba(x,y) = Ba(z,y) MOD 2. The function By is displayed in Figure 5.

Theorem 5.1. The operation By (Pascal’s triangle modulo 4) is first order definable in
the structure <N; EqB, >, where EqB, is the equivalence relation associated to By.

Proof. Pascal’s triangle modulo 4 is displayed in Figure 2. We can see that it contains
only 1’s on its margin (i.e. for z = 0 or y = 0) and (with exception on the top) only even
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Figure 5.

Pascal’s triangle modulo 4
(with dots instead of zeros).
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elements on its axis. The first property is obvious. The second one can be easily proved
from Lucas’ Theorem (used for the modulus 2 and 2 = y). Therefore we can define

x=0 <= Yy, zEqB,(z,y,x, 2),
EBj(z,y) <= EqB,(z,y,0,0),
EBY?(7,y) < 3z(z # 0 AEqB,(z,y, 2, 2)).

The formula EB}?(z, ) obviously corresponds to By(x,y) = 0. Therefore we can define
the masking relation Cy by a formula similar to (4.4.1) as follows:

rCyy < Vz(EBP(2,2) = EBY(y,2)).

The structure <N; Co > is a partially ordered set with the smallest element 0; we can
consider it as a distributive lattice in the usual way (see Claim 4.1); let the lattice operations

be Ly, My. We can define the set Pows as the set of atoms of the lattice. Further we can

define
EB}(z,y) <= 3z(Pows(z) AEqB,(z,y,2,2)),
EB}(z,y) <= EB{*(z,y) A ~EBi(z.y),
EBj(z,y) += -EBy*(z,y) A~EBj(z,9).
Now we shall use that B4(27,2% + 2¥) = 0 only if y = x + 1; indeed, only in this case two
carries occur in the addition of 2% and 2% + 2¥ (in binary number system; see Claim 4.5).
This enables us to define the constants 1, 2, 3. (We could also define addition, but we need
not that now.)

=1 <= Pows(z) AVy(Pows(y) = EBj(y,z Uz y)),
x =2 <= Pows(z) AEB}(1,z U, 1)),
3=1U52.

Finally, the function B4 can be defined by

z = By(z,y) <= z=0AEqB,(z,y,1,3)V

<w

Z =1 A EqB4($7y7 lai_ 1))?
=1

and the proof is finished. [

Now we shall deal with Pascal’s triangle modulo 6; it is displayed in Figure 6. Notice
that Bg is connected with By and Bs by the formulas

BZ('Tay) :B6($ay)MOD2a B3($7y) :BG(xvy) MOD 3.
They obviously enable us to compute the values of By and B3. However, since 2, 3 are
relatively prime we can also compute the values of Bg from the values of By and Bs. We

can also use results about rather simple Bs, Bs in the investigation of Bg.
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Theorem 5.2. The operation Bg (Pascal’s triangle modulo 6) is first order definable in
the structure <N; EqBg >, where EqBg is the equivalence relation associated to Bg.

Proof. For every € N we have VBg(x) = {1} VBg(z) = {0 1,2,3,4, 5} or VBg(z) =
{0, , 3, 4}. The second case is the most frequent The ﬁrst case takes place only for z = 0.
The third case takes place for those x > 0 which have no 1’s in their 3-adic expansion.
Indeed, congruence cons1derat10ns show that VBg(z) = {O, 1,3, 4} is equivalent with the
conjunction of VBy(z) = {O 1} and VBs(z) = {O 1} For = > 0 the first condition is
always satisfied, hence it need not be c0n81dered For the second condition we have to use
Lucas’ theorem for n = 3, and that B3(2,a) € {0,1} for every a € {0,1,2}.
Using the above facts we can define:

=0 <= Vy,zEqBg(z,y, x, 2),

EBg(z,y) < EqBg(z,y,0,0),
EBgM(x, y) — Elz(z # 0 A EqBg(z, v, 2, z)),
EB2134($,y) = EIu,v(CVBé(u) /\EqBG(a:,y,u,v)),
EBg(a:,y) = EIu(CVBé(u) /\EqBG(a:,y,u,u)),
EBg’(z,y) <= EBg"*(z,y) A (EBY(z,y) vV - EBg**(z,9)) A = EB§(z,y).

(The meaning of the defined predicates was explained above; now we have to check that
these defining formulas correspond to the intended meaning. It is not difficult.)

The formulas EBS**(x,y) and EBS*(z,y) obviously correspond to By(z,y) = 0 and
Bs(z,y) = 0. Therefore we can define the masking relations for the bases 2, 3 as follows:

rCoy < Vz(EBP(z,2) = EB*(y,2)),
T3y < Vz(EBP(z,2) = EBg(y,2)),
Now we could use the result of [Ko93] that for distinct primes p, ¢ the operations +, x
are definable in <N Cp Ly > Then all arithmetical operations and relations, hence Bg, too
are definable in such structures However, we shall use a more elementary consideration.

Using Co we can define Powy and L. Using C3 we can define Pows and U3. Further
we can define

x =1 <= Powsy(x) A Pows(x),
r=2 > 1C3rAc#1AVyY(yEsz = yC31Vy=u),
3=11,2, 4=1133,  5=20s3.

If we have the constant 0,1,...,5 we can define Bg as follows:

5
z = Bg(z,y) <= 2z=0AEqBg(z,y,1,5)V \/ (z =i ANEqBg(z,y,1,i — 1)) O
i=1
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Corollary 5.3. The operations 4, X are first order definable in the structure <N; EqBg >,
where EqBg is the equivalence relation associated to Bg.

In the corollary we cannot replace 6 by 4 because multiplication is not definable in
<N; B4>; moreover, the elementary theory of <N; EqB 4> is decidable.

In the theorems we cannot replace 6 (or 4) by any other positive integer n < 6. The
function B is a constant function (with the value 0), hence EqB; = N* is trivial, and we
cannot define neither 0 nor B; in the structure <N; EqB, > The other cases are covered
by the next theorem.

Theorem 5.4. If n is prime then B,, is not definable in <N; EqB,, >

Proof. Let n be prime. Every permutation of the set Pow,, induces an automorphism of the
structure <N; EqB,, > However, only permutations which preserve 1 induce automorphisms
of <N; Bn>. In particular, the mapping f : N — N defined by

flan? +yn+2)=an®*+2n+y forall €N, 0<y<n, 0<z<n

is an automorphism of <N; EgB,, >, but it is not an automorphism of <N; Bn>. (The corre-
sponding permutation interchanges 1 and n, and preserves the other powers of n.) There-
fore B,, cannot be definable in <N; EqB,, > OJ

Remarks. 1. The proof of Theorem 5.4 shows the unique reason of non-definability of B,
in <N; EqB,, > In the structure <N; EqB,,, 1> the function B,, is definable.

2. The relation C,, is definable in <N; EqB,, > Conversely EqB, is definable in <N; Co >
However, if n is an odd prime then EqB,, is not definable in <N; Cn >
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A MEASURE EXTENSION WITH RESPECT
TO A MEASURE PRESERVING MAPPING

PETER MALICKY

ABSTRACT. Abstract The present paper shows that a measure defined on a o-algebra and
invariant with respect to a measurable mapping may be extended onto a greater o-algebra
such that the mapping is strict measurable with respect to this greater o-algebra.

1. Preliminaries.

It is known that the continuous image of a Borel set need not be Borel. This result
belongs to M. Souslin, which in [5] corrected an error of H. Lebesgue, which in [4] stated
that the continuous image of a measurable set is measurable. Let J be the set of all
irrational numbers with the standard topology. Then J is homeomorphic to the product
of countable many copies of the countable discrete topological space [3, p. 32]. Using
results of Exercise 6 of [1, pp. 152 — 153] it may be proved the existence of a continuous
mapping T : J — J such that the set T'(.J) is not Borel.

In the whole paper we consider a quadruple (X, A, m,T), where X is a set, A is a
o-algebra on X, m is a o-finite measure on A4 and T : X — X is an A-measurable m-
preserving mapping, i.e. T71(A) € A and m(T~!(A4)) = m(A) for any A € A, see [6, p.
19]. In this case the measure m is said to be T-invariant.

The mapping T preserving the measure m is almost surjective in the following sense.
For A € A with ANT(X) = 0 we have m(A4) = m(T~1(A)) = m(D) = 0. Particularly,
m(X\T (X)) = 0 whenever T'(X) € A. As it was said, in a general case A-measurability
of a mapping T does not imply A-measurability of the set T'(X), i.e. T(X) € A. However,
for a strict A-measurable mapping 7' : X — X we can guarantee T(X) € A and more
generally T™(X) € A for all natural n. The definition of a strict measurable mapping
follows.

Definition 1.1. Let X be a set, A be a o-algebra on X and T': X — X be a mapping.
Then T is said to be strict A-measurable if A € A if and only if T71(A) € A for any
ACX.
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The present paper constructs a natural extension m of the measure m onto a greater
o-algebra A, such that T is strict A-measurable and 7-preserving.

2. One step extension and extension by induction.

Let and T : X — X be a mapping and A be a o-algebra on X. Put AT = {A: A C
X and T~1(A) € A}.

Proposition 2.1.
(i) AT is a o-algebra.
(ii) IfT is A-measurable, then A C AT and T is AT -measurable.
(i) T(X) € AT.
)

(iv) T is strict A-measurable, if and only if A = AT,

Example 2.1. Let T : X — X be an A-measurable mapping such that T'(A) € A for
all A € A. Then A" consists of the sets of the form C = AU B, where A € A and
BNT(X)=0. If moreover T'(X) = X then T is strict A-measurable.

Proposition 2.2. Let m be a measure on A. Put mT(A) = m(T—1(A)) for A € AT,

(i) mT is a measure on AT.
(ii) If the measure space (X, A, m) is complete, then so is (X, AT, m
(iii) If T is A-measurable and m-preserving, then m” is a unique T-invariant extension
of m onto AT'; if T is not strict A-measurable then m” is a nontrivial extension of
m.

T)_

Proof. Part (i) is obvious. We shall prove (ii).

Let B C A€ AT and m*(A) = 0. Then T~(A) € A and m(T~1(A)). Since (X, A, m) is
complete, we have T~1(B) € A and B € AT. It proves (ii). Now, let T be A-measurable
and m-preserving. Take A € A. Then mT(A) = m(T~(A)) = m(A), because T is m-
preserving. In means that the measure m7” is an extension of m. Take A € AT, then
T~Y(A) € A and as we have shown mT (T~1(A)) = m(T~1(A)). The definition of mT
yields mT'(A) = m(T~1(A)). Therefore m*(T~1(A)) = mT(A) and T is m®-preserving.
Let p be another T-invariant extension of m. For A € AT we have u(A) = u(T-1(A)) =
m(T~1(A)) = mT(A), because T~(A) € A and p is an extension of m. If T' is not strict
A-measurable, then A C AT but A # AT by Proposition 2.1.

Obviously, we can continue extension procedure by induction. Put A9 = A, mg =m
and A1 = AL, m,1 = mL. Then the measure m,, 1 is an extension of m,, onto A, 1.
oo

The union J A, is an algebra. For A € A,, put u(A) = m,,(A). Then we obtain a measure

n=1

oo oo
p defined on the algebra |J A,. Denote by A, the o-algebra generated by |J A,. The
n=1 n=1
measure g may by uniquely extended onto A, [2, p. 40]. Denote this extension by m,,. It
is clear that the mapping T': X — X is A,-measurable for all natural n and T-1(A) € A,
implies A € A, for any A C X. However, we are not able to prove that the mapping
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T : X — X is strict A,-measurable. The problem of a strict measurability of the mapping
T will be solved in the following section. We shall show that the o-algebra 4, has some
interesting properties.

Proposition 2.3. The o-algebra A,, contains T™(X) for all natural n and their intersec-

tion (| T™(X) as well.
n=1

Proof. Note that for any A C X the iterated preimage (T~!)"(A) and the preimage under
iterated mapping (T™)~1(A) coincide. This set will be denoted by T-"(A). For any
natural n we have T-"(T"(X)) = X € A= Ap. By induction T~ (T"(X)) € Ay for
all natural k, 0 < k < n. (The equality T~ ™=*)(T™(X)) = T*(X) does not hold generally,
but it is true for k£ = n.) It means T"(X) € A,, and T"(X) € A,.. Therefore A, contains

the set () T™(X).

n=1

Corollary 2.1. IfT is strict A-measurable then T"(X) € A for all natural n.

Corollary 2.2. Let (| T"(X) € A. Then m(X\ (| T™(X)) =0

Proof. (Note, that we suppose nothing about the sets 7" (X).) Since all degrees T™ pre-
serve the measure m, they preserve also the measure m,. Therefore m,(X\T"(X)) =
oo

my, (T~ (X\T7"(X))) = my(0) = 0 and m(X\ ﬁl (X)) = my(X\ ngl (X)) = 0.

3. Extension of A by transfinite induction.
Now, consider only a o-algebra A on X and an A-measurable mapping T : X — X.
Denote by Fxt(A) the class of all o-algebras B on X such that:
(i) AcC B.
(ii) T is strict B-measurable.

We shall show, that the class Ezt(A) contains the smallest o-algebra A, which may be
described by transfinite induction. Let w; be the first uncountable ordinal. Put
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Proposition 3.1. The o-algebra A is the smallest element of the class Ext(A). The
mapping T : X — X is strict A-measurable.

Proof. Let B be the element of the class Ext(A). All inclusions A, C B for a < w; follows
immediately by transfinite induction from the strict B-measurability of the mapping T’
and the inclusion A C B. We shall show that T is A-measurable. It suffices to prove that
T is A,-measurable for all &« < w;. The case a = 0 is obvious. If & < w; is an unlimit
ordinal, then A,-measurability follows from A, _i-measurability and Proposition 2.1. If

a < wi is a limit ordinal then A, contains T~!(A) for all A € |J Ag by the inductive
B<La

assumption. Since A, is a o-algebra, it contains T~1(A) for all A € o ( U Ag) = A,.
B<Lla

It shows A-measurability of T'. Finally, if T-(A) € A then T-'(A) € A, and A € Aqqs.

It completes the proof.

4. Extension of a measure onto A.

Put mo = m, ms = mL_, for any unlimit countable ordinal o > 0. For a limit countable
ordinal o the measure m, will be defined in the following way. Note that |J Ag is an

B<a
algebra on X. Take A € |J Ag. Then A € Ag for some § < a and put pq(A) = mg(A).
B<la
Then we obtain a o-finite measure defined on the algebra |J Ag. The measure y, may be

BLla

uniquely extended onto o-algebra o [ |J Ag |, [2, p. 40]. This extension will be denoted
B<a
by mg. Finally put m(A) = my(A) whenever A € A, for some o < wy.

Theorem 4.1. The measure m is a unique T-invariant extension of the measure m onto

A.

Proof. Since A= U Aa, it suffices to prove that m, is a unique T-invariant extension
a<wi
of m onto A,.

The case a = 0 is trivial.

Let @ > 0 be an unlimit countable ordinal. Suppose that m,_; is a unique T-invariant
extension of m onto A,_1. By Proposition 2.2. m, is a unique T-invariant extension of
Meq_1 onto A,. Therefore m,, is a unique T-invariant extension of m onto A,. Now, let
a be a limit countable ordinal. Suppose that for all 8 < a the measure mg is a unique
T-invariant extension of m onto Ag. Then p, is a unique T-invariant extension of m

onto the algebra |J Ag. The measure m, is a unique extension of y, onto A, in the
B<a
realm of measures. It suffices to prove that m, is T-invariant. To see this for A € A,

put vo(A) = me(T71(A)). Then v, is a measure, which coincide with p, on the algebra

J A. It means that v, coincide with u, on A, and the measure m, is T-invariant.
B<Lla
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5. Complete extension.

In this section we describe an extension m of the measure m onto a o-algebra A, such
that the measure space (X, A, m) will be also complete.

Let us recall the notion of the completion of a measure space. Let (X,.A,m) be a
measure space. Denote be A the system of all sets A of the form A = A; U Ay, where
Ay € A and Ay C By for some By € A with m(By) = 0, and for such a set A define

m(A) = m(A;y). Then (X, A,m) is a complete measure space and 7 is an extension of
m. It is easy to see, that any .A-measurable m-preserving mapping 7 : X — X is also
A-measurable and m-preserving. It means that T is also A-measurable and m-preserving
(A and 7 has been constructed in the preceding sections.) Unfortunately, there are no
arguments that 7T is strict A-measurable.
So we modify the construction of A and 7 in the following way.

Put Ay = A and = m. When « > 0 is unlimit countable ordinal put A, = AL , and
Mo = mL_|. (If mq_1 is complete then m, is complete by Proposition 2.2.) For a limit
countable ordinal « the o-algebra A, and the measure m, defined in preceding sections
must be replace by their completions A, and .. Put A= |J A, and m(A4) = mq(A)

a<wi
for A e A,.

Theorem 5.1. The measure space (X, A, m) is complete and the mapping T : X — X is
strict A-measurable and m-preserving.

The proof of the last theorem is simiral to the proof of Theorem 4.1.
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SURELY COMPLETE MATRICES

BOHUSLAV SIVAK

ABSTRACT. The ”sure completness” of the 3x3 matrices over the set {0,1,2, %} is defined
and it is found an example of such matrix with only 4 numbers. (No such matrix with less
than 4 numbers can be surely complete.) Using surely complete matrices, a lot of functionally
complete algebras can be generated.

Studying the functional completness and other properties of the algebras of the type
(2) on the set {0,1,2,}, we will use the matrix denotation by [3]. Similarly, the unary
functions we will write in the vector form.

Definition. Let G be a 3x3 matrix over the set {0,1,2, %} and let H be a 3x3 matrix
over the set {0,1,2}. The matrix H will be called a specification of the matrix G iff the
following implication is satisfied:

G(i,j) € {0,1,2} = H(i,5) = G(i, )

Example 1. The matrix

1 2 0
H=10 0 2
1 1 2
is a specification of the matrix
1 % 0
G=|x* 0 2
% ok ok

Definition. Let G be a 3x3 matrix over the set {0,1,2,*}. The matrix G will be called
surely complete iff the following condition is satisfied: For every specification H of the
matrix G, the algebra ({0, 1,2}, H) of the type (2) is funcionally complete.

1991 Mathematics Subject Classification. 20M35.
Key words and phrases. Polynomial function, functionally complete algebra.
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Example 2. Put
1 0 2 1
G — k 2 kS y H — 0
* x 0
The matrix G is not surely complete. In fact, its specification H can be described by the
formula

H(z,y) =2x+ 2y + 1 modulo 3.
and every polynomial of the algebra ({0, 1,2, }, H) is a polynomial of the algebra ({0, 1,2, }, +),
too. On the other hand, the last algebra is not functionally complete.
In [3], the following theorem is proved.
Theorem 1. Assume that A = {0,1,2} and that the algebra (A, F') has the following
properties:

1) among unary polynomial functions there exist at least one transposition, at least
one 3-cycle and at least one function with exactly 2 values,
2) among binary polynomial functions there exists a function G and there exist
a,b,c,d € A such that
{G(a,c), G(a,d), G(b,c), G(b,d)} = A.

Then (A, F) is functionally complete.
Example 3. Put

G =

* N O
== \V]

* % =

This matrix G is surely complete. In fact, the polynomial fuction G(0,z) = (1,0,2) is a
transposition, G(z,2) = (2,0,1) is a 3-cycle, G(z,x) = (1,2, 1) has exactly 2 values and

{G(0,0), G(0,1), G(1,0), G(1,1)} ={0,1,2}.

Lemma 1. The matrix

1 = 0
G=1[|x 0 2
* % 0

is surely complete.
Proof. Following unary functions are polynomial:
pi(z) = G(z,z) = (1,0,0) (it has 2 values),
p2(z) = G(x,2) = (0,2,0),
p3(z) = p1(pa(2)) = (0,1,1),
pa(z) = G(ps(x),z) = (1,0,2) (a transposition),
ps(x) = p2(ps(x)) = (0,2,2),
pe(z) = G(x,ps(z)) = (1,2,0) (a 3 — cycle).
Moreover, {G(0,0), G(0,2), G(1,0), G(1,2)} = {0,1,2}. Now apply Theorem 1.
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Lemma 2. The matrix

Q

I

*
* © %
_ N O

is surely complete.

Proof. Following unary functions are polynomial:
p1(z) = G(z,z) = (1,0,1) (it has 2 values),

p2(z) = G(x,2) = (0,2,1) (a transposition),
ps(z) = p1(p1(z)) = (0,1,0),
pa(z) = G(ps(w),z) = (1,0,0),
ps(z) = p1(pa(e)) = (0,1,1),
pe(z) = G(ps(z),z) = (1,0,2),
pr(z) = p2(ps(z)) = (2,0,1) (a3 —cycle).
Moreover, {G(0,0), G(0,2), G(1,0), G(1,2)} = {0,1,2}. Now apply Theorem 1.

Lemma 3. The matrix

1 0 0
G=|=x* 0 2
x % 2

is surely complete.

Proof. Following unary functions are polynomial:
p1(z) = G(x,2) = (0,2,2) (it has 2 values),
p2(z) = G(z,z) = (1,0,2) (a transposition),
pS(-T) - pl(pZ(-T ) - (27 07 2)7
pa(z) = G(0,p3(x)) = (0,1,0),
p5($) = G(p4(£€),p1(£€)) = (la 2, 0) (CL 3 — CyCle)'
Moreover, {G(0,0), G(0,2), G(1,0), G(1,2)} = {0,1,2}. Now apply Theorem 1.

Lemma 4. The matrix

is surely complete.
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Proof. Following unary functions are polynomial:
pi(x) = G(0,z) = (1,1,0) (it has 2 values),

p2(z) = G(z,z) = (1,0,2) (a transposition),
ps(z) = G(z,2) = (0,2,2),
pa(z) = ps(p1(z)) = (2,2,0),
ps(z) = p1(ps(z)) = (1,0,0),
pe(x) = G(ps(7),pa(x)) = (2,0,1) (a3 — cycle).
Moreover, {G(0,0), G(0,2), G(1,0), G(1,2)} = {0,1,2}. Now apply Theorem 1.

Lemma 5. The matrix

1 x 0
G=1[|x 0 2
* % 2

is surely complete.

Proof. For the value G(0,1) we have only 3 possibilities. In the case G(0,1) = 0, it
suffices to apply Lemma 3. In the case G(0,1) = 1, it suffices to apply Lemma 4. In the
case G(0,1) = 2, the following unary functions are polynomial:

G(z,2) =(0,2,2) (it has 2 values),
G(z,z) = (1,0,2) (a transposition),
G(0,z) = (1,2,0) (a 3 — cycle).

Moreover, {G(0,0), G(0,2), G(1,0), G(1,2)} = {0,1,2}. Now apply Theorem 1.

Theorem 2. The matrix

Q

I

*
* © %
* N O

is surely complete.
Proof. Apply Lemma 1, Lemma 2 and Lemma, 5.

Theorem 3. The algebra ({0,1,2}, F) is functionally complete iff there exists a binary
polynomial function G such that
G(0,0) =1, G(0,2) =0, G(1,1) =0, G(1,2) = 2.

Lemma 6. Let G be a surely complete 3x3 matrix. Then at least one row of the matrix
G contains at least 2 different numbers.
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Proof. Assume that no row of the matrix G contains different numbers. Then the matrix
G has a specification H of the form

I
SIS
SIS
SIS I

Trivially, the algebra ({0,1,2}, H) is not functionally complete.

Lemma 7. Let G be a surely complete 3x3 matrix. Then at least one column of the
matrix G contains at least 2 different numbers.

Lemma 8. Let G be a 3x3 matrix over the set {0,1,2,x}. Assume that at least one row
and at least one column of the matrix G are "number-free”. Then the matrix G is not
surely complete.

The idea of the proof. For example, the matrix

x a b
G=|x ¢ d
*
has a specification
b b
H=|d ¢ d
b a b

The algebra ({0, 1,2}, H) is not functionally complete. In fact, it has a non-trivial congru-
ence cg(0,2).

Theorem 4. Let G be a surely complete 3x3 matrix over the set {0,1,2}. Then G contains
at least 4 numbers.

Proof. Apply Lemma 6, Lemma 7 and Lemma 8.
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