SPECIAL ALMOST R-PARACONTACT CONNECTIONS

Andrew BUCKI

ABSTRACT. For an almost r-paracontact manifold M_n with a structure Σ and any linear connection Γ on M_n , all almost r-paracontact connections (making all structure tensors parallel) have been found. Also, D-connections for which some distributions on M_n are parallel have been considered. Finally, pairs of connections compatible with a structure Σ have been discussed.

1. Almost r-paracontact manifolds. An almost r-paracontact structure is the generalization of an almost product structure on a differentiable manifold. The study of almost r-paracontact structures (utilizing, in part, certain distributions of tangent bundles of manifolds generated by these structures) and almost r-paracontact connections on manifolds provides a foundation for the investigation of geometric and topological properties of these manifolds.

In this section we recall the definition of an almost r-paracontact manifold [1] and present some of their properties.

Definition 1.1. Let M_n be an n-dimensional differentiable manifold. If on M_n there exist: a tensor field ϕ of type (1,1), r vector fields $\xi_1, \xi_2, \dots, \xi_r$ (r < n), r 1-forms $\eta^1, \eta^2, \dots, \eta^r$ such that

(1.1)
$$\eta^{\alpha}(\xi_{\beta}) = \delta^{\alpha}_{\beta}, \qquad \alpha, \beta \in (r) = 1, 2, ..., r$$

(1.1)
$$\eta^{\alpha}(\xi_{\beta}) = \delta^{\alpha}_{\beta}, \qquad \alpha, \beta \in (r) = 1, 2, ..., r$$
(1.2)
$$\phi^{2} = Id - \eta^{\alpha} \otimes \xi_{\alpha}, \quad \text{where} \quad a^{\alpha}b_{\alpha} \stackrel{\text{def}}{=} \sum_{\alpha} a^{\alpha}b_{\alpha}$$

(1.3)
$$\eta^{\alpha} \circ \phi = 0, \qquad \alpha \in (r)$$

then $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha})_{\alpha \in (r)}$ is said to be an almost r-paracontact structure on M_n , and M_n is an almost r-paracontact manifold.

From (1.1), (1.2), and (1.3) we also have

(1.4)
$$\phi(\xi_{\alpha}) = 0, \qquad \alpha \in (r).$$

¹⁹⁹¹ Mathematics Subject Classification. 53C05, 53C15.

Key words and phrases. Almost r-paracontact structures, almost r-paracontact connections, D-connections, mixed covariant derivatives, pairs of connections compatible with a structure.

There exists a positive Riemannian metric g on $M_n[1]$ such that

(1.5)
$$\eta^{\alpha}(X) = g(X, \xi_{\alpha}), \qquad \alpha \in (r)$$

(1.6)
$$g(\phi X, \phi Y) = g(X, Y) - \sum_{\alpha} \eta^{\alpha}(X) \eta^{\alpha}(Y).$$

Then, $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ is called a *metric almost r-paracontact structure* on M_n , and g is said to be compatible Riemannian metric.

From (1.1) through (1.6) we get

$$(1.7) g(\phi X, Y) = g(X, \phi Y).$$

Remark 1.1. On an almost r-paracontact manifold M_n with the structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha})_{\alpha \in (r)}$ the tensor ϕ has constant eigenvalues 1, -1, and 0. Let p, q, and r be their multiplicities, respectively, with $p + q + r = n = \dim M_n$. M_n is said to be of type (p, q).

Proposition 1.1 [1]. An almost r-paracontact manifold M_n admits the following complementary distributions

$$(1.8) D^+ = \{X; \ \phi X = X\}$$

(1.9)
$$D^{-} = \{X; \ \phi X = -X\}$$

$$(1.8) D^0 = \{X; \quad \phi X = 0\}$$

with $\dim D^+ = p$, $\dim D^- = q$, $\dim D^0 = r$, and p + q + r = n.

Theorem 1.1. A necessary and sufficient condition for M_n to admit an almost r-paracontact structure is that there exist three complementary distributions D_1 , D_2 , and D_3 of dimensions p, q, and r, respectively, with p + q + r = n.

Proof. The necessary condition follows immediately from Proposition 1.1. Now, let D_1, D_2 , and D_3 be three complementary distributions of dimensions p, q, and r, respectively, with p+q+r=n. For any $p \in M_n$ we have $T_pM_n = D_{1p} \oplus D_{2p} \oplus D_{3p}$. Let $\{e_1, \ldots, e_p, e_{p+1}, \ldots, e_{p+q}, e_{p+q+1} = \xi_1, \ldots, e_n = \xi_r\}$ be a basis for T_pM_n , and let $\{e^1, \ldots, e^p, e^{p+1}, \ldots, e^{p+q}, e^{p+q+1} = \eta^1, \ldots, e^n = \eta^r\}$ be the dual basis for the cotangent space $T_p^*M_n$, i.e., $e^i(e_j) = \delta_j^i$, $i, j \in (n)$. Hence, we get $e^a \otimes e_a + e^{p+\lambda} \otimes e_{p+\lambda} + \eta^\alpha \otimes \xi_\alpha = Id$, $a \in (p), \lambda \in (q), \alpha \in (r)$. Let $\phi = e^a \otimes e_a + \varepsilon e^{p+\lambda} \otimes e_{p+\lambda}$, $\varepsilon = \pm 1$. Then, the structure $(\phi, \xi_\alpha, \eta^\alpha)$ is an almost r-paracontact structure on M_n . \square

Definition 1.2. If M_n is an almost r-paracontact manifold with the structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha})_{\alpha \in (r)}$, then Σ is said to be normal if an almost product structure F defined on $M_n \times R^r$ by $F(X, f^{\alpha} \frac{d}{dt^{\alpha}}) = (\phi X + f^{\alpha} \xi_{\alpha}, \eta^{\alpha}(X) \frac{d}{dt^{\alpha}})$ is integrable, i.e., its Nijenhuis tensor field N_F vanishes.

Theorem 1.2[1]. An almost r-paracontact structure Σ on M_n is normal if and only if $N(X,Y) = N_{\phi}(X,Y) - 2d\eta^a(X,Y)\xi_{\alpha} = 0$, where N_{ϕ} is the Nijenhuis tensor for ϕ .

2. Projection operators on almost r-paracontact manifolds. In this section various projection operators on an almost r-paracontact manifold are defined.

Definition 2.1. A multilinear operator Φ on an appropriate space is said to be a projection operator if $\Phi^2 = \Phi$.

Definition 2.2. A set of operators $\{\Phi_i\}$ is said to be the set of complementary projection operators if $\sum_i \Phi_i = Id$, $\Phi_i^2 = \Phi_i$, $\Phi_i \Phi_j = 0$, $i \neq j$.

Proposition 2.1 [3]. If Φ is a projection operator and $\Psi = Id - \Phi$, then Φ and Ψ are complementary projection operators and all solutions of the equation $\Phi x = y$ are of the form $x = y + \Psi w$, where w is an arbitrary element.

Remark 2.1. If operators Φ and Ψ are tensor fields of type (2,2) and S, ϕ, X are tensor fields of type (1,2), (1,1), and (0,1) respectively, then the operations $\Phi\Psi, \Phi S, \Phi\phi, \Phi X$ are expressed locally as follows: $\Phi_{kl}^{ij}\Psi_{in}^{ml}, \Phi_{kl}^{ij}S_{mi}^{l}, \Phi_{kl}^{ij}\phi_{l}^{l}, \Phi_{kl}^{ij}X^{k}$.

Let $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha})_{\alpha \in (r)}$ be an almost r-paracontact structure on M_n . We define the following operators on M_n .

(2.1)
$$\phi_1 = \frac{1}{2}(Id + \phi - \eta^{\alpha} \otimes \xi_{\alpha}) = \frac{1}{2}(\phi^2 + \phi)$$

(2.2)
$$\phi_2 = \frac{1}{2} (Id - \phi - \eta^{\alpha} \otimes \xi_{\alpha}) = \frac{1}{2} (\phi^2 - \phi)$$

$$\phi_3 = \eta^{\alpha} \otimes \xi_{\alpha} = Id - \phi^2$$

$$\phi_4 = \phi^2 = Id - \phi_3$$

with the properties

(2.5)
$$\phi = \phi_1 - \phi_2, \quad \phi \phi_1 = \phi_1 \phi = \phi_1, \quad \phi \phi_2 = \phi_2 \phi = -\phi_2, \\ \phi \phi_3 = \phi_3 \phi = 0, \quad \phi \phi_4 = \phi_4 \phi = \phi$$

Proposition 2.2. The operators ϕ_1 , ϕ_2 , ϕ_3 are complementary projection operators on an almost r-paracontact manifold M_n .

Proposition 2.3. The operators ϕ_3 and ϕ_4 are complementary projection operators on an almost r-paracontact manifold M_n .

The distributions (1.8), (1.9), and (1.10) can be expressed as follows

$$(2.6) D^+ = \{X; \ \phi_1 X = X\}$$

$$(2.7) D^{-} = \{X; \ \phi_2 X = X\}$$

$$(2.8) D^0 = \{X; \ \phi_3 X = X\}.$$

Proposition 2.4. The distributions D^+ , D^- , and D^0 are generated by the projection operators ϕ_1 , ϕ_2 , and ϕ_3 , respectively.

Let A, B, and C be tensor fields of type (2,2) defined as

$$(2.9) A = \frac{1}{2}(Id \otimes Id - \phi \otimes \phi)$$

$$(2.10) B = \frac{1}{2}(Id \otimes Id + \phi \otimes \phi)$$

(2.11)
$$C = \frac{1}{2}(\phi_3 \otimes Id + Id \otimes \phi_3 - \phi_3 \otimes \phi_3).$$

The operators A, B, and C possess the following properties

(2.12)
$$A + B = Id \otimes Id, \quad AA = A - \frac{1}{2}C, \quad BB = B - \frac{1}{2}C, \\ AB = BA = AC = CA = BC = CB = CC = \frac{1}{2}C.$$

Define two operators

$$(2.13) F = A + C$$

$$(2.14) H = B - C.$$

Proposition 2.5. The operators F and H are complementary projection operators on an almost r-paracontact manifold M_n .

Remark 2.2. The operators F and H can be expressed in the following form

$$(2.15) F = Id \otimes Id - \phi_1 \otimes \phi_1 - \phi_2 \otimes \phi_2$$

$$(2.16) H = \phi_1 \otimes \phi_1 + \phi_2 \otimes \phi_2.$$

Define two more operators

$$(2.17) P = F - \phi_3 \otimes \phi_3$$

$$(2.18) Q = H + \phi_3 \otimes \phi_3$$

or

$$(2.19) P = Id \otimes Id - \phi_1 \otimes \phi_1 - \phi_2 \otimes \phi_2 - \phi_3 \otimes \phi_3$$

$$(2.20) Q = \phi_1 \otimes \phi_1 + \phi_2 \otimes \phi_2 + \phi_3 \otimes \phi_3.$$

Proposition 2.6. The operators P and Q are complementary projection operators on an almost r-paracontact manifold M_n .

3. Almost r-paracontact connections. In this section the definition of an almost r-paracontact connection on an almost r-paracontact manifold has been given and all such connections are found.

Definition 3.1 [2]. For an almost r-paracontact manifold M_n with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha})_{\alpha \in (r)}$ a linear connection Γ , given by its covariant derivative ∇ , is said to be an almost r-paracontact if

$$\nabla_X \phi = 0$$

(3.2)
$$\nabla_X \eta^\alpha = 0, \qquad \alpha \in (r)$$

for any vector field X.

From (3.1) and (3.2) it follows

(3.3)
$$\nabla_X \xi_\alpha = 0, \qquad \alpha \in (r).$$

If M_n is a metric almost r-paracontact manifold and an almost r-paracontact connection Γ satisfies

$$(3.4) \nabla_X g = 0$$

then it is called a metric almost r-paracontact on M_n .

Now, assume that Γ , given by its covariant derivative ∇ , is a linear connection on an almost r-paracontact manifold M_n with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha})_{\alpha \in (r)}$. We are going to find an almost r-paracontact connection $\overline{\Gamma}$ given by $\overline{\nabla}$ in the form

$$(3.5) \overline{\nabla}_X = \nabla_X + S_X$$

where S is a tensor field of type (1.2) with $S_X(Y) = S(X,Y)$.

For tensors fields f, Y, and ω of type (1,1), (0,1), and (1,0) respectively, we have

$$(3.6) \overline{\nabla}_X f = \nabla_X f + S_X \circ f - f \circ S_X$$

$$(3.7) \overline{\nabla}_X Y = \nabla_X Y + S_X(Y)$$

$$(3.8) \overline{\nabla}_X \omega = \nabla_X \omega - \omega \circ S_X.$$

For the structure tensors ϕ , ξ_{α} , and η^{α} , we have

$$(3.9) \overline{\nabla}_X \phi = \nabla_X \phi + S_X \circ \phi - \phi \circ S_X$$

(3.10)
$$\overline{\nabla}_X \xi_\alpha = \nabla_X \xi_\alpha + S_X(\xi_\alpha), \qquad \alpha \in (r)$$

$$(3.11) \overline{\nabla}_X \eta^{\alpha} = \nabla_X \eta^{\alpha} - \eta^{\alpha} \circ S_X, \qquad \alpha \in (r).$$

Since $\overline{\Gamma}$ is an almost r-paracontact connection, so S_X satisfies

$$(3.12) \nabla_X \phi = \phi \circ S_X - S_X \circ \phi$$

(3.13)
$$\nabla_X \xi_\alpha = -S_X(\xi_\alpha), \qquad \alpha \in (r)$$

(3.14)
$$\nabla_X \eta^\alpha = \eta^\alpha \circ S_X, \qquad \alpha \in (r).$$

Applying ϕ on the right to (3.12) and making use of (3.13) and (1.2) we obtain

$$(3.15) S_X - \phi S_X \phi = \phi \nabla_X \phi + \nabla_X \eta^\alpha \otimes \xi_\alpha$$

or using the projection operator A from (2.9)

(3.16)
$$AS_X = \frac{1}{2}(\phi \nabla_X \phi + \nabla_X \eta^\alpha \otimes \xi_\alpha)$$

or making use of (2.5), (2.1)–(2.4), and Proposition 2.2

$$(3.17) AS_X = \phi_1 \nabla_X \phi_1 + \phi_2 \nabla_X \phi_2 + \frac{1}{2} \phi_3 \nabla_X \phi_3 + \frac{1}{2} \eta^\alpha \otimes \nabla_X \xi_\alpha - \eta^\alpha (\nabla_X \xi_\beta) \eta^\beta \otimes \xi_\alpha.$$

Acting with the operator C from (2.11) on (3.16) and using (2.12) we get

$$CS_X = \frac{1}{2} (\phi \nabla_X \phi \phi_3 + \nabla_X \eta^\alpha \circ \phi_3 \otimes \xi_\alpha + \phi_3 \phi \nabla_X \phi + \nabla_X \eta^\alpha \otimes \phi_3(\xi_\alpha) - \phi_3 \phi \nabla_X \phi \phi_3 - \nabla_X \eta^\alpha \circ \phi_3 \otimes \phi_3(\xi_\alpha)).$$

Making use of (2.5), (2.1)–(2.4), and Proposition 2.2 we get

$$(3.18) CS_X = \frac{1}{2}(\phi_3 \nabla_X \phi_3 - \eta^\alpha \otimes \nabla_X \xi_\alpha)$$

Adding (3.17) and (3.18) up, and using (2.13) we get

$$(3.19) FS_X = \phi_1 \nabla_X \phi_1 + \phi_2 \nabla_X \phi_2 + \phi_3 \nabla_X \phi_3 - \eta^{\alpha} (\nabla_X \xi_{\beta}) \eta^{\beta} \otimes \xi_{\alpha}.$$

Making use of Propositions 2.5 and 2.1 we obtain from (3.19)

$$(3.20) S_X = \phi_1 \nabla_X \phi_1 + \phi_2 \nabla_X \phi_2 + \phi_3 \nabla_X \phi_3 - \eta^{\alpha} (\nabla_X \xi_{\beta}) \eta^{\beta} \otimes \xi_{\alpha} + HW_X$$

where W is an arbitrary tensor field of type (1,2) with $W_X(Y) = W(X,Y)$, or

$$(3.21) S_X = \frac{1}{2}\phi \nabla_X \phi + \nabla_X \eta^\alpha \otimes \xi_\alpha - \frac{1}{2}\eta^\alpha \otimes \nabla_X \xi_\alpha + \frac{1}{2}\eta^\alpha (\nabla_X \xi_\beta)\eta^\beta \otimes \xi_\alpha + HW_X.$$

Theorem 3.1 [2]. The general family of the almost r-paracontact connections $\overline{\Gamma}$ on an almost r-paracontact manifold M_n with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha})_{\alpha \in (r)}$ is given by

$$(3.22) \qquad \overline{\nabla}_X = \nabla_X + \phi_1 \nabla_X \phi_1 + \phi_2 \nabla_X \phi_2 + \phi_3 \nabla_X \phi_3 - \eta^{\alpha} (\nabla_X \xi_{\beta}) \eta^{\beta} \otimes \xi_{\alpha} + HW_X$$

where H is defined by (2.16), W is an arbitrary tensor field of type (1,2) with $W_X(Y) = W(X,Y)$, and ∇ is the covariant derivative of an arbitrary linear connection Γ on M_n .

Corollary 3.1. If the initial connection Γ is an a.r-p.-connection on M_n , then the general family of a.r-p.-connections $\overline{\Gamma}$ on M_n is given by

$$(3.23) \overline{\nabla}_X = \nabla_X + HW_X$$

where W is an arbitrary tensor field.

Now, suppose that M_n is an almost r-paracontact Riemannian manifold with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$. Let Γ , given by its covariant derivative ∇ , be the Riemannian connection generated by the Riemannian metric g on M_n . Of all almost r-paracontact connections $\overline{\Gamma}$ given by (3.22) we will find metric connections, i.e., those satisfying $\overline{\nabla}g = 0$. For the Riemannian metric g and $\overline{\Gamma}$ given by (3.5) we have $(\overline{\nabla}_Z g)(X,Y) = -g(S_Z X,Y) - g(X,S_Z Y)$. $\overline{\Gamma}$ is a metric almost r-paracontact connection if and only if

(3.24)
$$g(S_Z X, Y) + g(X, S_Z Y) = 0.$$

From (1.5) and (1.1) we have

(3.25)
$$\eta^{\alpha}(\nabla_{Z}\xi_{\beta}) + \eta^{\beta}(\nabla_{Z}\xi_{\alpha}) = 0$$

(3.26)
$$(\nabla_Z \eta^\alpha)(X) = g(X, \nabla_Z \xi_\alpha).$$

From (1.6), using (1.5) and (1.2), we get

$$(3.27) g(\nabla_Z(\phi X), \phi Y) + g(\phi X, \nabla_Z(\phi Y)) - g(\phi^2(\nabla_Z X), Y) - g(X, \phi^2(\nabla_Z Y)) + \sum_i (\nabla_Z \eta^\alpha)(X) \eta^\alpha(Y) + \sum_i (\nabla_Z \eta^\alpha)(Y) \eta^\alpha(X) = 0.$$

From (3.24), using (3.21), (1.7), (3.26), and then (3.27) and (3.25), we get

$$\frac{1}{2}g(\phi\nabla_{Z}\phi X,Y) - \frac{1}{2}\eta^{\alpha}(X)g(\nabla_{Z}\xi_{\alpha},Y) + \nabla_{Z}\eta^{\alpha}(X)g(\xi_{\alpha},Y) + \frac{1}{2}g(X,\phi\nabla_{Z}\phi Y) \\
-\frac{1}{2}\eta^{\alpha}(Y)g(X,\nabla_{Z}\xi_{\alpha}) + \nabla_{Z}\eta^{\alpha}(Y)g(X,\xi_{\alpha}) + \eta^{\alpha}(\nabla_{Z}\xi_{\beta})\eta^{\beta}(X)g(\xi_{\alpha},Y) \\
+\eta^{\alpha}(\nabla_{Z}\xi_{\beta})\eta^{\beta}(Y)g(X,\xi_{\alpha}) + g(H_{X}W_{Z},Y) + g(X,H_{Y}W_{Z}) = \\
= \frac{1}{2}g(\nabla_{Z}(\phi X),\phi Y) - \frac{1}{2}g(\phi^{2}(\nabla_{Z}X),Y) + \frac{1}{2}g(\phi X,\nabla_{Z}(\phi Y)) - \frac{1}{2}g(X,\phi^{2}(\nabla_{Z}Y)) \\
+\frac{1}{2}\sum_{\alpha}(\nabla_{Z}\eta^{\alpha})(X)\eta^{\alpha}(Y) + \frac{1}{2}\sum_{\alpha}(\nabla_{Z}\eta^{\alpha})(Y)\eta^{\alpha}(X) \\
+\frac{1}{2}\sum_{\alpha,\beta}\eta^{\alpha}(X)\eta^{\beta}(Y)[\eta^{\alpha}(\nabla_{Z}\xi_{\beta}) + \eta^{\beta}(\nabla_{Z}\xi_{\alpha})] + g(H_{X}W_{Z},Y) + g(X,H_{Y}W_{Z}) = \\
= g(H_{X}W_{Z},Y) + g(X,H_{Y}W_{Z}) = 0.$$

Hence,

Theorem 3.2. Let M_n be an almost r-paracontact Riemannian manifold with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$. An almost r-paracontact connection $\overline{\Gamma}$ given by (3.22) on M_n is metric if and only if there exists a tensor field W of type (1,2) with $W(X,Y) = W_X(Y)$ satisfying

(3.28)
$$g(H_X W_Z, Y) + g(X, H_Y W_Z) = 0.$$

From Theorem 3.1 we get

Theorem 3.3. The linear connection $\overline{\Gamma}$ given by

$$(3.29) \overline{\nabla}_X = \nabla_X + \phi_1 \nabla_X \phi_1 + \phi_2 \nabla_X \phi_2 + \phi_3 \nabla_X \phi_3 - \eta^{\alpha} (\nabla_X \xi_{\beta}) \eta^{\beta} \otimes \xi_{\alpha}$$

is a metric almost r-paracontact connection on an almost r-paracontact Riemannian manifold M_n with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$, where ∇ is the Riemannian connection, i.e., $\nabla \phi = 0$, $\nabla \eta^{\alpha} = 0$, $\nabla \xi_{\alpha} = 0$, $\nabla g = 0$.

4. *D*-connections. In this section the definition of a *D*-connection on an almost r-paracontact manifold is given and all such connections are determined.

Definition 4.1. Let D be a distribution on a manifold M_n . A linear connection Γ given by its covariant derivative ∇ on M_n is said to be a D-connection, or D is said to be parallel with respect to Γ , if for any vector field Y and a vector field X from D the vector field $\nabla_Y X$ belongs to D.

Theorem 4.1. The distribution D^+ given by (1.8) or (2.6) is parallel with respect to a linear connection Γ given by its covariant derivative ∇ on an almost r-paracontact manifold M_n , or Γ is a D^+ -connection, if and only if

$$(4.1) \nabla \phi_1 \circ \phi_1 = 0.$$

Proof. For a vector field X from D^+ one obtains

(4.2)
$$\nabla_Y X = \nabla_Y (\phi_1 X) = (\nabla_Y \phi_1) X + \phi_1 (\nabla_Y X).$$

If D^+ is parallel, then from (4.2) and (2.6) $(\nabla_Y \phi_1)X = 0$ for any vector field X in D^+ , or $(\nabla_Y \phi_1)(\phi_1 Z) = 0$ for any vector field Z. Hence, (4.1) is obtained. Conversely, if (4.1) is satisfied, then for any $X \in D^+$, $0 = (\nabla \phi_1 \circ \phi_1)X = (\nabla \phi_1)X$, so by (4.2) $\nabla_Y X = \phi_1(\nabla_Y X)$, and $\nabla_Y X$ is in D^+ . \square

In similar way we obtain

Theorem 4.2. The distribution D^- given by (1.9) or (2.7) is parallel with respect to a linear connection Γ given by its covariant derivative ∇ on an almost r-paracontact manifold M_n , or Γ is a D^- -connection, if and only if

$$(4.3) \nabla \phi_2 \circ \phi_2 = 0.$$

Theorem 4.3. The distribution D^0 given by (1.10) or (2.8) is parallel with respect to a linear connection Γ given by its covariant derivative ∇ on an almost r-paracontact manifold M_n , or Γ is a D^0 -connection, if and only if

$$(4.4) \nabla \phi_3 \circ \phi_3 = 0.$$

If Γ is an almost r-paracontact connection, then from (2.1), (2.2), and (2.3) we get $\nabla \phi_1 = \nabla \phi_2 = \nabla \phi_3 = 0$, and on account of Theorems 4.1, 4.2, and 4.3 we obtain

Theorem 4.4. If a linear connection Γ on an almost r-paracontact manifold M_n is an almost r-paracontact connection, then the distributions D^+ , D^- , and D^0 given by (1.8), (1.9) and (1.10) are parallel with respect to this connection, or Γ is a D^+ -connection, and a D^- -connection, and a D^0 -connection.

Definition 4.2. A linear connection Γ on an almost r-paracontact manifold M_n with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha})_{\alpha \in (r)}$ is said to be a D_{Σ} -connection if it is a D^+ -connection, and a D^- -connection, and a D^0 -connection.

Theorem 4.5. Every almost r-paracontact connection Γ on an almost r-paracontact manifold M_n with a structure Σ is a D_{Σ} -connection.

If a linear connection Γ is a D_{Σ} -connection, then from Proposition 2.2 and Theorems 4.1, 4.2, and 4.3 we have

$$(4.5) \nabla \phi_i = \phi_i \nabla \phi_i, i = 1, 2, 3$$

and since $\phi_1 + \phi_2 + \phi_3 = Id$, we get

$$(4.6) \sum_{i} \phi_{i} \nabla \phi_{i} = 0.$$

Acting with ϕ_j on the left to (4.6) we obtain

$$\phi_j \nabla \phi_j = 0, \qquad j = 1, 2, 3$$

then, from (4.5) we get

Theorem 4.6. A linear connection Γ on an almost r-paracontact manifold M_n with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha})_{\alpha \in (r)}$ is a D_{Σ} -connection if and only if

(4.8)
$$\nabla \phi_i = 0, \quad i = i, 2, 3.$$

Now, we shall find all D_{Σ} -connections on an almost r-paracontact manifold M_n which are of the form

$$\hat{\nabla}_X = \nabla_X + J_X$$

where ∇ is the covariant differentiation operator of arbitrary linear connection Γ on M_n , and J is a tensor field of type (1,2) with $J_X(Y) = J(X,Y)$. From (3.6) we have for ϕ_i , i = 1, 2, 3

$$\hat{\nabla}_X \phi_i = \nabla_X \phi_i + J_X \circ \phi_i - \phi_i \circ J_X \qquad i = 1, 2, 3.$$

Since $\hat{\Gamma}$ is a D_{Σ} -connection, then from (4.10) and Theorem 4.6 we have

$$(4.11) \qquad \nabla_X \phi_i + J_X \circ \phi_i - \phi_i \circ J_X = 0 \qquad i = 1, 2, 3.$$

Applying ϕ_i on the left to (4.11) and using Proposition 2.2 we get

(4.12)
$$\phi_i \nabla_X \phi_i + \phi_i J_X \phi_i - \phi_i J_X = 0, \qquad i = 1, 2, 3.$$

Using Proposition 2.2 we get from (4.12)

$$(4.13) \phi_1 \nabla_X \phi_1 + \phi_2 \nabla_X \phi_2 + \phi_3 \nabla_X \phi_3 + \phi_1 J_X \phi_1 + \phi_2 J_X \phi_2 + \phi_3 J_X \phi_3 - J_X = 0.$$

Using (2.19) we obtain

$$(4.14) PJ_X = \phi_1 \nabla_X \phi_1 + \phi_2 \nabla_X \phi_2 + \phi_3 \nabla_X \phi_3.$$

Hence, in virtue of Propositions 2.6 and 2.1 we obtain

$$(4.15) J_X = \phi_1 \nabla_X \phi_1 + \phi_2 \nabla_X \phi_2 + \phi_3 \nabla_X \phi_3 + QV_X$$

where V is an arbitrary tensor field of type (1,2) with $V_X(Y) = V(X,Y)$.

Hence,

Theorem 4.7. The general family of the D_{Σ} -connections $\hat{\Gamma}$ on an almost r-paracontact manifold M_n with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha})_{\alpha \in (r)}$ is given by

$$\hat{\nabla}_X = \nabla_X + \phi_1 \nabla_X \phi_1 + \phi_2 \nabla_X \phi_2 + \phi_3 \nabla_X \phi_3 + QV_X$$

where Q is defined by (2.20), V is an arbitrary tensor field of type (1,2) with $V_X(Y) = V(X,Y)$, and ∇ is the covariant derivative of an arbitrary linear connection Γ on M_n .

Corollary 4.1. If the initial connection Γ is a D_{Σ} -connection on M_n , then the general family of D_{Σ} -connections $\hat{\Gamma}$ on M_n is given by

$$\hat{\nabla}_X = \nabla_X + QV_X$$

where V is an arbitrary tensor field.

5. Pairs of connections compatible with a structure. In this section a definition of a pair of connections compatible with an almost r-paracontact structure on an almost r-paracontact manifold is given and all such pairs are found.

Let $\overset{1}{\Gamma}$ and $\overset{2}{\Gamma}$ be two linear connections, given by their covariant derivatives $\overset{1}{\nabla}$ and $\overset{2}{\nabla}$, on an almost r-paracontact manifold M_n .

For a function f, a vector field Y, a 1-form ω , and a tensor field ψ of type (1,1), (0,2), or (2,0), we define the following mixed covariant derivatives

$$(5.1) \qquad \qquad \stackrel{ij}{\nabla}_Z f = \stackrel{ji}{\nabla}_Z f = Zf$$

(5.4)
$$(\overset{ij}{\nabla}_Z \psi)(A, B) = Z\psi(A, B) - \psi(\overset{i}{\nabla}_Z A, B) - \psi(A, \overset{j}{\nabla}_Z B)$$

where $i, j = 1, 2; i \neq j$.

Proposition 5.1. $\overset{m}{\nabla}_{Z} = \frac{1}{2}(\overset{1}{\nabla}_{Z} + \overset{2}{\nabla}_{Z})$ is a covariant differentiation operator of a certain connection $\overset{m}{\Gamma}$ on M_{n} .

Definition 5.1. The connection $\overset{m}{\Gamma}$ on M_n is called a mean connection of $\overset{1}{\Gamma}$ and $\overset{2}{\Gamma}$ if its mean covariant derivative is

(5.5)
$$\overset{m}{\nabla}_{Z} = \frac{1}{2} (\overset{1}{\nabla}_{Z} + \overset{2}{\nabla}_{Z}).$$

Proposition 5.2. $d_Z = \overset{2}{\nabla}_Z - \overset{1}{\nabla}_Z$ is a tensor field of type (1,1) on M_n for any vector field Z.

Definition 5.2. The tensor field d of type (1,2) defined by

$$(5.6) d_Z = \overset{2}{\nabla}_Z - \overset{1}{\nabla}_Z$$

with $d_Z(X) = d(Z, X)$ on M_n is called a deformation tensor field of connections Γ^2 and Γ^2

For the structure tensors ϕ and η^{α} we obtain

$$(5.7) d_Z(\eta^\alpha) = -\eta^\alpha \circ d_Z$$

$$(5.8) d_Z(\phi) = d_Z \circ \phi - \phi \circ d_Z$$

(5.9)
$$\overset{12}{\nabla}_Z \phi = \overset{2}{\nabla}_Z \phi + \phi \circ d_Z$$

(5.10)
$$\overset{21}{\nabla_Z}\phi = \overset{1}{\nabla_Z}\phi - \phi \circ d_Z.$$

Making use of these formulas we get for the structure tensors ϕ , η^{α} , and ξ_{α}

(5.11)
$$\frac{1}{2}(\overset{12}{\nabla}_Z\eta^\alpha + \overset{21}{\nabla}_Z\eta^\alpha) = \overset{m}{\nabla}_Z\eta^\alpha$$

(5.12)
$$\nabla_Z \eta^{\alpha} - \nabla_Z \eta^{\alpha} = \eta^{\alpha} \circ d_Z$$

(5.13)
$$\frac{1}{2} (\overset{12}{\nabla}_Z \phi + \overset{21}{\nabla}_Z \phi) = \overset{m}{\nabla}_Z \phi$$

(5.14)
$$\nabla_Z \phi - \nabla_Z \phi = d_Z \circ \phi + \phi \circ d_Z$$

$$(5.15) \qquad \qquad \frac{1}{2} (\overset{12}{\nabla_Z} \xi_\alpha + \overset{21}{\nabla_Z} \xi_\alpha) = \overset{m}{\nabla_Z} \xi_\alpha$$

$$(5.16) \qquad \qquad \stackrel{12}{\nabla_Z} \xi_\alpha - \stackrel{21}{\nabla_Z} \xi_\alpha = -d_Z \xi_\alpha.$$

For (1,1) tensor fields ψ and χ , using (5.8), (5.14) and (5.9), (5.10) we get

(5.17)
$$\overset{1}{\nabla}_{Z}(\psi\chi) = (\overset{21}{\nabla}_{Z}\psi)\chi + \psi\overset{12}{\nabla}_{Z}\chi$$

(5.18)
$$\overset{2}{\nabla}_{Z}(\psi\chi) = (\overset{12}{\nabla}_{Z}\psi)\chi + \psi\overset{21}{\nabla}_{Z}\chi.$$

Definition 5.3. A pair of linear connections $(\overset{1}{\Gamma},\overset{2}{\Gamma})$ on an almost r-paracontact manifold M_n with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha})_{\alpha \in (r)}$ is said to be *compatible with* Σ if

(5.19)
$$\overset{12}{\nabla} \phi = 0, \qquad \overset{1}{\nabla} \eta^{\alpha} = 0, \qquad \overset{2}{\nabla} \xi_{\alpha} = 0, \qquad \alpha \in (r).$$

Theorem 5.1. A pair of linear connections $(\overset{1}{\Gamma},\overset{2}{\Gamma})$ on an almost r-paracontact manifold M_n with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha})_{\alpha \in (r)}$ is compatible with Σ if and only if all structure tensor fields are parallel with respect to both mixed covariant derivatives $\overset{12}{\nabla}$ and $\overset{21}{\nabla}$.

Proof. We have to show that the following conditions are satisfied

(5.20)
$$\overset{21}{\nabla} \phi = 0, \qquad \overset{2}{\nabla} \eta^{\alpha} = 0, \qquad \overset{1}{\nabla} \xi_{\alpha} = 0, \qquad \alpha \in (r).$$

From (1.1) we get

$$(5.21) \qquad (\overset{i}{\nabla}\eta^{\alpha})(\xi_{\beta}) + \eta^{\alpha}(\overset{i}{\nabla}\xi_{\beta}) = 0, \qquad i = 1, 2$$

From (1.3), using (5.9) and (5.19)₁, we get $\overset{2}{\nabla}\eta^{\alpha} \circ \phi = 0$. Hence $\overset{2}{\nabla}\eta^{\alpha} - (\overset{2}{\nabla}\eta^{\alpha})(\xi_{\beta})\eta^{\beta} = 0$, and using (5.21) we obtain (5.20)₂. From (1.4), using (5.19)₁ and (5.9), we get $\phi\overset{1}{\nabla}\xi_{\alpha} = 0$. Hence $\overset{1}{\nabla}\xi_{\alpha} - \eta^{\beta}(\overset{1}{\nabla}\xi_{\alpha})\xi_{\beta} = 0$. Again, using (5.21) we obtain (5.20)₃. Now, making use of (5.17) and (5.18) with $\psi = \chi = \phi$ we obtain from (1.2), after using (5.19)₂, (5.19)₃, (5.20)₂, (5.20)₃, and (5.19)₁, $\overset{21}{\nabla}\phi \neq 0$. Hence $\overset{21}{\nabla}\phi = \overset{21}{\nabla}\phi = \overset{21}{\nabla}\phi + \overset{21}{\nabla}\phi = \overset{21}{\nabla}\phi + \overset{21}{\nabla}\phi = \overset{21}{\nabla}\phi = \overset{21}{\nabla}\phi + \overset{21}{\nabla}\phi = \overset$

Remark 5.1. From Theorem 5.1 we obtain the symmetry of compatibility, i.e., a pair (Γ, Γ) is compatible with Σ if and only if (Γ, Γ) is compatible with Σ .

Now, we obtain the following

Theorem 5.2. A pair of linear connections $(\overset{1}{\Gamma},\overset{2}{\Gamma})$ on an almost r-paracontact manifold M_n with a structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha})_{\alpha \in (r)}$ is compatible with Σ if and only if

- (i) the mean connection $\overset{m}{\Gamma}$ given by (5.5) is an almost r-paracontact connection on M_n
- (ii) $Bd_Z = 0$, where B is given by (2.10)

Proof. Using (5.11) through (5.16) the conditions (5.19) and (5.20) are equivalent to

(5.22)
$$\overset{m}{\nabla}\phi = 0, \qquad \overset{m}{\nabla}\eta^{\alpha} = 0, \qquad \overset{m}{\nabla}\xi_{\alpha} = 0, \qquad \alpha \in (r)$$

(5.23)
$$d_Z\phi + \phi d_Z = 0, \qquad \eta^{\alpha} d_Z = 0, \qquad d_Z(\xi_{\alpha}) = 0, \qquad \alpha \in (r).$$

The conditions (5.22) are equivalent to (i) and (5.23) to (ii). \Box

Remark 5.2. The condition (ii) of Theorem 5.2 implies

$$(5.24) Hd_Z = 0$$

where H is given by (2.14).

Hence we get

Theorem 5.3. If a pair of linear connections $(\overset{1}{\Gamma},\overset{2}{\Gamma})$ is compatible with an almost r-paracontact structure $\Sigma = (\phi, \xi_{\alpha}, \eta^{\alpha})_{\alpha \in (r)}$ on a manifold M_n , then

$$(5.25) \qquad \qquad \stackrel{1}{\nabla}_Z = \nabla_Z + S_Z - \frac{1}{2}FV_Z$$

$$(5.26) \qquad \qquad \stackrel{2}{\nabla}_{Z} = \nabla_{Z} + S_{Z} + \frac{1}{2}FV_{Z}$$

where ∇ is an arbitrary linear connection on M_n , S_Z is given by (3.21), F is defined by (2.15), and V is an arbitrary tensor field of type (1,2) with $V_Z(X) = V(Z,X)$.

Proof. From (5.24), using Proposition 2.1, we obtain

$$(5.27) d_Z = FV_Z.$$

From Theorem 5.2(i), using Theorem 3.1, we get

From (5.27), (5.28), (5.5), and (5.6) we obtain (5.25) and (5.26). \square

REFERENCES

- A. Bucki, A. Miernowski, Almost r-paracontact structures, Ann. Univ. Mariae Curie-Sklodowska, Sect. A 39 (1985), 13–26.
- [2]. A. Bucki, A. Miernowski, Almost r-paracontact connections, Acta Math. Hungar. 45 (1985), 327–336.
- [3]. M. Obata, Hermitian manifolds with quaternion structures, Tohoku Math. J. 10 (1958), 11–18.
- [4]. A. P. Norden, Spaces with Affine Connections (in Russian), Nauka, Moscow, 1970.
- [5] K. Yano, Differential Geometry on Complex and Almost Complex Space, Pergamon Press, Oxford, 1965.

(Received October 27, 1996)

Dept. of Mathematics Oklahoma School of Science and Mathematics Oklahoma City, OK 73104 USA

E-mail address: abucki@ossm.edu