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VALUATIONS AND METRICS ON A POSET

ALFONZ HAVIAR AND GABRIELA MONOSZOVA

ABSTRACT. The aim of the paper is to characterize metrics (pseudometrics) induced on con-
nected posets by positive (isotone) valuations. Further, as an application it is shown that
there exists a positive valuation on some posets of locally finite length.

Introduction

Several authors investigated valuations and metrics on posets (see, e.g. [1] - [3]). M.
Kolibiar and J. Lihova [5] and J. Lihova [6] gave characterizations of metrics induced by
positive (isotone) valuations on directed multilattices. In this paper we will present similar
results for richier families of posets.

Recall some basic definitions. Let F,, = ({a1,...,a,},<) be a poset. Let n be an odd
integer, n > 3. The poset F,, is called a fence if

a1 < ag > a3z <---<ap—1 > Gy

or
a1 > 02 < A3 > > Ap—1 < Gp,

are the only comparability relations of the poset F,, (see Figures 1a, 1b). Let n be an even
integer, n > 4. The poset F,, is called a fence if

a; <ag >az3 < --->0p_1<ap

are the only comparability relations of the poset F,, (see Fig. 1c).

a2 Q4 ap—1 ai as ap—2 Qp a2 Q4 Qnp
ai as an—2 Qn a2 a4 an—1 ai az Qap-1
Fig. la Fig. 1b Fig. 1c
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A poset (P, <) is called a connected poset if for every elements a,b € P there is a fence
F = ({a1,a9,...,a,},<) such that a = ay, b = a,,. In this case we say that F is a fence
from a to b.

Let C = ({ag,a1,...,a,}, <) be a chain. The number n is called the length of the chain
C.

A poset (P, <) is called a poset of finite length if all chains of the poset (P, <) are finite
and if there exists the maximum of their lengths. We write [(P) = [ if the maximum of
all chains of the poset (P, <) is Iy and the number [ is called the length of the poset (P, <)
. A poset (P, <) is called a poset of locally finite lenght if all bounded chains in (P, <)
are finite. Note, it is possible that a poset of locally finite length has neither maximal nor
minimal elements.

Let (P, <) be a poset. A real valued function v defined on P is called
a) a positive valuation on a poset (P, <) if

a<b = w(a)<ov(b),
b) an isotone valuation on a poset (P, <) if
a<b = w(a) <u(b).
Throughout the paper we will denote by Z and R the set of all integers and the set of

all reals, respectively. We will denote by |z| the absolute value of z.

1. Valuations and metrics on posets

The aim of this part is to characterize metrics induced by isotone (positive) valuations
on posets. First we will give some definitions needed for our purposes.

Definition 1.1. Let (P, <) be a poset. A finite sequence (z;)}, is said to be a way from
a to b if

(a) o =a, z, =D,
(b) x; < mjyq or x; > xiyq foreach i =0,1,...,n— 1.

Definition 1.2. Let (P, <) be a poset and C,, = (ay,b1,...,a,,b,) be a 2n-element
subposet of (P, <) . The subposet C,, is said to be a cycle-fence of (P, <) if

(1.0) a; < by >ay<by>--->a, <b, >a.

ai az as

a1
a1 az as

Fig. 2a Fig. 2b Fig. 2c
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Note that the mentioned poset C,, is a crown if n > 1 and (1.0) are the only com-
parability relations on {a1,by,...,an,b,} (see Fig. 2a). The cycle-fences (by the above
definition) are also the posets in Figures 2b and 2c.

Definition 1.3. Let (P, <) be a poset, v an isotone valuation on (P, <) and (x;)", a
way from a to b, a,b € P. We define the length I(zg,z1,...,2,) of the way (z;)i, by

(1.1) Hxo,T1,. .., xy) =: i lv(z;) — v(ziy1)]

A way (xo,x1,...,2,) from a to b is said to be minimal if

l($07$17 .. .,.’I,'n) S l(y07y17 c 7ym)

for every way (yo, Y1, -.,Ym) from a to b.

Evidently, it is possible that there is no way from a to b or there exists a way from a to
b but there is no minimal way from a to b.

Definition 1.4. An isotone valuation v on a connected poset (P, <) is said to be a
distance-valuation if there exists a minimal way from a to b for all a,b € P.

Definition 1.5. Let v be a distance-valuation on a connected poset (P, <) . We define a
non-negative real function d,: Px P — R by

(1.2) dy(a,b) = 1(x0, T1, .-, Tn)

where (z;)_, is a minimal way from a to b. The function d, will be called the distance
function induced by the distance-valuation v on the poset (P, <) .

Lemma 1.6. Let d, be a distance function induced by a distance-valuation v on a con-
nected poset (P,<) . Then for all a,b € P

(1.3) a<b = dy(a,b)=uv(b)—v(a).

Proof. Tt is sufficient to prove that (zg,z1) = (a,b) is a minimal way from a to b. Let
(z;)"_, be an arbitrary way from a to b. Then

la,21,...,%n_1,b) = |v(a) —v(z1)| + |v(x1) —v(22)| + - + |v(Tp—1) — V(D)
> [o(a) — (1) + (1) — 0(w2) + -+ 0(50-1) — 0(b)| = v(a) — v(b)| =

is a minimal way from a to b. [

>
), i.e. (a,b)

I
—~
8
-~ —

Corollary 1.7. Let d, : P x P — R be a distance function induced by a distance-
valuation v on a connected poset (P,<) . Let (mg,m1,...,mg_1,my) be a minimal way
from a to b. Then

(1.4) dv(a, b) = dv(mo, ml) + dy(ml, mg) + .-+ dv(mk_l, mk)
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Lemma 1.8. Let d, be a distance function induced by a distance-valuation v on a con-
nected poset (P, <) . Then

(1.5) Va,bce P a<b<c = dy(a,c)=dy(a,b)+d,(b,c)
and
(16) dv(a17b1)+dv(a2ab2)+"'+d’u(an7bn) =

= dv(bla a2) + dv(b27 a3) +--- 4+ dv(bn; al)

holds for every cycle-fence (ay,by,...,an,by,) of the poset (P, <) .
Proof. 1t is easy to verify that (1.5) and (1.6) follow from (1.3). O

Theorem 1.9. Let d, be a distance function induced by a distance-valuation v on a
connected poset (P, <) . Then

d, is a metric on the poset (P,<) if v is a positive valuation,

d, is a pseudometric on the poset (P, <) if v is a isotone valuation.

Proof. Let a,b,c € P. Obviously, d,(a,a) = l(a,a) = 0. If a # b and v is a

positive valuation then dy,(a,b) > 0. If (xg,x1,...,2,) is a way from a to b then
(Yo, Y15+ -y Yn) = (Tn, Tn—1,...,m0) is the way from b to a, hence d,(a,b) = d,(b,a).
Let (zo,z1,...,%n), (Yos¥Y1,---,Ym) be minimal ways from a to b and from b to ¢, re-
spectively. Then (zg,21,...,Zn,Y1,-..,Ym) is the way from a to ¢ and consequently,

dy(a,c) <d,(a,b) +d,(b,c). O

Theorem 1.10. Let d be a metric (pseudometric) on a poset (P, <) satisfying the follow-
ing three conditions

(i) for all a,b € P there exists a (minimal) way (mg,mq,...,myg)
from a to b for which
d(a, b) = d(mo, ml) + d(ml, mz) + -+ d(mk_l, mk),

(ii) a<b<c = d(a,c)=d(a,b)+d(b,c) forallab,ceP,

d(al, b1) + d(a2, b2) + -+ d(an, bn) =
(111) = d(bl, az) + d(bz, ag) + -+ d(bn, al)
for every cycle-fence (ay,by,...,a,,by,) of the poset (P, <) .

Then there exists a positive (isotone) distance-valuation vq on (P, <) and d,, = d.

Proof. By (ii) we can consider for noncomparable elements a, b only such ways (zg, z1,...,Z,)
from a to b for which

(1.7) T; < Tjgp1 > Tjxz OF Ty > Tipq1 < Tjg2
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for each 1 =0,1,...,n — 2, ie. so-called fence ways.
Fix an element ¢ € P. Let a € P. We define the valuation vg on P by

va(e) +d(c,z1) — d(z1,m9) + -+ + (=1)" d(z,_1, a),

if c <
(1.8) va(a) =:

va(e) —d(c,z1) + d(xy,29) — -+ -+ (=1)"d(xp_1,a),

if e > x>
where v4(c) is any but fixed value from R and (g, z1,...,Zn—1,Tn) is any fence way from
c to a.

Now we will show that the function vg4 is well-defined, i.e. v4(a) does not depend on a
choice of the way from ¢ to a and that vg is the positive (isotone) valuation.

Let (zo,z1,...,Tn—1,%n), (Yo, Y1, Ym—1,Ym) be two arbitrary fence ways from c to
a (i.e. ¢ =mxy =1yo, @ =Ty = Ym,). Then one of the following subposet is a cycle-fence
1) (Cal‘la"'7xn—17aaym—1a"'7y1)a
2) (Caxla"'7$n—17ym—17"'7y1)7
3) ($17"'7xn—17a7ym—17-"7y1)7

4) ((I,'l, ey 1, Ym—15-- -, yl)-
In the first case we distinguish
la) ¢ < xy and ¢ < y; and a < z,,—1 and a < y,,—1 (see Fig 3),
1b) c< zy and ¢ < y; and @ > x,—1 and a > Y, —1,
lc) e>xp and ¢ > yy and a < -1 and a < Ypm—1,
1d) ¢ > zy and ¢ > y; and a > z,_1 and a > Yy, _1.
1 Tp—-1

X2

Y1 U Yme—r
Fig. 3

(We illustrate in Fig. 3 only comparable relations among the elements of the fence ways
(xo,Z1,-.-,xy) and (Yo, Y1, -- -, Ym), respectively.)
Let 1a) hold. By (iii) we get
d(e,z1) + d(zo,23) + -+ d(xn—2,Tn-1) + A(Ym—1,0) + d(Ym—2, Ym—3)+
Foo ot d(yr, o) =
= d(r1,72) + d(23,24) + - + d(Tn-1,0) + A(Ym—1,Ym—2) + -+ + d(y1, ).
It implies
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va(a) =va(c) +d(e,x1) — d(z1, x2) + d(z2,23) — -+ + d(Tp—2,Tpn—1) — d(Tp_1,0) =
=vg(c) +d(c,y1) — d(y1,y2) + d(y2,y3) — - + A(Ym—2,Ym—-1) — Ad(Ym—1, a),

i.e. vg(a) does not depend on the choice of a way from ¢ to a.
The other cases 1b), 1¢), 1d) can be handled in the same way. Analogously to the case 1),
we can distinguish four subcases for each of the cases 2), 3) and 4).
For example, let (z1,22,...,Zn—1,Ym—1,---,y1) be a cycle-fence (the case 4)) and let
x1>c¢>y; and y,—1 > a>x,—1 (see Fig. 4). By (iii) we obtain

d(z1,z2) +d(zs,24) + -+ d(Tp—2,Tn—1) + A(Ym—-1, Ym—2) + - -+ d(y2,y1) =
=d(y1,r1) +d(z2,23) + - + d(Tn-1,Ym-1) + d(Ym—2, Ym—3) + - - - + d(y3, y2),

where d(y1,21) = d(y1,¢) +d(c,z1) and d(zp—1,Ym—1) =
=d(zn-1,a) + d(Ym—1,a) by (ii).

T1 Y2 Tn—2 Ym-1
c a
Y1 T2 Ym—-2 Tn-—1
Fig. 4
Therefore,
va(a) =va(c) + d(¢,z1) — d(z1, 22) + d(22,73) — - - + d(vn_1,0) =

=va(c) — d(c,y1) +d(y1,92) — d(y2,y3) + -+ — d(Ym—-1, a).

Now we are going to prove that v, is a positive (isotone) valuation.
Let b < a and let (zo,21...,20), (Y0,Y1,---,Ym) be fence ways from ¢ to a and from ¢ to
b, respectively. Similarly as above we can distinguish some cases.

1) (¢,z1,+ s @Tp_1,0,Ym—1,---,Y1) is a cycle-fence and ¢ < x1, ¢ < y1,
Tp—1 < @, Ym—1 < b (Fig. 5).
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I I3 Tn_2 a

y]. 'rI;Z .’L'4 xn—l
Ym—2
Y3
b
c
Y2 Ya Ym—1
Fig. 5

Then we get by (iii)
d(C, xl) + d($2a $3) +eeet d(xn—la a) + d(ym—b ym—2) +oeet d(y37 y4) + d(yla y2)_

—d(zy,22) —d(x3,24) = - - = d(Tp—2, Tn—1) — (@, Ym—1) = d(Ym—3, Ym—2) — - - — d(y2, y3) —
d(y1,c) =0
and
d(Ym—1,a) = d(Ym—1,b) + d(a,b) by (ii).
It implies
va(a) —va(b) = va(c) + d(c, x1) — d(@1, w2) + d(w2, 3) — - - - — d(@n—2, Tn—1) + d(¥p—1,0) —

’Ud(C) - d(C, yl) + d(yla yZ) - d(yZa y3) +eeet d(ym—27 ym—l) - d(ym—la b) = d(aa b) and
d(a,b) > 0 if d is a metric and d(a,b) > 0 if d is a pseudometric. Thus vg(a) > va(b),
vg(a) > vgq(b), respectively.

The other subcases of the case 1) can be handled in the same way.

2) Let (1, ..y Tp—1,Ym—1,Ym—2,---,y1) be a cycle-fence and y; < ¢ < 1, Ym-1 < b <
a < zp—1 (Fig. 6).
I T3 Tn-3 Tp—1
a
To T4 Tpn_2
c
Y2 Ya b
Ym—2
Y1 Ys Ys Ym—3 Y1
Fig. 6

By (iii) holds
d(y1, 1) +d(ze,x3) + - + d(Tpn—2,Tn-1) + A(Ym-1, Ym—2) + d(Ym—3, Yym—1a) + -+ -+
+d(y27 y3) - d(fL'l, $2) - d(.’L’g, 1'4) -ttt d(x’n—?n xn—2) - d(:En—lJ ym—l) - d(ym—27 ym—S) -
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T d(y37y4) - d(y17y2) =0
and by (i)
d(y1,z1) = d(y1,¢) + d(c,z1) and d(zn—1,Ym—1) = d(Tn_1,0a) + d(a,b) + d(b, ym—1).
Hence

( ) (b (C)+d(C,£L‘1)—d(£E1,fL‘2)+d(.’B2,IE3)—"'—d("L'n,g,$n72)+d($n,2,$n,1)—
d(Zn—1,0 )—vd( ) +d(c,y1) —d(yr,y2) +d(y2,y3) — - — Ad(Ym—3, Ym—2) + d(Ym—2, Ym—-1) —
d(Ym—-1,b) = d(a,b),

i.e. wvg(a) > vg(b) if dis a metric and wvg(a) > vq(b) if d is a pseudometric.

The proofs in all other cases can be done analogously.

We are going to show that d,, = d.
Let a,b € P and let (mg, my,...,my) be a way from a to b for which (i) holds. Let, for
example, a < my and mg_1 < b. Then

1) — va(a)) + (va(m1) — va(ma)) + -+ + (va(b) — va(mi—1)) =
) + d(a, ml) —vg(a)) + (va(a) + d(a,m1) — vg(a) — d(a, mq1)+

du, (a b)

Vg \mm

=(va(m
(va(a

Vg\a

+

d(my,ms)) + - -+ (va(a) + d(a,my) — d(my, mg) + - —
—d(my—2, mp— 1) + d(mg—1,b) — vg(a) — d(a,mq)+
(
(

+

d(my,mg) — -+ d(mg_a,mg_1)) =
d(a, ml) + d(ml,mg) + -+ d(mg—1,b) = d(a,b)

The proof is complete. [

Theorem 1.11. Let d,, be a metric (pseudometric) induced by a positive (isotone) distance-
valuation v on a poset (P, <) and ¢ € P be an arbitrary but fixed element. Let a € P. We
define (in the same way as in (1.8)) the valuation v4, on P by

va, (¢) =: v(c)

v(e) + dy(e, z1) — dy(71,72) + dy (2, 23) — -+ + (=1)"*1dy (Tn—1, a),

ife< o
va, (a) =:
v(c) = dy(c,z1) + dy (71, 2) — dy(w2,3) + - - - + (=1)"dy(Tp—1, a),
ife>
where (zg, 1, ...,Tn—1,Ty) iS any fence way from c to a.

Then vq, is the positive (isotone) valuation on the poset (P, <) and vg, = v.

Proof. We can show that vg, is correctly defined and vg4, is a positive (isotone) valuation
by the same way as in the proof of Theorem 1.10. It is immediate that vy, =v. O
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2. Positive valuations on connected posets of locally finite length

In this section we apply the above results in order to show that there exist positive
valuations on some connected graded posets of locally finite length. Particularly, we will
deal with modular posets (multilattices).

Let (P, <) be a poset. A graph C(P) = (P, E) is called the covering graph associated
with the poset (P, <) , if the edge set E consists of the pairs ab for which a covers b in
(P,<).

Let a, b be vertices of a covering graph C'(P) of a poset (P, <) . Let W = (ag, a1, ...,ay)
be a finite sequence mutually different vertices of the graph C(P). We call that W is the
way from a to b (in C(P)) if

(j) a=agp, b=ay, and
(ji) ai, aj+1 are adjacent vertices of the graph C(P), for each i =0,1,...,n—1
(i.e. a; covers a;4q1 or a;4+1 covers a; in the poset (P, <) ).
The number n is called the length of the way W. The distance of vertices a and b in a
covering graph C(P) we mean the length of the shortes way from a to b (if it exists). We
write d(a,b) = dy if the distance of the vertices a, b is dp.

Let (P,<) be a poset. In this section we will denote by d the distance function d :
P x P — Z defined above (i.e. d(a,b) is the distance of the vertices a, b in the covering
graph C'(P) of the poset (P, <) ).

Let (P, <) be a connected poset of locally finite length. Since the set of all non-negative
integers is well ordered, for every a,b € P there exists a fence way from a to b of shortest
length. Thus, the function d is the metric on P and moreover the metric d satisfies the
condition (i) (Theorem 1.10). On the other hand the metric d do not need satisfy the
conditions (ii) and (iii) (see Fig. 7).

a

Fig. 7

Lemma 2.1. Let (P,<) be a connected poset of locally finite length. If the metric d
satisfies the condition (ii) (Theorem 1.10) then the poset (P, <) is graded.

Proof. Let a,b € P, a < b. The interval [a,b] is the subposet of (P, <) with the least
element a. If 2,y € [a,b] and y covers x we have

d(a,y) =d(a,x) + d(z,y) = d(a,z) + 1
by (ii). It implies that all maximal chains of the interval [a, b] are of the same length. [

Remark. The poset depicted in Fig. 7 is graded but this poset does not satisfy the condition

(ii).
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Theorem 2.2. Let (P,<) be a connected poset of locally finite length. If the metric d
the conditions (ii) and (iii) satisfies then there exists a positive distance-valuation v on the
poset (P, <) .

Proof. We can define the positive distance-valuation v on the poset (P, <) by Theorem
1.10. O

Let (P, <) be a graded poset of locally finite length and a < b, a,b € P. In this section
we will denote by [(a, b) the length of a maximal chain (i.e. of all maximal chains) of the
interval [a, b] of the graded poset (P, <) . Note it is possible that [(a,b) # d(a,b) (for a, b
in Fig. 7 we have l(a,b) =4 > d(a,b) = 3).

Theorem 2.3. Let (P, <) be a directed graded poset of locally finite length. There exits
a positive distance-valuation v on the poset (P, <) for which

(2.1) a<b = () =wv(a)+1(a,b)=uv(a)+d(a,b).

Proof. Let (ay,b1,...,an,b,) be a cycle-fence of the poset (P, <) . Let w and u be a lower
bound and an upper bound of the poset {ay,b1,...,an,b,}, respectively. Since the poset
(P, <) is graded we have

l(al,bl) 4+ o+ l(an,bn) =
=l(w,u) —l(w,a1) —l(by,u) + -+ l(w,u) — l(w, an) — (b, u) =
:l(a2,b1) + l(a3, bz) + -+ l(al,bn).

Let a < b, a,b € P. Let (a,z1,...,Zp—1,b) be a minimal fence way from a to b for

which
d(a,b) = l(a, 1) + (w1, 2) + - + {(Ty_1,D).
The result of the first part of the proof implies (e.g. 1 < a)
l(a,b) = ~l(a,x1) + l(z1, 22) — (22, 23) + -+ + (—1)"I(zp—1,b)

(see Fig. 8).
Thus, l(a,b) < d(a,b), i.e. l(a,b) = d(a,b). Now it is immediate that (ii) and (iii) hold for
the metric d.

We may now define the distance-valuation v by (1.8). Obviously, the valuation v is
positive and (2.1) holds. O

Tp =0

T9 T4

€3
Ty

Fig. 8
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Let (M, <) be a poset and a,b € M. Let a V b be the set of all minimal elements of the
set of all upper bounds of the set {a,b} and a A b be the set of all maximal elements of the
set of all lower bounds of the set {a,b}. We call a poset (M, <) a multilattice if for every
upper bound h the set {¢t;t € aVb & t < h} is non-empty and for every lower bound &
the set {t; t € aANb & t > k} is also non-empty for all a,b € M. It is easy to verify that
every poset of locally finite length is a multilattice.

A multilattice (M, <) is said to be modular if whenever a,b,c € M

(avb)N(aVe)#0 & (aAb)N(ane)#0D & b<c = b=c
Every modular multilattice of locally finite length is a graded poset.

Lemma 2.4. Let M be a modular directed multilattice of locally finite length. If a,b €
M, weaVvb, weaAb then (a,u,b) and (a,w,b) are minimal ways from a to b (i.e.

d(a,b) =l(a,u) +1(b,u) = l(w,a) + l(w,D)).
Proof. By Theorem 2.3 d(a,b) = l(a,b) for any comparable elmements a,b € M. Let a, b

be two noncomparable elements and let (a,z1,...,2,-1,b) be a way from a to b. Let, for
instance, a > x; < xy and let x; ¢ a Axo (Fig. 9).
a T2
v
T
Fig. 9
Then there exists an element v € a A x3, v > x1 and the way (a,v,za,...,Tp_1,b) is
shorter than the way (a,x1,...,2,-1,b). In the next part of the proof we will consider
only fence ways (a, 1,...,2n—1,b) from a to b for which
(2.2) Ty € Ti—1 NTjy1 OF  X; € i1V Tiy1

holds for each ¢ =1,...,n — 1. We will do the proof by induction.

Let n = 2. We distinguish two cases. Let a > x; < b. Then z; € a Ab and
l(a,z1) = I(u,b) and I(z1,b) = l(a,u), because the multilattice is modular (see [5]).
It implies that d(a,u,b) = d(a,z1,b). Let a < x; > b. Then z; € aVb and
u € a Vb, too. The multilattice is modular, therefore [(a,z1) = l(w,b) = l(a,u) and
l(b,x1) = l(w,a) = l(b,u), hence I(a,z1)+1(b,x1) =Il(a,u) + I(b,u), again.

Assume that for the lengths of all n-element fence ways from a to b the statement holds.
We prove it for n+1-element fence ways.

Let (a,21,...,Zn—1,b) be an (n+1)-element fence way. For instance, let a > z; < z2 >
o < xp_1 >b (Fig. 10). If y € aV xy then by induction hypothesis I(a,y)+ (y, x3) +
w4 l(xp_1,b) > d(a,u) +d(b,u). Because l(a,z1) = Il(za,y) and [(z1,z2) =I(a,y), we
have

la,x1) + U(z1, 22) + l(x2,23) + -+ + l(Tp_1,b) =
:l(av y) + l(y,xz) + l(‘T2a 'T3) +ot l(‘rn—lv b) =
=l(a,y) + l(w3,y) ++ -+ (vpn_1,b) > d(a,u) + d(b,u).
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Analogously, we can show the inequality in the other cases. The statement holds for a
lower bound w by duality. 0O

Corollary 2.5. Let M be a modular directed multilattice of locally finite length. There
exists a positive valuation v on the multilattice M for which

(2.3) v(a) + v(b) = v(u) + v(w)
for all a,be M,u € aVb weaANnb.

Proof. We can define a positive distance-valuation v on the poset M by Theorem 2.3. The
valuation v satifies (2.1). So, for every a,b € M, u € aV b, w € a A b we have

v(a) +v(b) =v(w)+ l(w,a) +v(w) + l(w,b) =
=v(w) +v(w) + l(w,a) + l(a,u) =
=v(w) + v(u).
O

In [2], by a valuation on a lattice L is meant a function v : L — R for which (2.3)
holds. This definition was accepted by authors of [5] and [6], too. If L is a modular
multilattice of locally finite length, we have for the induced metric d,

dy(a,b) =l(a,u) +1(b,u) =l(a,u) + (w,a) =
=v(u) —v(a) +v(a) —v(w) =v(u) —v(w) =
= dy(w,u)
whenever w €aVb, weaAb.

Definition 2.6. Let (P, <) be a poset. A positive valuation v on the poset (P, <) is said
to be a modular valuation if for every a,b € P

aVb#D & aNb#D & ueaVvb & weaNb

2.4
(2.4) = v(a) +v(b) = v(u) + v(w).

Two intervals [a, b], [¢,d] (of a poset (P, <) ) are said to be transposed if either a € bAc,
debVe or c€aANd, beaVd. Theintervals I, J are projective if there exists a finite
sequence of intervals I = Iy, I,...,I,, = J such that all adjoining intervals I;, ;1 are
transposed.
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Definition 2.7. Let (P, <) be a connected poset of locally finite length. The poset (P, <)
is said to be a modular poset if the next two conditions are satisfied

(k)  the lengths of every two projective intervals are equal
(kk)  the metric d satisfies (ii) and (iii).

Theorem 2.8. A connected graded poset (P, <) of locally finite length is modular if and
only if there exists a modular valuation v on (P, <) satisfying (2.1).

Proof. a) Let P be a modular connected poset of locally finite length. The metric d satisfies
(i), (ii) and (iii), hence we can define a positive distance-valuation v on the poset (P, <)
by (1.8). If u € a Vb, w € a Ab then according to (1.8) we get

v(w) +v(u) =v(w) + v(w) + d(w,u) = 2v(w) + d(w,a) + d(a, u).
The intervals [a, u], [w, b] are projective, for this reason d(a,u) = d(w,b) and we get
v(w) +v(u) = 2v(w) + d(w, a) + d(w, b) = v(a) + v(b)

Obviously, the valuation v satisfies (2.1).
b) Let there exist a modular valuation v satisfying (2.1) on a poset P. Let [a, b], [c, d]
be two transposed intervals and let a € bA ¢, d € bV c. From v(b) + v(c) = v(a) + v(d)
we get v(b) —v(a) = v(d) —v(c), i.e. d(a,b) =d(e,d) by (2.1). The transitivity of equality
implies (k).
Let a < b < c. Using (2.1) we get

d(a,c) =v(c) —v(a) =v(c) —v(b) +v(b) —v(a) =

=d(a,b) +d(b,c).

Let (a1,b1,...,an,by,) be cycle fence of the poset (P, <) . By (2.1)

d(ai,b1) + -+ d(an,bp) = v(b1) —v(ar) + -+ v(by) — v(ay) =
= d(bh az) + -+ d(bn, CLl).

O

The authors thank the referee for several valuable remarks according to which the second
section was rewritten.

REFERENCES

1. Benado, M., Les ensembles partiellement ordenés et le théoreme de raffinement de Schreier II,
Cechoslov. mat. 7. 5 (80) (1955), 308-344.
2. Birkhoff, G., Lattice Theory, 3" edition, Amer. Math. Soc., 1967.

37



3. McDiarmid, C.J.H., Bisubmodular functions, distributive valuations and distance functions in lattice,

Algebra Univ. 5 (1975), 253-255.

4. Duffus, D. and Rival, I., Path length in the covering graph of a lattice, Discr. Math. 19 (1977), 139-158.

o

Kolibiar, M. and Lihovéd, J., Modular and metric multilattices, Math. Slovaca 45 (1995), 19-27.

6. Lihova, J., Valuations and distance functions on directed multilattices, Math. Slovaca 46 (1996),

143-155.

(Received October 20, 1996)

38

Dept. of Mathematics

Matej Bel University

Tajovského 40

974 01 Banskd Bystrica
SLOVAKIA

E-mail address: haviar@fhpv.umb.sk

E-mail address: monosz@fthpv.umb.sk



